1932

Abstract

Metabolic dysfunction–associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023430
2025-01-24
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023430.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023430&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Loomba R, Friedman SL, Shulman GI. 2021.. Mechanisms and disease consequences of nonalcoholic fatty liver disease. . Cell 184::253764
    [Crossref] [Google Scholar]
  2. 2.
    Riazi K, Azhari H, Charette JH, Underwood FE, King JA, et al. 2022.. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. . Lancet Gastroenterol. Hepatol. 7::85161
    [Crossref] [Google Scholar]
  3. 3.
    Zhang X, Ha S, Lau HC, Yu J. 2023.. Excess body weight: novel insights into its roles in obesity comorbidities. . Semin. Cancer Biol. 92::1627
    [Crossref] [Google Scholar]
  4. 4.
    Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, et al. 2023.. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. . Hepatology 79::E9394
    [Crossref] [Google Scholar]
  5. 5.
    Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. 2015.. Fibrosis progression in nonalcoholic fatty liver versus nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. . Clin. Gastroenterol. Hepatol. 13::64354.e9
    [Crossref] [Google Scholar]
  6. 6.
    Huang DQ, El-Serag HB, Loomba R. 2021.. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. . Nat. Rev. Gastroenterol. Hepatol. 18::22338
    [Crossref] [Google Scholar]
  7. 7.
    Mittal S, El-Serag HB, Sada YH, Kanwal F, Duan Z, et al. 2016.. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. . Clin. Gastroenterol. Hepatol. 14::12431.e1
    [Crossref] [Google Scholar]
  8. 8.
    Corrao S, Natoli G, Argano C. 2021.. Nonalcoholic fatty liver disease is associated with intrahepatic cholangiocarcinoma and not with extrahepatic form: definitive evidence from meta-analysis and trial sequential analysis. . Eur. J. Gastroenterol. Hepatol. 33::6268
    [Crossref] [Google Scholar]
  9. 9.
    Osataphan S, Mahankasuwan T, Saengboonmee C. 2021.. Obesity and cholangiocarcinoma: a review of epidemiological and molecular associations. . J. Hepatobiliary Pancreat. Sci. 28::104759
    [Crossref] [Google Scholar]
  10. 10.
    Loomba R, Ratziu V, Harrison SA, NASH Clin. Trial Des. Int. Work. Group. 2022.. Expert panel review to compare FDA and EMA guidance on drug development and endpoints in nonalcoholic steatohepatitis. . Gastroenterology 162::68088
    [Crossref] [Google Scholar]
  11. 11.
    Tincopa MA, Loomba R. 2023.. Non-invasive diagnosis and monitoring of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. . Lancet Gastroenterol. Hepatol. 8::66070
    [Crossref] [Google Scholar]
  12. 12.
    Krawczyk M, Mullenbach R, Weber SN, Zimmer V, Lammert F. 2010.. Genome-wide association studies and genetic risk assessment of liver diseases. . Nat. Rev. Gastroenterol. Hepatol. 7::66981
    [Crossref] [Google Scholar]
  13. 13.
    Eslam M, Valenti L, Romeo S. 2018.. Genetics and epigenetics of NAFLD and NASH: clinical impact. . J. Hepatol. 68::26879
    [Crossref] [Google Scholar]
  14. 14.
    Eslam M, George J. 2020.. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. . Nat. Rev. Gastroenterol. Hepatol. 17::4052
    [Crossref] [Google Scholar]
  15. 15.
    Loomba R, Schork N, Chen CH, Bettencourt R, Bhatt A, et al. 2015.. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. . Gastroenterology 149::178493
    [Crossref] [Google Scholar]
  16. 16.
    Cui J, Chen CH, Lo MT, Schork N, Bettencourt R, et al. 2016.. Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. . Hepatology 64::154758
    [Crossref] [Google Scholar]
  17. 17.
    Caussy C, Hsu C, Lo MT, Liu A, Bettencourt R, et al. 2018.. Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. . Hepatology 68::91832
    [Crossref] [Google Scholar]
  18. 18.
    Vujkovic M, Ramdas S, Lorenz KM, Guo X, Darlay R, et al. 2022.. A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. . Nat. Genet. 54::76171
    [Crossref] [Google Scholar]
  19. 19.
    Chen Y, Du X, Kuppa A, Feitosa MF, Bielak LF, et al. 2023.. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. . Nat. Genet. 55::164050
    [Crossref] [Google Scholar]
  20. 20.
    Sveinbjornsson G, Ulfarsson MO, Thorolfsdottir RB, Jonsson BA, Einarsson E, et al. 2022.. Multiomics study of nonalcoholic fatty liver disease. . Nat. Genet. 54::165263
    [Crossref] [Google Scholar]
  21. 21.
    Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, et al. 2018.. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. . Nat. Genet. 50::121924
    [Crossref] [Google Scholar]
  22. 22.
    Emdin CA, Haas M, Ajmera V, Simon TG, Homburger J, et al. 2021.. Association of genetic variation with cirrhosis: a multi-trait genome-wide association and gene-environment interaction study. . Gastroenterology 160::162033.e13
    [Crossref] [Google Scholar]
  23. 23.
    Luukkonen PK, Qadri S, Ahlholm N, Porthan K, Mannisto V, et al. 2022.. Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease. . J. Hepatol. 76::52635
    [Crossref] [Google Scholar]
  24. 24.
    Huang J, Huffman JE, Huang Y, Do Valle I, Assimes TL, et al. 2022.. Genomics and phenomics of body mass index reveals a complex disease network. . Nat. Commun. 13::7973
    [Crossref] [Google Scholar]
  25. 25.
    Graham SE, Clarke SL, Wu KH, Kanoni S, Zajac GJM, et al. 2021.. The power of genetic diversity in genome-wide association studies of lipids. . Nature 600::67579
    [Crossref] [Google Scholar]
  26. 26.
    Lopera-Maya EA, Kurilshikov A, van der Graaf A, Hu S, Andreu-Sanchez S, et al. 2022.. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. . Nat. Genet. 54::14351
    [Crossref] [Google Scholar]
  27. 27.
    Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, et al. 2015.. The support of human genetic evidence for approved drug indications. . Nat. Genet. 47::85660
    [Crossref] [Google Scholar]
  28. 28.
    Ajmera V, Cepin S, Tesfai K, Hofflich H, Cadman K, et al. 2023.. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes. . J. Hepatol. 78::47178
    [Crossref] [Google Scholar]
  29. 29.
    Liu D, Wong CC, Zhou Y, Li C, Chen H, et al. 2021.. Squalene epoxidase induces nonalcoholic steatohepatitis via binding to carbonic anhydrase III and is a therapeutic target. . Gastroenterology 160::246782.e3
    [Crossref] [Google Scholar]
  30. 30.
    Loomba R, Rao F, Zhang L, Khandrika S, Ziegler MG, et al. 2010.. Genetic covariance between γ-glutamyl transpeptidase and fatty liver risk factors: role of β2-adrenergic receptor genetic variation in twins. . Gastroenterology 139::83645.e1
    [Crossref] [Google Scholar]
  31. 31.
    Jiang C, Xie C, Li F, Zhang L, Nichols RG, et al. 2015.. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. . J. Clin. Investig. 125::386402
    [Crossref] [Google Scholar]
  32. 32.
    Tamaki N, Ahlholm N, Luukkonen PK, Porthan K, Sharpton SR, et al. 2022.. Risk of advanced fibrosis in first-degree relatives of patients with nonalcoholic fatty liver disease. . J. Clin. Investig. 132::e162513
    [Crossref] [Google Scholar]
  33. 33.
    Schwimmer JB, Celedon MA, Lavine JE, Salem R, Campbell N, et al. 2009.. Heritability of nonalcoholic fatty liver disease. . Gastroenterology 136::158592
    [Crossref] [Google Scholar]
  34. 34.
    Long MT, Gurary EB, Massaro JM, Ma J, Hoffmann U, et al. 2019.. Parental non-alcoholic fatty liver disease increases risk of non-alcoholic fatty liver disease in offspring. . Liver Int. 39::74047
    [Crossref] [Google Scholar]
  35. 35.
    Makkonen J, Pietilainen KH, Rissanen A, Kaprio J, Yki-Jarvinen H. 2009.. Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. . J. Hepatol. 50::103542
    [Crossref] [Google Scholar]
  36. 36.
    Wagenknecht LE, Scherzinger AL, Stamm ER, Hanley AJ, Norris JM, et al. 2009.. Correlates and heritability of nonalcoholic fatty liver disease in a minority cohort. . Obesity 17::124046
    [Crossref] [Google Scholar]
  37. 37.
    Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, et al. 2011.. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. . PLOS Genet. 7::e1001324
    [Crossref] [Google Scholar]
  38. 38.
    Palmer ND, Musani SK, Yerges-Armstrong LM, Feitosa MF, Bielak LF, et al. 2013.. Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent. . Hepatology 58::96675
    [Crossref] [Google Scholar]
  39. 39.
    Chen Y, Du X, Kuppa A, Feitosa MF, Bielak LF, et al. 2023.. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. . Nat. Genet. 55::164050
    [Crossref] [Google Scholar]
  40. 40.
    Sookoian S, Pirola CJ. 2019.. Genetics of nonalcoholic fatty liver disease: from pathogenesis to therapeutics. . Semin. Liver Dis. 39::12440
    [Crossref] [Google Scholar]
  41. 41.
    Zadoorian A, Du X, Yang H. 2023.. Lipid droplet biogenesis and functions in health and disease. . Nat. Rev. Endocrinol. 19::44359
    [Crossref] [Google Scholar]
  42. 42.
    Ajmera V, Loomba R. 2023.. Advances in the genetics of nonalcoholic fatty liver disease. . Curr. Opin. Gastroenterol. 39::15055
    [Crossref] [Google Scholar]
  43. 43.
    Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, et al. 2008.. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. . Nat. Genet. 40::146165
    [Crossref] [Google Scholar]
  44. 44.
    Goyal NP, Rosenthal SB, Nasamran C, Behling CA, Angeles JE, et al. 2023.. Nonalcoholic fatty liver disease risk and histologic severity are associated with genetic polymorphisms in children. . Hepatology 77::197212
    [Crossref] [Google Scholar]
  45. 45.
    Anstee QM, Darlay R, Cockell S, Meroni M, Govaere O, et al. 2020.. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. . J. Hepatol. 73::50515
    [Crossref] [Google Scholar]
  46. 46.
    Dong XC. 2019.. PNPLA3—a potential therapeutic target for personalized treatment of chronic liver disease. . Front. Med. 6::304
    [Crossref] [Google Scholar]
  47. 47.
    Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, et al. 2004.. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. . Hepatology 40::138795
    [Crossref] [Google Scholar]
  48. 48.
    Pennisi G, Pipitone RM, Camma C, Di Marco V, Di Martino V, et al. 2021.. PNPLA3 rs738409 C>G variant predicts fibrosis progression by noninvasive tools in nonalcoholic fatty liver disease. . Clin. Gastroenterol. Hepatol. 19::197981
    [Crossref] [Google Scholar]
  49. 49.
    Stender S, Loomba R. 2020.. PNPLA3 genotype and risk of liver and all-cause mortality. . Hepatology 71::77779
    [Crossref] [Google Scholar]
  50. 50.
    Rosso C, Caviglia GP, Birolo G, Armandi A, Pennisi G, et al. 2023.. Impact of PNPLA3 rs738409 polymorphism on the development of liver-related events in patients with nonalcoholic fatty liver disease. . Clin. Gastroenterol. Hepatol. 21::331421.e3
    [Crossref] [Google Scholar]
  51. 51.
    Liu YL, Patman GL, Leathart JB, Piguet AC, Burt AD, et al. 2014.. Carriage of the PNPLA3 rs738409 C>G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. . J. Hepatol. 61::7581
    [Crossref] [Google Scholar]
  52. 52.
    Chen VL, Oliveri A, Miller MJ, Wijarnpreecha K, Du X, et al. 2023.. PNPLA3 genotype and diabetes identify patients with nonalcoholic fatty liver disease at high risk of incident cirrhosis. . Gastroenterology 164::96677.e17
    [Crossref] [Google Scholar]
  53. 53.
    Huang Y, Cohen JC, Hobbs HH. 2011.. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. . J. Biol. Chem. 286::3708593
    [Crossref] [Google Scholar]
  54. 54.
    Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA, et al. 2012.. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. . J. Clin. Investig. 122::413044
    [Crossref] [Google Scholar]
  55. 55.
    Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, et al. 2022.. Human hepatocyte PNPLA3–148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. . Cell Rep. 40::111321
    [Crossref] [Google Scholar]
  56. 56.
    BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. 2019.. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. . PNAS 116::952126
    [Crossref] [Google Scholar]
  57. 57.
    BasuRay S, Smagris E, Cohen JC, Hobbs HH. 2017.. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. . Hepatology 66::111124
    [Crossref] [Google Scholar]
  58. 58.
    Wang Y, Kory N, BasuRay S, Cohen JC, Hobbs HH. 2019.. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. . Hepatology 69::242741
    [Crossref] [Google Scholar]
  59. 59.
    Cherubini A, Ostadreza M, Jamialahmadi O, Pelusi S, Rrapaj E, et al. 2023.. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. . Nat. Med. 29::264355
    [Crossref] [Google Scholar]
  60. 60.
    Banini BA, Kumar DP, Cazanave S, Seneshaw M, Mirshahi F, et al. 2021.. Identification of a metabolic, transcriptomic, and molecular signature of patatin-like phospholipase domain containing 3-mediated acceleration of steatohepatitis. . Hepatology 73::1290306
    [Crossref] [Google Scholar]
  61. 61.
    Yuan S, Liu H, Yuan D, Xu J, Chen Y, et al. 2020.. PNPLA3 I148M mediates the regulatory effect of NF-kB on inflammation in PA-treated HepG2 cells. . J. Cell. Mol. Med. 24::154152
    [Crossref] [Google Scholar]
  62. 62.
    Park J, Zhao Y, Zhang F, Zhang S, Kwong AC, et al. 2023.. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. . J. Hepatol. 78::4556
    [Crossref] [Google Scholar]
  63. 63.
    Bruschi FV, Claudel T, Tardelli M, Caligiuri A, Stulnig TM, et al. 2017.. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. . Hepatology 65::187590
    [Crossref] [Google Scholar]
  64. 64.
    Abul-Husn NS, Cheng X, Li AH, Xin Y, Schurmann C, et al. 2018.. A protein-truncating HSD17B13 variant and protection from chronic liver disease. . N. Engl. J. Med. 378::1096106
    [Crossref] [Google Scholar]
  65. 65.
    Gao C, Marcketta A, Backman JD, O'Dushlaine C, Staples J, et al. 2021.. Genome-wide association analysis of serum alanine and aspartate aminotransferase, and the modifying effects of BMI in 388k European individuals. . Genet. Epidemiol. 45::66481
    [Crossref] [Google Scholar]
  66. 66.
    Innes H, Morgan MY, Hampe J, Stickel F, Buch S. 2023.. The rs72613567:TA polymorphism in HSD17B13 is associated with survival benefit after development of hepatocellular carcinoma. . Aliment Pharmacol. Ther. 58::62331
    [Crossref] [Google Scholar]
  67. 67.
    Amangurbanova M, Huang DQ, Loomba R. 2023.. Review article: the role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. . Aliment Pharmacol. Ther. 57::3751
    [Crossref] [Google Scholar]
  68. 68.
    Ting YW, Kong AS, Zain SM, Chan WK, Tan HL, et al. 2021.. Loss-of-function HSD17B13 variants, non-alcoholic steatohepatitis and adverse liver outcomes: results from a multi-ethnic Asian cohort. . Clin. Mol. Hepatol. 27::48698
    [Crossref] [Google Scholar]
  69. 69.
    Ma Y, Belyaeva OV, Brown PM, Fujita K, Valles K, et al. 2019.. 17-Beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. . Hepatology 69::150419
    [Crossref] [Google Scholar]
  70. 70.
    Thomas H. 2018.. An HSD17B13 variant reduces cirrhosis risk. . Nat. Rev. Gastroenterol. Hepatol. 15::328
    [Crossref] [Google Scholar]
  71. 71.
    Luukkonen PK, Sakuma I, Gaspar RC, Mooring M, Nasiri A, et al. 2023.. Inhibition of HSD17B13 protects against liver fibrosis by inhibition of pyrimidine catabolism in nonalcoholic steatohepatitis. . PNAS 120::e2217543120
    [Crossref] [Google Scholar]
  72. 72.
    Thangapandi VR, Knittelfelder O, Brosch M, Patsenker E, Vvedenskaya O, et al. 2021.. Loss of hepatic Mboat7 leads to liver fibrosis. . Gut 70::94050
    [Crossref] [Google Scholar]
  73. 73.
    Su W, Wu S, Yang Y, Guo Y, Zhang H, et al. 2022.. Phosphorylation of 17β-hydroxysteroid dehydrogenase 13 at serine 33 attenuates nonalcoholic fatty liver disease in mice. . Nat. Commun. 13::6577
    [Crossref] [Google Scholar]
  74. 74.
    Luukkonen PK, Tukiainen T, Juuti A, Sammalkorpi H, Haridas PAN, et al. 2020.. Hydroxysteroid 17-β dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. . JCI Insight 5::e132158
    [Crossref] [Google Scholar]
  75. 75.
    Verweij N, Haas ME, Nielsen JB, Sosina OA, Kim M, et al. 2022.. Germline mutations in CIDEB and protection against liver disease. . N. Engl. J. Med. 387::33244
    [Crossref] [Google Scholar]
  76. 76.
    Ng SWK, Rouhani FJ, Brunner SF, Brzozowska N, Aitken SJ, et al. 2021.. Convergent somatic mutations in metabolism genes in chronic liver disease. . Nature 598::47378
    [Crossref] [Google Scholar]
  77. 77.
    Li JZ, Ye J, Xue B, Qi J, Zhang J, et al. 2007.. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. . Diabetes 56::252332
    [Crossref] [Google Scholar]
  78. 78.
    Ye J, Li JZ, Liu Y, Li X, Yang T, et al. 2009.. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. . Cell Metab. 9::17790
    [Crossref] [Google Scholar]
  79. 79.
    Su L, Zhou L, Chen FJ, Wang H, Qian H, et al. 2019.. Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites. . EMBO J. 38::e100156
    [Crossref] [Google Scholar]
  80. 80.
    Ward LD, Tu HC, Quenneville CB, Tsour S, Flynn-Carroll AO, et al. 2021.. GWAS of serum ALT and AST reveals an association of SLC30A10 Thr95Ile with hypermanganesemia symptoms. . Nat. Commun. 12::4571
    [Crossref] [Google Scholar]
  81. 81.
    Jha P, Claudel T, Baghdasaryan A, Mueller M, Halilbasic E, et al. 2014.. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. . Hepatology 59::85869
    [Crossref] [Google Scholar]
  82. 82.
    Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A, et al. 2011.. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. . Nat. Med. 17::107685
    [Crossref] [Google Scholar]
  83. 83.
    Schoiswohl G, Schweiger M, Schreiber R, Gorkiewicz G, Preiss-Landl K, et al. 2010.. Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids. . J. Lipid Res. 51::49099
    [Crossref] [Google Scholar]
  84. 84.
    Faulkner CS, White CM, Shah VH, Jophlin LL. 2020.. A single nucleotide polymorphism of PLIN2 is associated with nonalcoholic steatohepatitis and causes phenotypic changes in hepatocyte lipid droplets: a pilot study. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865::158637
    [Crossref] [Google Scholar]
  85. 85.
    Libby AE, Bales ES, Monks J, Orlicky DJ, McManaman JL. 2018.. Perilipin-2 deletion promotes carbohydrate-mediated browning of white adipose tissue at ambient temperature. . J. Lipid Res. 59::1482500
    [Crossref] [Google Scholar]
  86. 86.
    Scorletti E, Saiman Y, Jeon S, Schneider CV, Buyco DG, et al. 2024.. A missense variant in human perilipin 2 (PLIN2 Ser251Pro) reduces hepatic steatosis in mice. . JHEP Rep. 6::100902
    [Crossref] [Google Scholar]
  87. 87.
    Heeren J, Scheja L. 2021.. Metabolic-associated fatty liver disease and lipoprotein metabolism. . Mol. Metab. 50::101238
    [Crossref] [Google Scholar]
  88. 88.
    Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, et al. 2014.. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. . Nat. Genet. 46::35256
    [Crossref] [Google Scholar]
  89. 89.
    Sookoian S, Castano GO, Scian R, Mallardi P, Fernandez Gianotti T, et al. 2015.. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. . Hepatology 61::51525
    [Crossref] [Google Scholar]
  90. 90.
    Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, et al. 2015.. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. . Hepatology 61::50614
    [Crossref] [Google Scholar]
  91. 91.
    Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S, et al. 2014.. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. . Nat. Commun. 5::4309
    [Crossref] [Google Scholar]
  92. 92.
    Raia GYS, Abdelsameea E, Taie DHT, Elshaarawy O, Bayomy NR, et al. 2022.. The TM6SF2 variant as a risk factor for hepatocellular carcinoma development in chronic liver disease patients. . Clin. Exp. Hepatol. 8::21118
    [Crossref] [Google Scholar]
  93. 93.
    Balcar L, Scheiner B, Urheu M, Weinberger P, Paternostro R, et al. 2023.. The impact of transmembrane 6 superfamily 2 (TM6SF2) rs58542926 on liver-related events in patients with advanced chronic liver disease. . Dig. Liver Dis. 55::107280
    [Crossref] [Google Scholar]
  94. 94.
    Xue WY, Zhang L, Liu CM, Gao Y, Li SJ, et al. 2022.. Research progress on the relationship between TM6SF2 rs58542926 polymorphism and non-alcoholic fatty liver disease. . Expert Rev. Gastroenterol. Hepatol. 16::97107
    [Crossref] [Google Scholar]
  95. 95.
    Wong VW, Wong GL, Tse CH, Chan HL. 2014.. Prevalence of the TM6SF2 variant and non-alcoholic fatty liver disease in Chinese. . J. Hepatol. 61::7089
    [Crossref] [Google Scholar]
  96. 96.
    Xu M, Li Y, Zhang S, Wang X, Shen J, Zhang S. 2019.. Interaction of TM6SF2 E167K and PNPLA3 I148M variants in NAFLD in northeast China. . Ann. Hepatol. 18::45660
    [Crossref] [Google Scholar]
  97. 97.
    Mahdessian H, Taxiarchis A, Popov S, Silveira A, Franco-Cereceda A, et al. 2014.. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. . PNAS 111::891318
    [Crossref] [Google Scholar]
  98. 98.
    Newberry EP, Hall Z, Xie Y, Molitor EA, Bayguinov PO, et al. 2021.. Liver-specific deletion of mouse Tm6sf2 promotes steatosis, fibrosis, and hepatocellular cancer. . Hepatology 74::120319
    [Crossref] [Google Scholar]
  99. 99.
    Smagris E, Gilyard S, BasuRay S, Cohen JC, Hobbs HH. 2016.. Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. . J. Biol. Chem. 291::1065976
    [Crossref] [Google Scholar]
  100. 100.
    Pirola CJ, Sookoian S. 2015.. The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: a meta-analysis. . Hepatology 62::174256
    [Crossref] [Google Scholar]
  101. 101.
    Holmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM, et al. 2014.. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. . Nat. Genet. 46::34551
    [Crossref] [Google Scholar]
  102. 102.
    Luukkonen PK, Zhou Y, Nidhina Haridas PA, Dwivedi OP, Hyotylainen T, et al. 2017.. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. . J. Hepatol. 67::12836
    [Crossref] [Google Scholar]
  103. 103.
    Pang J, Xu W, Zhang X, Wong GL, Chan AW, et al. 2017.. Significant positive association of endotoxemia with histological severity in 237 patients with non-alcoholic fatty liver disease. . Aliment Pharmacol. Ther. 46::17582
    [Crossref] [Google Scholar]
  104. 104.
    Grove JI, Lo PCK, Shrine N, Barwell J, Wain LV, et al. 2023.. Identification and characterisation of a rare MTTP variant underlying hereditary non-alcoholic fatty liver disease. . JHEP Rep. 5::100764
    [Crossref] [Google Scholar]
  105. 105.
    Schneider CV, Hehl L, Creasy KT, Vitali C, Vell MS, et al. 2023.. A coding variant in the microsomal triglyceride transfer protein reduces both hepatic steatosis and plasma lipids. . Aliment Pharmacol. Ther. 58::23849
    [Crossref] [Google Scholar]
  106. 106.
    Raabe M, Veniant MM, Sullivan MA, Zlot CH, Bjorkegren J, et al. 1999.. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. . J. Clin. Investig. 103::128798
    [Crossref] [Google Scholar]
  107. 107.
    Palmer ND, Kahali B, Kuppa A, Chen Y, Du X, et al. 2021.. Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer's disease and myocardial infarction. . Hum. Mol. Genet. 30::144356
    [Crossref] [Google Scholar]
  108. 108.
    Hatters DM, Peters-Libeu CA, Weisgraber KH. 2006.. Apolipoprotein E structure: insights into function. . Trends Biochem. Sci. 31::44554
    [Crossref] [Google Scholar]
  109. 109.
    Zhang SH, Reddick RL, Piedrahita JA, Maeda N. 1992.. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. . Science 258::46871
    [Crossref] [Google Scholar]
  110. 110.
    Lu W, Mei J, Yang J, Wu Z, Liu J, et al. 2020.. ApoE deficiency promotes non-alcoholic fatty liver disease in mice via impeding AMPK/mTOR mediated autophagy. . Life Sci. 252::117601
    [Crossref] [Google Scholar]
  111. 111.
    Esler WP, Cohen DE. 2024.. Pharmacologic inhibition of lipogenesis for the treatment of NAFLD. . J. Hepatol. 80::36277
    [Crossref] [Google Scholar]
  112. 112.
    Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, et al. 2016.. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. . Gastroenterology 150::121930.e6
    [Crossref] [Google Scholar]
  113. 113.
    Teo K, Abeysekera KWM, Adams L, Aigner E, Anstee QM, et al. 2021.. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: a meta-analysis. . J. Hepatol. 74::2030
    [Crossref] [Google Scholar]
  114. 114.
    Caddeo A, Spagnuolo R, Maurotti S. 2023.. MBOAT7 in liver and extrahepatic diseases. . Liver Int. 43::235164
    [Crossref] [Google Scholar]
  115. 115.
    Meroni M, Longo M, Fracanzani AL, Dongiovanni P. 2020.. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. . EBioMedicine 57::102866
    [Crossref] [Google Scholar]
  116. 116.
    Alharthi J, Bayoumi A, Thabet K, Pan Z, Gloss BS, et al. 2022.. A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. . Nat. Commun. 13::7430
    [Crossref] [Google Scholar]
  117. 117.
    Luukkonen PK, Zhou Y, Hyotylainen T, Leivonen M, Arola J, et al. 2016.. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. . J. Hepatol. 65::126365
    [Crossref] [Google Scholar]
  118. 118.
    Petersen KF, Dufour S, Hariri A, Nelson-Williams C, Foo JN, et al. 2010.. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. . N. Engl. J. Med. 362::108289
    [Crossref] [Google Scholar]
  119. 119.
    Tong M, Wang F. 2020.. APOC3rs2854116, PNPLA3rs738409, and TM6SF2rs58542926 polymorphisms might influence predisposition of NAFLD: a meta-analysis. . IUBMB Life 72::175764
    [Crossref] [Google Scholar]
  120. 120.
    Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, et al. 2020.. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. . Nat. Immunol. 21::3041
    [Crossref] [Google Scholar]
  121. 121.
    Lee HY, Birkenfeld AL, Jornayvaz FR, Jurczak MJ, Kanda S, et al. 2011.. Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. . Hepatology 54::165060
    [Crossref] [Google Scholar]
  122. 122.
    Zhang Z, Chen N, Yin N, Liu R, He Y, et al. 2023.. The rs1421085 variant within FTO promotes brown fat thermogenesis. . Nat. Metab. 5::133751
    [Crossref] [Google Scholar]
  123. 123.
    Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. 2022.. Fat mass and obesity-associated protein promotes liver steatosis by targeting PPARα. . Lipids Health Dis. 21::29
    [Crossref] [Google Scholar]
  124. 124.
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, et al. 2015.. Genetic studies of body mass index yield new insights for obesity biology. . Nature 518::197206
    [Crossref] [Google Scholar]
  125. 125.
    Ghodsian N, Abner E, Emdin CA, Gobeil E, Taba N, et al. 2021.. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. . Cell Rep. Med. 2::100437
    [Crossref] [Google Scholar]
  126. 126.
    Abu-Farha M, Ghosh A, Al-Khairi I, Madiraju SRM, Abubaker J, Prentki M. 2020.. The multi-faces of Angptl8 in health and disease: novel functions beyond lipoprotein lipase modulation. . Prog. Lipid Res. 80::101067
    [Crossref] [Google Scholar]
  127. 127.
    Zhang Z, Yuan Y, Hu L, Tang J, Meng Z, et al. 2023.. ANGPTL8 accelerates liver fibrosis mediated by HFD-induced inflammatory activity via LILRB2/ERK signaling pathways. . J. Adv. Res. 47::4156
    [Crossref] [Google Scholar]
  128. 128.
    Saghafi S, Chamani E, Salmani F, Fadaei R, Shafiei E, et al. 2023.. Genetic predisposition to nonalcoholic fatty liver disease: insights from ANGPTL8 gene variants in Iranian adults. . Lipids Health Dis. 22::147
    [Crossref] [Google Scholar]
  129. 129.
    Li Y, Jin L, Jiang F, Yan J, Lu Y, et al. 2021.. Mutations of NRG4 contribute to the pathogenesis of nonalcoholic fatty liver disease and related metabolic disorders. . Diabetes 70::221324
    [Crossref] [Google Scholar]
  130. 130.
    Zhang L, Dai X, Wang L, Cai J, Shen J, et al. 2022.. Iron overload accelerated lipid metabolism disorder and liver injury in rats with non-alcoholic fatty liver disease. . Front. Nutr. 9::961892
    [Crossref] [Google Scholar]
  131. 131.
    Corradini E, Buzzetti E, Dongiovanni P, Scarlini S, Caleffi A, et al. 2021.. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. . J. Hepatol. 75::50613
    [Crossref] [Google Scholar]
  132. 132.
    Scoditti E, Sabatini S, Carli F, Gastaldelli A. 2024.. Hepatic glucose metabolism in the steatotic liver. . Nat. Rev. Gastroenterol. Hepatol. 21::31934
    [Crossref] [Google Scholar]
  133. 133.
    Kimura M, Iguchi T, Iwasawa K, Dunn A, Thompson WL, et al. 2022.. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. . Cell 185::421632.e16
    [Crossref] [Google Scholar]
  134. 134.
    Li C, Yang Y, Liu X, Li Z, Liu H, Tan Q. 2020.. Glucose metabolism-related gene polymorphisms as the risk predictors of type 2 diabetes. . Diabetol. Metab. Syndr. 12::97
    [Crossref] [Google Scholar]
  135. 135.
    Zhang Z, Ji G, Li M. 2023.. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. . Front. Endocrinol. 14::1247611
    [Crossref] [Google Scholar]
  136. 136.
    Santoro N, Caprio S, Pierpont B, Van Name M, Savoye M, Parks EJ. 2015.. Hepatic de novo lipogenesis in obese youth is modulated by a common variant in the GCKR gene. . J. Clin. Endocrinol. Metab. 100::E112532
    [Crossref] [Google Scholar]
  137. 137.
    Shen H, Pollin TI, Damcott CM, McLenithan JC, Mitchell BD, Shuldiner AR. 2009.. Glucokinase regulatory protein gene polymorphism affects postprandial lipemic response in a dietary intervention study. . Hum. Genet. 126::56774
    [Crossref] [Google Scholar]
  138. 138.
    Dongiovanni P, Meroni M, Mancina RM, Baselli G, Rametta R, et al. 2018.. Protein phosphatase 1 regulatory subunit 3B gene variation protects against hepatic fat accumulation and fibrosis in individuals at high risk of nonalcoholic fatty liver disease. . Hepatol. Commun. 2::66675
    [Crossref] [Google Scholar]
  139. 139.
    Stender S, Smagris E, Lauridsen BK, Kofoed KF, Nordestgaard BG, et al. 2018.. Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. . Hepatology 67::218295
    [Crossref] [Google Scholar]
  140. 140.
    Mehta MB, Shewale SV, Sequeira RN, Millar JS, Hand NJ, Rader DJ. 2017.. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis. . J. Biol. Chem. 292::1044454
    [Crossref] [Google Scholar]
  141. 141.
    Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, et al. 2010.. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. . Gut 59::26773
    [Crossref] [Google Scholar]
  142. 142.
    Petersen MC, Madiraju AK, Gassaway BM, Marcel M, Nasiri AR, et al. 2016.. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. . J. Clin. Investig. 126::436171
    [Crossref] [Google Scholar]
  143. 143.
    Popineau L, Morzyglod L, Carre N, Cauzac M, Bossard P, et al. 2016.. Novel Grb14-mediated cross talk between insulin and p62/Nrf2 pathways regulates liver lipogenesis and selective insulin resistance. . Mol. Cell. Biol. 36::216881
    [Crossref] [Google Scholar]
  144. 144.
    Lee YJ, Kim BM, Ahn YH, Choi JH, Choi YH, Kang JL. 2021.. STAT6 signaling mediates PPARγ activation and resolution of acute sterile inflammation in mice. . Cells 10::501
    [Crossref] [Google Scholar]
  145. 145.
    Eslam M, Hashem AM, Leung R, Romero-Gomez M, Berg T, et al. 2015.. Interferon-λ rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. . Nat. Commun. 6::6422
    [Crossref] [Google Scholar]
  146. 146.
    Petta S, Valenti L, Tuttolomondo A, Dongiovanni P, Pipitone RM, et al. 2017.. Interferon lambda 4 rs368234815 TT>δG variant is associated with liver damage in patients with nonalcoholic fatty liver disease. . Hepatology 66::188593
    [Crossref] [Google Scholar]
  147. 147.
    Garrett ME, Abdelmalek MF, Ashley-Koch A, Hauser MA, Moylan CA, et al. 2013.. IL28B rs12979860 is not associated with histologic features of NAFLD in a cohort of Caucasian North American patients. . J. Hepatol. 58::4023
    [Crossref] [Google Scholar]
  148. 148.
    Mohlenberg M, Terczynska-Dyla E, Thomsen KL, George J, Eslam M, et al. 2019.. The role of IFN in the development of NAFLD and NASH. . Cytokine 124::154519
    [Crossref] [Google Scholar]
  149. 149.
    Sookoian S, Pirola CJ. 2023.. Genetics in non-alcoholic fatty liver disease: the role of risk alleles through the lens of immune response. . Clin. Mol. Hepatol. 29::S18495
    [Crossref] [Google Scholar]
  150. 150.
    Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M. 2002.. A new nuclear component of the Wnt signalling pathway. . Nat. Cell Biol. 4::36773
    [Crossref] [Google Scholar]
  151. 151.
    Sookoian S, Rohr C, Salatino A, Dopazo H, Fernandez Gianotti T, et al. 2017.. Genetic variation in long noncoding RNAs and the risk of nonalcoholic fatty liver disease. . Oncotarget 8::2291726
    [Crossref] [Google Scholar]
  152. 152.
    Du J, Zhang X, Han J, Man K, Zhang Y, et al. 2017.. Pro-inflammatory CXCR3 impairs mitochondrial function in experimental non-alcoholic steatohepatitis. . Theranostics 7::4192203
    [Crossref] [Google Scholar]
  153. 153.
    Luukkonen PK, Juuti A, Sammalkorpi H, Penttila AK, Oresic M, et al. 2020.. MARC1 variant rs2642438 increases hepatic phosphatidylcholines and decreases severity of non-alcoholic fatty liver disease in humans. . J. Hepatol. 73::72526
    [Crossref] [Google Scholar]
  154. 154.
    Lewis LC, Chen L, Hameed LS, Kitchen RR, Maroteau C, et al. 2023.. Hepatocyte mARC1 promotes fatty liver disease. . JHEP Rep. 5::100693
    [Crossref] [Google Scholar]
  155. 155.
    Sookoian S, Flichman D, Scian R, Rohr C, Dopazo H, et al. 2016.. Mitochondrial genome architecture in non-alcoholic fatty liver disease. . J. Pathol. 240::43749
    [Crossref] [Google Scholar]
  156. 156.
    Pirola CJ, Garaycoechea M, Flichman D, Castano GO, Sookoian S. 2021.. Liver mitochondrial DNA damage and genetic variability of cytochrome b—a key component of the respirasome—drive the severity of fatty liver disease. . J. Intern. Med. 289::8496
    [Crossref] [Google Scholar]
  157. 157.
    Baselli GA, Jamialahmadi O, Pelusi S, Ciociola E, Malvestiti F, et al. 2022.. Rare ATG7 genetic variants predispose patients to severe fatty liver disease. . J. Hepatol. 77::596606
    [Crossref] [Google Scholar]
  158. 158.
    Lin YC, Chang PF, Lin HF, Liu K, Chang MH, Ni YH. 2016.. Variants in the autophagy-related gene IRGM confer susceptibility to non-alcoholic fatty liver disease by modulating lipophagy. . J. Hepatol. 65::120916
    [Crossref] [Google Scholar]
  159. 159.
    Stender S, Kozlitina J, Nordestgaard BG, Tybjaerg-Hansen A, Hobbs HH, Cohen JC. 2017.. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. . Nat. Genet. 49::84247
    [Crossref] [Google Scholar]
  160. 160.
    Smagris E, BasuRay S, Li J, Huang Y, Lai KM, et al. 2015.. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. . Hepatology 61::10818
    [Crossref] [Google Scholar]
  161. 161.
    Vilar-Gomez E, Pirola CJ, Sookoian S, Wilson LA, Liang T, Chalasani N. 2021.. The protection conferred by HSD17B13 rs72613567 polymorphism on risk of steatohepatitis and fibrosis may be limited to selected subgroups of patients with NAFLD. . Clin. Transl. Gastroenterol. 12::e00400
    [Crossref] [Google Scholar]
  162. 162.
    Snaebjarnarson AS, Helgadottir A, Arnadottir GA, Ivarsdottir EV, Thorleifsson G, et al. 2023.. Complex effects of sequence variants on lipid levels and coronary artery disease. . Cell 186::408599.e15
    [Crossref] [Google Scholar]
  163. 163.
    Song Q, Zhang X. 2022.. The role of gut-liver axis in gut microbiome dysbiosis associated NAFLD and NAFLD-HCC. . Biomedicines 10::524
    [Crossref] [Google Scholar]
  164. 164.
    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, et al. 2014.. Human genetics shape the gut microbiome. . Cell 159::78999
    [Crossref] [Google Scholar]
  165. 165.
    Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, et al. 2016.. Genetic determinants of the gut microbiome in UK twins. . Cell Host Microbe 19::73143
    [Crossref] [Google Scholar]
  166. 166.
    Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, et al. 2011.. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. . PNAS 108:(Suppl. 1):4599606
    [Crossref] [Google Scholar]
  167. 167.
    Song Q, Zhang X, Liu W, Wei H, Liang W, et al. 2023.. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. . J. Hepatol. 79::135265
    [Crossref] [Google Scholar]
  168. 168.
    Wei W, Wong CC, Jia Z, Liu W, Liu C, et al. 2023.. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid. . Nat. Microbiol. 8::153448
    [Crossref] [Google Scholar]
  169. 169.
    Zhang X, Coker OO, Chu ES, Fu K, Lau HCH, et al. 2021.. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. . Gut 70::76174
    [Crossref] [Google Scholar]
  170. 170.
    Canfora EE, Meex RCR, Venema K, Blaak EE. 2019.. Gut microbial metabolites in obesity, NAFLD and T2DM. . Nat. Rev. Endocrinol. 15::26173
    [Crossref] [Google Scholar]
  171. 171.
    Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, et al. 2009.. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. . PLOS Genet. 5::e1000338
    [Crossref] [Google Scholar]
  172. 172.
    Li M, Xu C, Shi J, Ding J, Wan X, et al. 2018.. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. . Gut 67::216980
    [Crossref] [Google Scholar]
  173. 173.
    Chen J, Ruan X, Sun Y, Li X, Yuan S, Larsson SC. 2023.. Plasma phospholipid arachidonic acid in relation to non-alcoholic fatty liver disease: Mendelian randomization study. . Nutrition 106::111910
    [Crossref] [Google Scholar]
  174. 174.
    Wieder N, Fried JC, Kim C, Sidhom EH, Brown MR, et al. 2023.. FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity. . Cell Metab. 35::887905.e11
    [Crossref] [Google Scholar]
  175. 175.
    Gellert-Kristensen H, Richardson TG, Davey Smith G, Nordestgaard BG, Tybjaerg-Hansen A, Stender S. 2020.. Combined effect of PNPLA3, TM6SF2, and HSD17B13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population. . Hepatology 72::84556
    [Crossref] [Google Scholar]
  176. 176.
    Longo M, Meroni M, Paolini E, Erconi V, Carli F, et al. 2022.. TM6SF2/PNPLA3/MBOAT7 loss-of-function genetic variants impact on NAFLD development and progression both in patients and in in vitro models. . Cell. Mol. Gastroenterol. Hepatol. 13::75988
    [Crossref] [Google Scholar]
  177. 177.
    Gao F, Zheng KI, Chen SD, Lee DH, Wu XX, et al. 2021.. Individualized polygenic risk score identifies NASH in the Eastern Asia region: a derivation and validation study. . Clin. Transl. Gastroenterol. 12::e00321
    [Crossref] [Google Scholar]
  178. 178.
    Bianco C, Jamialahmadi O, Pelusi S, Baselli G, Dongiovanni P, et al. 2021.. Non-invasive stratification of hepatocellular carcinoma risk in non-alcoholic fatty liver using polygenic risk scores. . J. Hepatol. 74::77582
    [Crossref] [Google Scholar]
  179. 179.
    Dai X, Wang C, Guo Z, Li Y, Liu T, et al. 2021.. Maternal sucralose exposure induces Paneth cell defects and exacerbates gut dysbiosis of progeny mice. . Food Funct. 12::1263446
    [Crossref] [Google Scholar]
  180. 180.
    Huang DQ, Ahlholm N, Luukkonen PK, Porthan K, Amangurbanova M, et al. 2023.. Development and validation of the nonalcoholic fatty liver disease familial risk score to detect advanced fibrosis: a prospective, multicenter study. . Clin. Gastroenterol. Hepatol. 22::8190.e4
    [Crossref] [Google Scholar]
  181. 181.
    Brennan PN, Elsharkawy AM, Kendall TJ, Loomba R, Mann DA, Fallowfield JA. 2023.. Antifibrotic therapy in nonalcoholic steatohepatitis: time for a human-centric approach. . Nat. Rev. Gastroenterol. Hepatol. 20::67988
    [Crossref] [Google Scholar]
  182. 182.
    Tacke F, Puengel T, Loomba R, Friedman SL. 2023.. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. . J. Hepatol. 79::55266
    [Crossref] [Google Scholar]
  183. 183.
    Crooke ST, Wang S, Vickers TA, Shen W, Liang XH. 2017.. Cellular uptake and trafficking of antisense oligonucleotides. . Nat. Biotechnol. 35::23037
    [Crossref] [Google Scholar]
  184. 184.
    Linden D, Ahnmark A, Pingitore P, Ciociola E, Ahlstedt I, et al. 2019.. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. . Mol. Metab. 22::4961
    [Crossref] [Google Scholar]
  185. 185.
    Trajanoska K, Bherer C, Taliun D, Zhou S, Richards JB, Mooser V. 2023.. From target discovery to clinical drug development with human genetics. . Nature 620::73745
    [Crossref] [Google Scholar]
  186. 186.
    Mak LY, Gane E, Schwabe C, Yoon KT, Heo J, et al. 2023.. A phase I/II study of ARO-HSD, an RNA interference therapeutic, for the treatment of non-alcoholic steatohepatitis. . J. Hepatol. 78::68492
    [Crossref] [Google Scholar]
  187. 187.
    Valladolid-Acebes I, Avall K, Recio-Lopez P, Moruzzi N, Bryzgalova G, et al. 2021.. Lowering apolipoprotein CIII protects against high-fat diet–induced metabolic derangements. . Sci. Adv. 7::eabc2931
    [Crossref] [Google Scholar]
  188. 188.
    Gong T, Zhou R. 2020.. ApoC3: an ‘alarmin’ triggering sterile inflammation. . Nat. Immunol. 21::911
    [Crossref] [Google Scholar]
  189. 189.
    Liu S, Sommese RF, Nedoma NL, Stevens LM, Dutra JK, et al. 2023.. Structural basis of lipid-droplet localization of 17-beta-hydroxysteroid dehydrogenase 13. . Nat. Commun. 14::5158
    [Crossref] [Google Scholar]
  190. 190.
    Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, et al. 2007.. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. . N. Engl. J. Med. 356::14856
    [Crossref] [Google Scholar]
  191. 191.
    Jung KH, Yoo W, Stevenson HL, Deshpande D, Shen H, et al. 2017.. Multifunctional effects of a small-molecule STAT3 inhibitor on NASH and hepatocellular carcinoma in mice. . Clin. Cancer Res. 23::553746
    [Crossref] [Google Scholar]
  192. 192.
    Yang A, Mottillo EP, Mladenovic-Lucas L, Zhou L, Granneman JG. 2019.. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. . Nat. Metab. 1::56069
    [Crossref] [Google Scholar]
  193. 193.
    Schwartz BE, Rajagopal V, Smith C, Cohick E, Whissell G, et al. 2020.. Discovery and targeting of the signaling controls of PNPLA3 to effectively reduce transcription, expression, and function in pre-clinical NAFLD/NASH settings. . Cells 9::2247
    [Crossref] [Google Scholar]
  194. 194.
    Boeckmans J, Gatzios A, Schattenberg JM, Koek GH, Rodrigues RM, Vanhaecke T. 2023.. PNPLA3 I148M and response to treatment for hepatic steatosis: a systematic review. . Liver Int. 43::97588
    [Crossref] [Google Scholar]
  195. 195.
    Wang JZ, Cao HX, Chen JN, Pan Q. 2018.. PNPLA3 rs738409 underlies treatment response in nonalcoholic fatty liver disease. . World J. Clin. Cases 6::16775
    [Crossref] [Google Scholar]
  196. 196.
    Dallio M, Masarone M, Romeo M, Tuccillo C, Morisco F, et al. 2021.. PNPLA3, TM6SF2, and MBOAT7 influence on nutraceutical therapy response for non-alcoholic fatty liver disease: a randomized controlled trial. . Front. Med. 8::734847
    [Crossref] [Google Scholar]
  197. 197.
    Yang J, Hirai Y, Iida K, Ito S, Trumm M, et al. 2023.. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease. . Commun. Biol. 6::310
    [Crossref] [Google Scholar]
  198. 198.
    Ronaldson-Bouchard K, Vunjak-Novakovic G. 2018.. Organs-on-a-chip: a fast track for engineered human tissues in drug development. . Cell Stem Cell 22::31024
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023430
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023430
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error