1932

Abstract

Myeloid neoplasms with and without preexisting platelet disorders frequently develop in association with an underlying germline predisposition. Germline alterations affecting , , , , and are associated with nonsyndromic predisposition to the development of myeloid neoplasms including acute myeloid leukemia and myelodysplastic syndrome. However, germline predisposition to myeloid neoplasms is also associated with a wide range of other syndromes, including / associated predisposition, deficiency, RASopathies, ribosomopathies, telomere biology disorders, Fanconi anemia, severe congenital neutropenia, Down syndrome, and others. In the fifth edition of the World Health Organization (WHO) series on the classification of tumors of hematopoietic and lymphoid tissues, myeloid neoplasms associated with germline predisposition have been recognized as a separate entity. Here, we review several disorders from this WHO entity as well as other related conditions with an emphasis on the molecular pathogenesis of disease and accompanying somatic alterations. Finally, we provide an overview of establishing the molecular diagnosis of these germline genetic conditions and general recommendations for screening and management of the associated hematologic conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023420
2025-01-24
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023420.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023420&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, et al. 1999.. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. . Nat. Genet. 23::16675
    [Crossref] [Google Scholar]
  2. 2.
    Schlegelberger B, Heller PG. 2017.. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). . Semin. Hematol. 54::7580
    [Crossref] [Google Scholar]
  3. 3.
    Homan CC, Scott HS, Brown AL. 2023.. Hereditary platelet disorders associated with germ line variants in RUNX1, ETV6, and ANKRD26. . Blood 141::153343
    [Crossref] [Google Scholar]
  4. 4.
    Brown AL, Arts P, Carmichael CL, Babic M, Dobbins J, et al. 2020.. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. . Blood Adv. 4::113144
    [Crossref] [Google Scholar]
  5. 5.
    Simon L, Spinella JF, Yao CY, Lavallee VP, Boivin I, et al. 2020.. High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. . Blood 135::188286
    [Crossref] [Google Scholar]
  6. 6.
    Ernst MPT, Kavelaars FG, Lowenberg B, Valk PJM, Raaijmakers M. 2021.. RUNX1 germline variants in RUNX1-mutant AML: how frequent?. Blood 137::142831
    [Crossref] [Google Scholar]
  7. 7.
    Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, et al. 2016.. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. . Leukemia 30::216068. Erratum . 2016.. Leukemia 30::2282
    [Google Scholar]
  8. 8.
    Mendler JH, Maharry K, Radmacher MD, Mrozek K, Becker H, et al. 2012.. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. . J. Clin. Oncol. 30::310918
    [Crossref] [Google Scholar]
  9. 9.
    WHO Classif. Tumours Editor. Board. 2024.. Haematolymphoid Tumours, Part A, Vol. 11: WHO Classification of Tumours. Lyon, France:: Int. Agency Res. Cancer. , 5th ed.. https://publications.iarc.who.int/637
    [Google Scholar]
  10. 10.
    Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, et al. 1993.. Molecular cloning and characterization of PEBP2β, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α. . Virology 194::31431
    [Crossref] [Google Scholar]
  11. 11.
    Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, et al. 2004.. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. . Nat. Med. 10::299304. Erratum . 2004.. Nat. Med. 11::102
    [Google Scholar]
  12. 12.
    Wang C, Tu Z, Cai X, Wang W, Davis AK, et al. 2023.. A critical role of RUNX1 in governing megakaryocyte-primed hematopoietic stem cell differentiation. . Blood Adv. 7::2590605
    [Crossref] [Google Scholar]
  13. 13.
    Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, et al. 2010.. Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. . Blood 115::161020
    [Crossref] [Google Scholar]
  14. 14.
    Tsuzuki S, Hong D, Gupta R, Matsuo K, Seto M, Enver T. 2007.. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. . PLOS Med. 4::e172
    [Crossref] [Google Scholar]
  15. 15.
    Noris P, Perrotta S, Seri M, Pecci A, Gnan C, et al. 2011.. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. . Blood 117::667380
    [Crossref] [Google Scholar]
  16. 16.
    Pippucci T, Savoia A, Perrotta S, Pujol-Moix N, Noris P, et al. 2011.. Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. . Am. J. Hum. Genet. 88::11520
    [Crossref] [Google Scholar]
  17. 17.
    Noris P, Favier R, Alessi MC, Geddis AE, Kunishima S, et al. 2013.. ANKRD26-related thrombocytopenia and myeloid malignancies. . Blood 122::198789
    [Crossref] [Google Scholar]
  18. 18.
    Bluteau D, Balduini A, Balayn N, Currao M, Nurden P, et al. 2014.. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. . J. Clin. Investig. 124::58091
    [Crossref] [Google Scholar]
  19. 19.
    Noetzli L, Lo RW, Lee-Sherick AB, Callaghan M, Noris P, et al. 2015.. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. . Nat. Genet. 47::53538
    [Crossref] [Google Scholar]
  20. 20.
    Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, et al. 2015.. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. . Nat. Genet. 47::18085
    [Crossref] [Google Scholar]
  21. 21.
    Nishii R, Baskin-Doerfler R, Yang W, Oak N, Zhao X, et al. 2021.. Molecular basis of ETV6-mediated predisposition to childhood acute lymphoblastic leukemia. . Blood 137::36473
    [Crossref] [Google Scholar]
  22. 22.
    Wang L, Hiebert SW. 2001.. TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. . Oncogene 20::371625
    [Crossref] [Google Scholar]
  23. 23.
    Kwiatkowski BA, Bastian LS, Bauer TR Jr., Tsai S, Zielinska-Kwiatkowska AG, Hickstein DD. 1998.. The ets family member Tel binds to the Fli-1 oncoprotein and inhibits its transcriptional activity. . J. Biol. Chem. 273::1752530
    [Crossref] [Google Scholar]
  24. 24.
    Hock H, Meade E, Medeiros S, Schindler JW, Valk PJ, et al. 2004.. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. . Genes Dev. 18::233641
    [Crossref] [Google Scholar]
  25. 25.
    Wang LC, Swat W, Fujiwara Y, Davidson L, Visvader J, et al. 1998.. The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. . Genes Dev. 12::2392402
    [Crossref] [Google Scholar]
  26. 26.
    Faleschini M, Ammeti D, Papa N, Alfano C, Bottega R, et al. 2022.. ETV6-related thrombocytopenia: dominant negative effect of mutations as common pathogenic mechanism. . Haematologica 107::224954
    [Crossref] [Google Scholar]
  27. 27.
    Tawana K, Wang J, Renneville A, Bodor C, Hills R, et al. 2015.. Disease evolution and outcomes in familial AML with germline CEBPA mutations. . Blood 126::121423
    [Crossref] [Google Scholar]
  28. 28.
    Pathak A, Seipel K, Pemov A, Dewan R, Brown C, et al. 2016.. Whole exome sequencing reveals a C-terminal germline variant in CEBPA-associated acute myeloid leukemia: 45-year follow up of a large family. . Haematologica 101::84652
    [Crossref] [Google Scholar]
  29. 29.
    Pabst T, Mueller BU. 2009.. Complexity of CEBPA dysregulation in human acute myeloid leukemia. . Clin. Cancer Res. 15::53037
    [Crossref] [Google Scholar]
  30. 30.
    Avellino R, Delwel R. 2017.. Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation. . Blood 129::208391
    [Crossref] [Google Scholar]
  31. 31.
    Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG. 1998.. CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. . Mol. Cell. Biol. 18::430114
    [Crossref] [Google Scholar]
  32. 32.
    Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, et al. 1995.. Impaired energy homeostasis in C/EBPα knockout mice. . Science 269::110812
    [Crossref] [Google Scholar]
  33. 33.
    Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. 1997.. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. . PNAS 94::56974
    [Crossref] [Google Scholar]
  34. 34.
    Ma O, Hong S, Guo H, Ghiaur G, Friedman AD. 2014.. Granulopoiesis requires increased C/EBPα compared to monopoiesis, correlated with elevated Cebpa in immature G-CSF receptor versus M-CSF receptor expressing cells. . PLOS ONE 9::e95784
    [Crossref] [Google Scholar]
  35. 35.
    Federzoni EA, Humbert M, Torbett BE, Behre G, Fey MF, Tschan MP. 2014.. CEBPA-dependent HK3 and KLF5 expression in primary AML and during AML differentiation. . Sci. Rep. 4::4261
    [Crossref] [Google Scholar]
  36. 36.
    Ossipow V, Descombes P, Schibler U. 1993.. CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. . PNAS 90::821923
    [Crossref] [Google Scholar]
  37. 37.
    Calkhoven CF, Bouwman PR, Snippe L, Ab G. 1994.. Translation start site multiplicity of the CCAAT/enhancer binding protein α mRNA is dictated by a small 5′ open reading frame. . Nucleic Acids Res. 22::554047
    [Crossref] [Google Scholar]
  38. 38.
    An MR, Hsieh CC, Reisner PD, Rabek JP, Scott SG, et al. 1996.. Evidence for posttranscriptional regulation of C/EBPα and C/EBPβ isoform expression during the lipopolysaccharide-mediated acute-phase response. . Mol. Cell. Biol. 16::2295306
    [Crossref] [Google Scholar]
  39. 39.
    Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, et al. 2001.. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia. . Nat. Genet. 27::26370
    [Crossref] [Google Scholar]
  40. 40.
    Makishima H, Saiki R, Nannya Y, Korotev S, Gurnari C, et al. 2023.. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. . Blood 141::53449
    [Crossref] [Google Scholar]
  41. 41.
    Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, et al. 2015.. Inherited and somatic defects in DDX41 in myeloid neoplasms. . Cancer Cell 27::65870
    [Crossref] [Google Scholar]
  42. 42.
    Rudelius M, Weinberg OK, Niemeyer CM, Shimamura A, Calvo KR. 2023.. The International Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric myelodysplastic syndrome, and juvenile myelomonocytic leukemia. . Virchows Arch. 482::11330
    [Crossref] [Google Scholar]
  43. 43.
    Li P, White T, Xie W, Cui W, Peker D, et al. 2022.. AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome. . Leukemia 36::66474
    [Crossref] [Google Scholar]
  44. 44.
    Makishima H, Bowman TV, Godley LA. 2023.. DDX41-associated susceptibility to myeloid neoplasms. . Blood 141::154452
    [Crossref] [Google Scholar]
  45. 45.
    Chlon TM, Stepanchick E, Hershberger CE, Daniels NJ, Hueneman KM, et al. 2021.. Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. . Cell Stem Cell 28::196681.e6
    [Crossref] [Google Scholar]
  46. 46.
    Lee KG, Kim SS, Kui L, Voon DC, Mauduit M, et al. 2015.. Bruton's tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response. . Cell Rep. 10::105565
    [Crossref] [Google Scholar]
  47. 47.
    Saygin C, Roloff G, Hahn CN, Chhetri R, Gill S, et al. 2023.. Allogeneic hematopoietic stem cell transplant outcomes in adults with inherited myeloid malignancies. . Blood Adv. 7::54954
    [Crossref] [Google Scholar]
  48. 48.
    Baranwal A, Nanaa A, Viswanatha D, He R, Foran J, et al. 2022.. Outcomes of allogeneic transplant in patients with DDX41 mutated myelodysplastic syndrome and acute myeloid leukemia. . Bone Marrow Transplant. 57::171618
    [Crossref] [Google Scholar]
  49. 49.
    Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, et al. 2015.. The genomic landscape of juvenile myelomonocytic leukemia. . Nat. Genet. 47::132633
    [Crossref] [Google Scholar]
  50. 50.
    Kratz CP, Niemeyer CM, Castleberry RP, Cetin M, Bergstrasser E, et al. 2005.. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. . Blood 106::218385
    [Crossref] [Google Scholar]
  51. 51.
    Longo JF, Carroll SL. 2022.. The RASopathies: biology, genetics and therapeutic options. . Adv. Cancer Res. 153::30541
    [Crossref] [Google Scholar]
  52. 52.
    Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, et al. 2010.. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. . Nat. Genet. 42::794800
    [Crossref] [Google Scholar]
  53. 53.
    Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, et al. 2010.. Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. . Birth Defects Res. A Clin. Mol. Teratol. 88::100816
    [Crossref] [Google Scholar]
  54. 54.
    Hasle H, Clemmensen IH, Mikkelsen M. 2000.. Risks of leukaemia and solid tumours in individuals with Down's syndrome. . Lancet 355::16569
    [Crossref] [Google Scholar]
  55. 55.
    Pine SR, Guo Q, Yin C, Jayabose S, Druschel CM, Sandoval C. 2007.. Incidence and clinical implications of GATA1 mutations in newborns with Down syndrome. . Blood 110::212831
    [Crossref] [Google Scholar]
  56. 56.
    Buitenkamp TD, Izraeli S, Zimmermann M, Forestier E, Heerema NA, et al. 2014.. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. . Blood 123::7077
    [Crossref] [Google Scholar]
  57. 57.
    Bercovich D, Ganmore I, Scott LM, Wainreb G, Birger Y, et al. 2008.. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. . Lancet 372::148492
    [Crossref] [Google Scholar]
  58. 58.
    Hertzberg L, Vendramini E, Ganmore I, Cazzaniga G, Schmitz M, et al. 2010.. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. . Blood 115::100617
    [Crossref] [Google Scholar]
  59. 59.
    Marlow EC, Ducore J, Kwan ML, Cheng SY, Bowles EJA, et al. 2021.. Leukemia risk in a cohort of 3.9 million children with and without Down syndrome. . J. Pediatr. 234::17280.e3
    [Crossref] [Google Scholar]
  60. 60.
    Tunstall-Pedoe O, Roy A, Karadimitris A, de la Fuente J, Fisk NM, et al. 2008.. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. . Blood 112::450711
    [Crossref] [Google Scholar]
  61. 61.
    Wechsler J, Greene M, McDevitt MA, Anastasi J, Karp JE, et al. 2002.. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. . Nat. Genet. 32::14852
    [Crossref] [Google Scholar]
  62. 62.
    Li J, Kalev-Zylinska ML. 2022.. Advances in molecular characterization of myeloid proliferations associated with Down syndrome. . Front. Genet. 13::891214
    [Crossref] [Google Scholar]
  63. 63.
    Gialesaki S, Brauer-Hartmann D, Issa H, Bhayadia R, Alejo-Valle O, et al. 2023.. RUNX1 isoform disequilibrium promotes the development of trisomy 21-associated myeloid leukemia. . Blood 141::110518
    [Crossref] [Google Scholar]
  64. 64.
    Bloom D. 1954.. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity. . AMA Am. J. Dis. Child 88::75458
    [Google Scholar]
  65. 65.
    German J, Crippa LP, Bloom D. 1974.. Bloom's syndrome. III. Analysis of the chromosome aberration characteristic of this disorder. . Chromosoma 48::36166
    [Crossref] [Google Scholar]
  66. 66.
    German J, Schonberg S, Louie E, Chaganti RS. 1977.. Bloom's syndrome. IV. Sister-chromatid exchanges in lymphocytes. . Am. J. Hum. Genet. 29::24855
    [Google Scholar]
  67. 67.
    Croteau DL, Popuri V, Opresko PL, Bohr VA. 2014.. Human RecQ helicases in DNA repair, recombination, and replication. . Annu. Rev. Biochem. 83::51952
    [Crossref] [Google Scholar]
  68. 68.
    Johnson FB, Lombard DB, Neff NF, Mastrangelo MA, Dewolf W, et al. 2000.. Association of the Bloom syndrome protein with topoisomerase IIIα in somatic and meiotic cells. . Cancer Res. 60::116267
    [Google Scholar]
  69. 69.
    Subramanian V, Rodemoyer B, Shastri V, Rasmussen LJ, Desler C, Schmidt KH. 2021.. Bloom syndrome DNA helicase deficiency is associated with oxidative stress and mitochondrial network changes. . Sci. Rep. 11::2157
    [Crossref] [Google Scholar]
  70. 70.
    Li L, Eng C, Desnick RJ, German J, Ellis NA. 1998.. Carrier frequency of the Bloom syndrome blmAsh mutation in the Ashkenazi Jewish population. . Mol. Genet. Metab. 64::28690
    [Crossref] [Google Scholar]
  71. 71.
    Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, et al. 2011.. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. . Blood 118::265355
    [Crossref] [Google Scholar]
  72. 72.
    Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, et al. 2011.. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. . Blood 118::265658
    [Crossref] [Google Scholar]
  73. 73.
    Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, et al. 2011.. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. . Nat. Genet. 43::101217
    [Crossref] [Google Scholar]
  74. 74.
    Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, et al. 2011.. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). . Nat. Genet. 43::92931
    [Crossref] [Google Scholar]
  75. 75.
    Pasquet M, Bellanne-Chantelot C, Tavitian S, Prade N, Beaupain B, et al. 2013.. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. . Blood 121::82229
    [Crossref] [Google Scholar]
  76. 76.
    Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, et al. 2018.. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. . Blood 131::71732
    [Crossref] [Google Scholar]
  77. 77.
    Donadieu J, Lamant M, Fieschi C, de Fontbrune FS, Caye A, et al. 2018.. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. . Haematologica 103::127887
    [Crossref] [Google Scholar]
  78. 78.
    Wlodarski MW, Hirabayashi S, Pastor V, Stary J, Hasle H, et al. 2016.. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. . Blood 127::138797
    [Crossref] [Google Scholar]
  79. 79.
    Homan CC, Drazer MW, Yu K, Lawrence DM, Feng J, et al. 2023.. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41. . Blood Adv. 7::6092107
    [Crossref] [Google Scholar]
  80. 80.
    Calvo KR, Vinh DC, Maric I, Wang W, Noel P, et al. 2011.. Myelodysplasia in autosomal dominant and sporadic monocytopenia immunodeficiency syndrome: diagnostic features and clinical implications. . Haematologica 96::122125
    [Crossref] [Google Scholar]
  81. 81.
    Ganapathi KA, Townsley DM, Hsu AP, Arthur DC, Zerbe CS, et al. 2015.. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. . Blood 125::5670
    [Crossref] [Google Scholar]
  82. 82.
    Orkin SH. 1992.. GATA-binding transcription factors in hematopoietic cells. . Blood 80::57581
    [Crossref] [Google Scholar]
  83. 83.
    Gao X, Johnson KD, Chang YI, Boyer ME, Dewey CN, et al. 2013.. Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo. . J. Exp. Med. 210::283342
    [Crossref] [Google Scholar]
  84. 84.
    Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, et al. 1994.. An early haematopoietic defect in mice lacking the transcription factor GATA-2. . Nature 371::22126
    [Crossref] [Google Scholar]
  85. 85.
    Rodrigues NP, Janzen V, Forkert R, Dombkowski DM, Boyd AS, et al. 2005.. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. . Blood 106::47784
    [Crossref] [Google Scholar]
  86. 86.
    Ling KW, Ottersbach K, van Hamburg JP, Oziemlak A, Tsai FY, et al. 2004.. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. . J. Exp. Med. 200::87182
    [Crossref] [Google Scholar]
  87. 87.
    Bresnick EH, Jung MM, Katsumura KR. 2020.. Human GATA2 mutations and hematologic disease: how many paths to pathogenesis?. Blood Adv. 4::458492
    [Crossref] [Google Scholar]
  88. 88.
    Narumi S, Amano N, Ishii T, Katsumata N, Muroya K, et al. 2016.. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. . Nat. Genet. 48::79297
    [Crossref] [Google Scholar]
  89. 89.
    Chen DH, Below JE, Shimamura A, Keel SB, Matsushita M, et al. 2016.. Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. . Am. J. Hum. Genet. 98::114658
    [Crossref] [Google Scholar]
  90. 90.
    Schwartz JR, Wang S, Ma J, Lamprecht T, Walsh M, et al. 2017.. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome. . Leukemia 31::182730
    [Crossref] [Google Scholar]
  91. 91.
    Schwartz JR, Ma J, Lamprecht T, Walsh M, Wang S, et al. 2017.. The genomic landscape of pediatric myelodysplastic syndromes. . Nat. Commun. 8::1557
    [Crossref] [Google Scholar]
  92. 92.
    Wong JC, Bryant V, Lamprecht T, Ma J, Walsh M, et al. 2018.. Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. . JCI Insight 3::e121086
    [Crossref] [Google Scholar]
  93. 93.
    Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, et al. 2021.. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. . Nat. Med. 27::180617
    [Crossref] [Google Scholar]
  94. 94.
    Nagata Y, Narumi S, Guan Y, Przychodzen BP, Hirsch CM, et al. 2018.. Germline loss-of-function SAMD9 and SAMD9L alterations in adult myelodysplastic syndromes. . Blood 132::230913
    [Crossref] [Google Scholar]
  95. 95.
    Sahoo SS, Kozyra EJ, Wlodarski MW. 2020.. Germline predisposition in myeloid neoplasms: unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. . Best Pract. Res. Clin. Haematol. 33::101197
    [Crossref] [Google Scholar]
  96. 96.
    Thomas ME 3rd, Abdelhamed S, Hiltenbrand R, Schwartz JR, Sakurada SM, et al. 2021.. Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. . Leukemia 35::323244
    [Crossref] [Google Scholar]
  97. 97.
    Buonocore F, Kuhnen P, Suntharalingham JP, Del Valle I, Digweed M, et al. 2017.. Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. . J. Clin. Investig. 127::170013
    [Crossref] [Google Scholar]
  98. 98.
    Abdelhamed S, Thomas ME 3rd, Westover T, Umeda M, Xiong E, et al. 2022.. Mutant Samd9l expression impairs hematopoiesis and induces bone marrow failure in mice. . J. Clin. Investig. 132::e158869
    [Crossref] [Google Scholar]
  99. 99.
    Zhang F, Ji Q, Chaturvedi J, Morales M, Mao Y, et al. 2023.. Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis. . Sci. Adv. 9::eadh8502
    [Crossref] [Google Scholar]
  100. 100.
    Niewisch MR, Savage SA. 2019.. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. . Expert Rev. Hematol. 12::103752
    [Crossref] [Google Scholar]
  101. 101.
    Savage SA, Niewisch MR. 1993.. Dyskeratosis congenita and related telomere biology disorders. . In GeneReviews, ed. MP Adam, J Feldman, GM Mirzaa, RA Pagon, SE Wallace, et al . Seattle, WA:: Univ. Wash:.
    [Google Scholar]
  102. 102.
    Savage SA, Dufour C. 2017.. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. . Semin. Hematol. 54::10514
    [Crossref] [Google Scholar]
  103. 103.
    Niewisch MR, Beier F, Savage SA. 2023.. Clinical manifestations of telomere biology disorders in adults. . Hematol. Am. Soc. Hematol. Educ. Progr. 2023::56372
    [Crossref] [Google Scholar]
  104. 104.
    Nelson ND, Bertuch AA. 2012.. Dyskeratosis congenita as a disorder of telomere maintenance. . Mutat. Res. 730::4351
    [Crossref] [Google Scholar]
  105. 105.
    de la Fuente J, Dokal I. 2007.. Dyskeratosis congenita: advances in the understanding of the telomerase defect and the role of stem cell transplantation. . Pediatr. Transplant. 11::58494
    [Crossref] [Google Scholar]
  106. 106.
    Dokal I. 2011.. Dyskeratosis congenita. . Hematol. Am. Soc. Hematol. Educ. Progr. 2011::48086
    [Crossref] [Google Scholar]
  107. 107.
    Alter BP, Giri N, Savage SA, Rosenberg PS. 2018.. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up. . Haematologica 103::3039
    [Crossref] [Google Scholar]
  108. 108.
    Alter BP, Giri N, Savage SA, Rosenberg PS. 2009.. Cancer in dyskeratosis congenita. . Blood 113::654957
    [Crossref] [Google Scholar]
  109. 109.
    Dokal I, Vulliamy T, Mason P, Bessler M. 2015.. Clinical utility gene card for: Dyskeratosis congenita – update 2015. . Eur. J. Hum. Genet. 23::558
    [Crossref] [Google Scholar]
  110. 110.
    Alter BP, Baerlocher GM, Savage SA, Chanock SJ, Weksler BB, et al. 2007.. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. . Blood 110::143947
    [Crossref] [Google Scholar]
  111. 111.
    Alter BP, Rosenberg PS, Giri N, Baerlocher GM, Lansdorp PM, Savage SA. 2012.. Telomere length is associated with disease severity and declines with age in dyskeratosis congenita. . Haematologica 97::35359
    [Crossref] [Google Scholar]
  112. 112.
    Maciejowski J, de Lange T. 2017.. Telomeres in cancer: tumour suppression and genome instability. . Nat. Rev. Mol. Cell Biol. 18::17586
    [Crossref] [Google Scholar]
  113. 113.
    Lim CJ, Cech TR. 2021.. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. . Nat. Rev. Mol. Cell Biol. 22::28398
    [Crossref] [Google Scholar]
  114. 114.
    de Lange T. 2009.. How telomeres solve the end-protection problem. . Science 326::94852
    [Crossref] [Google Scholar]
  115. 115.
    Revy P, Kannengiesser C, Bertuch AA. 2023.. Genetics of human telomere biology disorders. . Nat. Rev. Genet. 24::86108
    [Crossref] [Google Scholar]
  116. 116.
    Wellinger RJ. 2014.. In the end, what's the problem?. Mol. Cell 53::85556
    [Crossref] [Google Scholar]
  117. 117.
    Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. 1992.. Telomere end-replication problem and cell aging. . J. Mol. Biol. 225::95160
    [Crossref] [Google Scholar]
  118. 118.
    de Lange T. 2018.. Shelterin-mediated telomere protection. . Annu. Rev. Genet. 52::22347
    [Crossref] [Google Scholar]
  119. 119.
    Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, et al. 2020.. Determinants of telomere length across human tissues. . Science 369::eaaz6876
    [Crossref] [Google Scholar]
  120. 120.
    Alder JK, Armanios M. 2022.. Telomere-mediated lung disease. . Physiol. Rev. 102::170320
    [Crossref] [Google Scholar]
  121. 121.
    Brenner KA, Nandakumar J. 2022.. Consequences of telomere replication failure: the other end-replication problem. . Trends Biochem. Sci. 47::50617
    [Crossref] [Google Scholar]
  122. 122.
    Sfeir A, de Lange T. 2012.. Removal of shelterin reveals the telomere end-protection problem. . Science 336::59397
    [Crossref] [Google Scholar]
  123. 123.
    Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, et al. 2012.. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. . Nat. Commun. 3::708
    [Crossref] [Google Scholar]
  124. 124.
    d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, et al. 2003.. A DNA damage checkpoint response in telomere-initiated senescence. . Nature 426::19498
    [Crossref] [Google Scholar]
  125. 125.
    Bell RJ, Rube HT, Xavier-Magalhaes A, Costa BM, Mancini A, et al. 2016.. Understanding TERT promoter mutations: a common path to immortality. . Mol. Cancer Res. 14::31523
    [Crossref] [Google Scholar]
  126. 126.
    Fan HC, Chang FW, Tsai JD, Lin KM, Chen CM, et al. 2021.. Telomeres and cancer. . Life 11::1405
    [Crossref] [Google Scholar]
  127. 127.
    Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. 1995.. Telomere elongation in immortal human cells without detectable telomerase activity. . EMBO J. 14::424048
    [Crossref] [Google Scholar]
  128. 128.
    Ghanim GE, Fountain AJ, van Roon AM, Rangan R, Das R, et al. 2021.. Structure of human telomerase holoenzyme with bound telomeric DNA. . Nature 593::44953
    [Crossref] [Google Scholar]
  129. 129.
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, et al. 1994.. Specific association of human telomerase activity with immortal cells and cancer. . Science 266::201115
    [Crossref] [Google Scholar]
  130. 130.
    Morrison SJ, Prowse KR, Ho P, Weissman IL. 1996.. Telomerase activity in hematopoietic cells is associated with self-renewal potential. . Immunity 5::20716
    [Crossref] [Google Scholar]
  131. 131.
    Buckingham EM, Klingelhutz AJ. 2011.. The role of telomeres in the ageing of human skin. . Exp. Dermatol. 20::297302
    [Crossref] [Google Scholar]
  132. 132.
    Hiyama E, Tatsumoto N, Kodama T, Hiyama K, Shay J, Yokoyama T. 1996.. Telomerase activity in human intestine. . Int. J. Oncol. 9::45358
    [Google Scholar]
  133. 133.
    Tseng CK, Wang HF, Burns AM, Schroeder MR, Gaspari M, Baumann P. 2015.. Human telomerase RNA processing and quality control. . Cell Rep. 13::223243
    [Crossref] [Google Scholar]
  134. 134.
    Shukla S, Schmidt JC, Goldfarb KC, Cech TR, Parker R. 2016.. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. . Nat. Struct. Mol. Biol. 23::28692
    [Crossref] [Google Scholar]
  135. 135.
    Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, et al. 2007.. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. . Hum. Mol. Genet. 16::161929
    [Crossref] [Google Scholar]
  136. 136.
    Hoareau-Aveilla C, Bonoli M, Caizergues-Ferrer M, Henry Y. 2006.. hNaf1 is required for accumulation of human box H/ACA snoRNPs, scaRNPs, and telomerase. . RNA 12::83240
    [Crossref] [Google Scholar]
  137. 137.
    Stanley SE, Gable DL, Wagner CL, Carlile TM, Hanumanthu VS, et al. 2016.. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. . Sci. Transl. Med. 8::351ra107
    [Google Scholar]
  138. 138.
    Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, et al. 2011.. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. . Genes Dev. 25::1116
    [Crossref] [Google Scholar]
  139. 139.
    Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. 2015.. A polyadenylation-dependent 3′ end maturation pathway is required for the synthesis of the human telomerase RNA. . Cell Rep. 13::224457
    [Crossref] [Google Scholar]
  140. 140.
    Gable DL, Gaysinskaya V, Atik CC, Talbot CC Jr., Kang B, et al. 2019.. ZCCHC8, the nuclear exosome targeting component, is mutated in familial pulmonary fibrosis and is required for telomerase RNA maturation. . Genes Dev. 33::138196
    [Crossref] [Google Scholar]
  141. 141.
    Lim CJ, Cech TR. 2021.. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. . Nat. Rev. Mol. Cell Biol. 22::28398. Publisher Correction . 2021.. Nat. Rev. Mol. Cell Biol. 22::299
    [Google Scholar]
  142. 142.
    Schmutz I, Mensenkamp AR, Takai KK, Haadsma M, Spruijt L, et al. 2020.. TINF2 is a haploinsufficient tumor suppressor that limits telomere length. . eLife 9::e61235
    [Crossref] [Google Scholar]
  143. 143.
    Walne AJ, Vulliamy T, Beswick R, Kirwan M, Dokal I. 2008.. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. . Blood 112::3594600
    [Crossref] [Google Scholar]
  144. 144.
    Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP. 2008.. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. . Am. J. Hum. Genet. 82::5019
    [Crossref] [Google Scholar]
  145. 145.
    Guo Y, Kartawinata M, Li J, Pickett HA, Teo J, et al. 2014.. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. . Blood 124::276774
    [Crossref] [Google Scholar]
  146. 146.
    Aoude LG, Pritchard AL, Robles-Espinoza CD, Wadt K, Harland M, et al. 2015.. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. . J. Natl. Cancer Inst. 107::dju408
    [Crossref] [Google Scholar]
  147. 147.
    Speedy HE, Kinnersley B, Chubb D, Broderick P, Law PJ, et al. 2016.. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia. . Blood 128::231926
    [Crossref] [Google Scholar]
  148. 148.
    Ramsay AJ, Quesada V, Foronda M, Conde L, Martinez-Trillos A, et al. 2013.. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. . Nat. Genet. 45::52630
    [Crossref] [Google Scholar]
  149. 149.
    Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, et al. 2014.. POT1 loss-of-function variants predispose to familial melanoma. . Nat. Genet. 46::47881
    [Crossref] [Google Scholar]
  150. 150.
    Calvete O, Garcia-Pavia P, Dominguez F, Bougeard G, Kunze K, et al. 2017.. The wide spectrum of POT1 gene variants correlates with multiple cancer types. . Eur. J. Hum. Genet. 25::127881
    [Crossref] [Google Scholar]
  151. 151.
    Takai H, Jenkinson E, Kabir S, Babul-Hirji R, Najm-Tehrani N, et al. 2016.. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus. . Genes Dev. 30::81226
    [Crossref] [Google Scholar]
  152. 152.
    Mehta PA, Ebens C. 1993.. Fanconi anemia. . In GeneReviews, ed. MP Adam, J Feldman, GM Mirzaa, RA Pagon, SE Wallace, et al . Seattle, WA:: Univ. Wash.
    [Google Scholar]
  153. 153.
    Kee Y, D'Andrea AD. 2012.. Molecular pathogenesis and clinical management of Fanconi anemia. . J. Clin. Investig. 122::3799806
    [Crossref] [Google Scholar]
  154. 154.
    Niraj J, Farkkila A, D'Andrea AD. 2019.. The Fanconi anemia pathway in cancer. . Annu. Rev. Cancer Biol. 3::45778
    [Crossref] [Google Scholar]
  155. 155.
    Bhandari J, Thada PK, Puckett Y. 2024.. Fanconi anemia. . In StatPearls. Treasure Island, FL:: StatPearls Pub.
    [Google Scholar]
  156. 156.
    Moreno OM, Paredes AC, Suarez-Obando F, Rojas A. 2021.. An update on Fanconi anemia: clinical, cytogenetic and molecular approaches (review). . Biomed. Rep. 15::74
    [Crossref] [Google Scholar]
  157. 157.
    Shimamura A, Alter BP. 2010.. Pathophysiology and management of inherited bone marrow failure syndromes. . Blood Rev. 24::10122
    [Crossref] [Google Scholar]
  158. 158.
    Auerbach AD. 2009.. Fanconi anemia and its diagnosis. . Mutat. Res. 668::410
    [Crossref] [Google Scholar]
  159. 159.
    Peffault de Latour R, Soulier J. 2016.. How I treat MDS and AML in Fanconi anemia. . Blood 127::297179
    [Crossref] [Google Scholar]
  160. 160.
    Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD. 1994.. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. . Blood 84::165055
    [Crossref] [Google Scholar]
  161. 161.
    Schaison G, Leverger G, Yildiz C, Berger R, Bernheim A, Gluckman E. 1983.. L'anémie de Fanconi. Fréquence de l'évolution vers la leucémie. [Fanconi's anemia. Incidence of its development into leukemia. ]. Presse Med. 12::126974 ( in French )
    [Google Scholar]
  162. 162.
    Rackoff WR, Orazi A, Robinson CA, Cooper RJ, Alter BP, et al. 1996.. Prolonged administration of granulocyte colony-stimulating factor (filgrastim) to patients with Fanconi anemia: a pilot study. . Blood 88::158893
    [Crossref] [Google Scholar]
  163. 163.
    Rosenberg PS, Greene MH, Alter BP. 2003.. Cancer incidence in persons with Fanconi anemia. . Blood 101::82226
    [Crossref] [Google Scholar]
  164. 164.
    Alter BP, Greene MH, Velazquez I, Rosenberg PS. 2003.. Cancer in Fanconi anemia. . Blood 101::2072
    [Crossref] [Google Scholar]
  165. 165.
    Rosenberg PS, Alter BP, Ebell W. 2008.. Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. . Haematologica 93::51117
    [Crossref] [Google Scholar]
  166. 166.
    Alter BP. 2003.. Cancer in Fanconi anemia, 1927–2001. . Cancer 97::42540
    [Crossref] [Google Scholar]
  167. 167.
    Cioc AM, Wagner JE, MacMillan ML, DeFor T, Hirsch B. 2010.. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: morphologic and cytogenetic characteristics. . Am. J. Clin. Pathol. 133::92100
    [Crossref] [Google Scholar]
  168. 168.
    Quentin S, Cuccuini W, Ceccaldi R, Nibourel O, Pondarre C, et al. 2011.. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. . Blood 117::e16170
    [Crossref] [Google Scholar]
  169. 169.
    Ceccaldi R, Sarangi P, D'Andrea AD. 2016.. The Fanconi anaemia pathway: new players and new functions. . Nat. Rev. Mol. Cell Biol. 17::33749
    [Crossref] [Google Scholar]
  170. 170.
    Huang Y, Li L. 2013.. DNA crosslinking damage and cancer—a tale of friend and foe. . Transl. Cancer Res. 2::14454
    [Google Scholar]
  171. 171.
    Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, et al. 2012.. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. . Cell Stem Cell 11::3649
    [Crossref] [Google Scholar]
  172. 172.
    Dumitriu B, Young NS. 2012.. Damage control and its costs: BM failure in Fanconi anemia stems from overactive p53/p21. . Cell Stem Cell 11::78
    [Crossref] [Google Scholar]
  173. 173.
    Huang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD. 2010.. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. . Mol. Cell 39::25968
    [Crossref] [Google Scholar]
  174. 174.
    Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q, et al. 2003.. A novel ubiquitin ligase is deficient in Fanconi anemia. . Nat. Genet. 35::16570
    [Crossref] [Google Scholar]
  175. 175.
    Rickman KA, Lach FP, Abhyankar A, Donovan FX, Sanborn EM, et al. 2015.. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi anemia. . Cell Rep. 12::3541
    [Crossref] [Google Scholar]
  176. 176.
    Cohn MA, Kowal P, Yang K, Haas W, Huang TT, et al. 2007.. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. . Mol. Cell 28::78697
    [Crossref] [Google Scholar]
  177. 177.
    Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A. 2011.. Mutations of the SLX4 gene in Fanconi anemia. . Nat. Genet. 43::14246
    [Crossref] [Google Scholar]
  178. 178.
    Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, et al. 2011.. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. . Nat. Genet. 43::13841
    [Crossref] [Google Scholar]
  179. 179.
    Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, et al. 2009.. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. . Cell 138::7889
    [Crossref] [Google Scholar]
  180. 180.
    Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, et al. 2008.. Mechanism of replication-coupled DNA interstrand crosslink repair. . Cell 134::96980
    [Crossref] [Google Scholar]
  181. 181.
    Roy U, Scharer OD. 2016.. Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. . DNA Repair 44::3341
    [Crossref] [Google Scholar]
  182. 182.
    Moldovan GL, D'Andrea AD. 2009.. How the Fanconi anemia pathway guards the genome. . Annu. Rev. Genet. 43::22349
    [Crossref] [Google Scholar]
  183. 183.
    Michl J, Zimmer J, Tarsounas M. 2016.. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. . EMBO J. 35::90923
    [Crossref] [Google Scholar]
  184. 184.
    Farley-Barnes KI, Ogawa LM, Baserga SJ. 2019.. Ribosomopathies: old concepts, new controversies. . Trends Genet. 35::75467
    [Crossref] [Google Scholar]
  185. 185.
    Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. 2012.. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. . Blood 119::381519
    [Crossref] [Google Scholar]
  186. 186.
    Reilly CR, Shimamura A. 2023.. Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: biological insights and clinical advances. . Blood 141::151323
    [Crossref] [Google Scholar]
  187. 187.
    Nakhoul H, Ke J, Zhou X, Liao W, Zeng SX, Lu H. 2014.. Ribosomopathies: mechanisms of disease. . Clin. Med. Insights Blood Disord. 7::716
    [Google Scholar]
  188. 188.
    Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, et al. 2008.. Identification of RPS14 as a 5q syndrome gene by RNA interference screen. . Nature 451::33539
    [Crossref] [Google Scholar]
  189. 189.
    Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. 2021.. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. . Signal Transduct. Target. Ther. 6::323
    [Crossref] [Google Scholar]
  190. 190.
    Aspesi A, Ellis SR. 2019.. Rare ribosomopathies: insights into mechanisms of cancer. . Nat. Rev. Cancer 19::22838
    [Crossref] [Google Scholar]
  191. 191.
    Stirling CJ, Stewart G, Sherratt DJ. 1988.. Multicopy plasmid stability in Escherichia coli requires host-encoded functions that lead to plasmid site-specific recombination. . Mol. Gen. Genet. 214::8084
    [Crossref] [Google Scholar]
  192. 192.
    Mills EW, Green R. 2017.. Ribosomopathies: There's strength in numbers. . Science 358::eaan2755
    [Crossref] [Google Scholar]
  193. 193.
    Bursac S, Brdovcak MC, Pfannkuchen M, Orsolic I, Golomb L, et al. 2012.. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. . PNAS 109::2046772
    [Crossref] [Google Scholar]
  194. 194.
    Warren AJ. 2018.. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. . Adv. Biol. Regul. 67::10927
    [Crossref] [Google Scholar]
  195. 195.
    Tummala H, Walne AJ, Williams M, Bockett N, Collopy L, et al. 2016.. DNAJC21 mutations link a cancer-prone bone marrow failure syndrome to corruption in 60S ribosome subunit maturation. . Am. J. Hum. Genet. 99::11524
    [Crossref] [Google Scholar]
  196. 196.
    Dhanraj S, Matveev A, Li H, Lauhasurayotin S, Jardine L, et al. 2017.. Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome. . Blood 129::155762
    [Crossref] [Google Scholar]
  197. 197.
    Tan S, Kermasson L, Hoslin A, Jaako P, Faille A, et al. 2019.. EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. . Blood 134::27790
    [Crossref] [Google Scholar]
  198. 198.
    Schurch C, Schaefer T, Muller JS, Hanns P, Arnone M, et al. 2021.. SRP54 mutations induce congenital neutropenia via dominant-negative effects on XBP1 splicing. . Blood 137::134052
    [Crossref] [Google Scholar]
  199. 199.
    Carapito R, Konantz M, Paillard C, Miao Z, Pichot A, et al. 2017.. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. . J. Clin. Investig. 127::4090103
    [Crossref] [Google Scholar]
  200. 200.
    Sieff C. 1993.. Diamond-Blackfan anemia. . In GeneReviews, ed. MP Adam, J Feldman, GM Mirzaa, RA Pagon, SE Wallace, et al . Seattle, WA:: Univ. Wash.
    [Google Scholar]
  201. 201.
    Ludwig LS, Gazda HT, Eng JC, Eichhorn SW, Thiru P, et al. 2014.. Altered translation of GATA1 in Diamond-Blackfan anemia. . Nat. Med. 20::74853
    [Crossref] [Google Scholar]
  202. 202.
    Gripp KW, Curry C, Olney AH, Sandoval C, Fisher J, et al. 2014.. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. . Am. J. Med. Genet. A 164A::224049
    [Crossref] [Google Scholar]
  203. 203.
    Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K. 2017.. Severe congenital neutropenias. . Nat. Rev. Dis. Primers 3::17032
    [Crossref] [Google Scholar]
  204. 204.
    Donadieu J, Beaupain B, Mahlaoui N, Bellanne-Chantelot C. 2013.. Epidemiology of congenital neutropenia. . Hematol. Oncol. Clin. North Am. 27::117
    [Crossref] [Google Scholar]
  205. 205.
    Carlsson G, Fasth A, Berglof E, Lagerstedt-Robinson K, Nordenskjold M, et al. 2012.. Incidence of severe congenital neutropenia in Sweden and risk of evolution to myelodysplastic syndrome/leukaemia. . Br. J. Haematol. 158::36369
    [Crossref] [Google Scholar]
  206. 206.
    Rosenberg PS, Alter BP, Bolyard AA, Bonilla MA, Boxer LA, et al. 2006.. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. . Blood 107::462835
    [Crossref] [Google Scholar]
  207. 207.
    Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP. 1995.. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. . N. Engl. J. Med. 333::48793
    [Crossref] [Google Scholar]
  208. 208.
    Germeshausen M, Ballmaier M, Welte K. 2007.. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. . Blood 109::9399
    [Crossref] [Google Scholar]
  209. 209.
    Horwitz MS, Duan Z, Korkmaz B, Lee HH, Mealiffe ME, Salipante SJ. 2007.. Neutrophil elastase in cyclic and severe congenital neutropenia. . Blood 109::181724
    [Crossref] [Google Scholar]
  210. 210.
    Aprikyan AA, Kutyavin T, Stein S, Aprikian P, Rodger E, et al. 2003.. Cellular and molecular abnormalities in severe congenital neutropenia predisposing to leukemia. . Exp. Hematol. 31::37281
    [Crossref] [Google Scholar]
  211. 211.
    Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, et al. 2007.. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). . Nat. Genet. 39::8692
    [Crossref] [Google Scholar]
  212. 212.
    Warren JT, Cupo RR, Wattanasirakul P, Spencer DH, Locke AE, et al. 2022.. Heterozygous variants of CLPB are a cause of severe congenital neutropenia. . Blood 139::77991
    [Crossref] [Google Scholar]
  213. 213.
    Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, et al. 2015.. Germline mutations in predisposition genes in pediatric cancer. New Engl. . J. Med. 373::233646
    [Google Scholar]
  214. 214.
    Newman S, Nakitandwe J, Kesserwan CA, Azzato EM, Wheeler DA, et al. 2021.. Genomes for kids: the scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. . Cancer Discov. 11::300827
    [Crossref] [Google Scholar]
  215. 215.
    Godley LA. 2023.. Prioritization of patients for germline testing based on tumor profiling of hematopoietic malignancies. . Front. Oncol. 13::1084736
    [Crossref] [Google Scholar]
  216. 216.
    Brown AL, Hiwase DK. 2020.. What's germane in the germline? Finding clinically relevant germline variants in myeloid neoplasms from tumor only screening. . Leuk. Res. 96::106431
    [Crossref] [Google Scholar]
  217. 217.
    Roloff GW, Drazer MW, Godley LA. 2021.. Inherited susceptibility to hematopoietic malignancies in the era of precision oncology. . JCO Precis. Oncol. 5::10722
    [Crossref] [Google Scholar]
  218. 218.
    Townsley DM, Dumitriu B, Young NS. 2014.. Bone marrow failure and the telomeropathies. . Blood 124::277583
    [Crossref] [Google Scholar]
  219. 219.
    Nalepa G, Clapp DW. 2018.. Fanconi anaemia and cancer: an intricate relationship. . Nat. Rev. Cancer 18::16885
    [Crossref] [Google Scholar]
  220. 220.
    Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, et al. 2011.. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. . Blood 117::256776
    [Crossref] [Google Scholar]
  221. 221.
    Swaminathan M, Bannon SA, Routbort M, Naqvi K, Kadia TM, et al. 2019.. Hematologic malignancies and Li–Fraumeni syndrome. . Mol. Case Stud. 5::a003210
    [Crossref] [Google Scholar]
  222. 222.
    Zebisch A, Lal R, Müller M, Lind K, Kashofer K, et al. 2016.. Acute myeloid leukemia with TP53 germ line mutations. . Blood 128::227072
    [Crossref] [Google Scholar]
  223. 223.
    Fedorova D, Ovsyannikova G, Kurnikova M, Pavlova A, Konyukhova T, et al. 2022.. De novo TP53 germline activating mutations in two patients with the phenotype mimicking Diamond–Blackfan anemia. . Pediatr. Blood Cancer 69::e29558
    [Crossref] [Google Scholar]
  224. 224.
    Kumar RD, Tosur M, Lalani SR, Mahoney DH Jr., Bertuch AA. 2022.. The germline p53 activation syndrome: a new patient further refines the clinical phenotype. . Am. J. Med. Genet. A 188::22048
    [Crossref] [Google Scholar]
  225. 225.
    Toki T, Yoshida K, Wang R, Nakamura S, Maekawa T, et al. 2018.. De novo mutations activating germline TP53 in an inherited bone-marrow-failure syndrome. . Am. J. Hum. Genet. 103::44047
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023420
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023420
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error