1932

Abstract

The germinal matrix harbors neurogenic niches in the subpallium of the prenatal human brain that produce abundant GABAergic neurons. In preterm infants, the germinal matrix is particularly vulnerable to developing hemorrhage, which disrupts neurogenesis and causes severe neurodevelopmental sequelae. However, the disease mechanisms that promote germinal matrix hemorrhage remain unclear. Here, we review recent advances using single-cell transcriptomics to uncover novel mechanisms that govern neurogenesis and angiogenesis in the germinal matrix of the prenatal human brain. These approaches also reveal the critical role of immune–vascular interaction that promotes vascular morphogenesis in the germinal matrix and how proinflammatory factors from activated neutrophils and monocytes can disrupt this process, leading to hemorrhage. Collectively, these results reveal fundamental disease mechanisms and therapeutic interventions for germinal matrix hemorrhage.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023446
2025-01-24
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023446.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023446&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    World Health Organ. 2023.. Born Too Soon: Decade of Action on Preterm Birth. Geneva:: World Health Organ.
    [Google Scholar]
  2. 2.
    Howson CP, Kinney MV, Lawn JE, eds. 2012.. Born Too Soon: The Global Action Report on Preterm Birth. Geneva:: World Health Organ.
    [Google Scholar]
  3. 3.
    Osterman MJK, Hamilton BE, Martin JA, Driscoll AK, Valenzuela CP. 2023.. Births: final data for 2021. . Natl. Vital Stat. Rep. 72::153
    [Google Scholar]
  4. 4.
    Osterman MJ, Kochanek KD, MacDorman MF, Strobino DM, Guyer B. 2015.. Annual summary of vital statistics: 2012–2013. . Pediatrics 135::111525
    [Crossref] [Google Scholar]
  5. 5.
    Ballabh P, de Vries LS. 2021.. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. . Nat. Rev. Neurol. 17::199214
    [Crossref] [Google Scholar]
  6. 6.
    Inder TE, Perlman JM, Volpe JJ. 2017.. Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. . In Volpe's Neurology of the Newborn, ed. JJ Volpe, TE Inder, BT Darras, HE de Vries, AJ du Plessis, et al. , pp. 777846. Amsterdam:: Elsevier
    [Google Scholar]
  7. 7.
    McMillan N, Sharma H, Manganas LN, Kirschen GW. 2021.. Development and pathology of the germinal matrix. . In Factors Affecting Neurodevelopment, ed. CR Martin, VR Preedy, R Rajendram , pp. 25971. Cambridge, MA:: Academic Press
    [Google Scholar]
  8. 8.
    Volpe JJ. 1998.. Neurologic outcome of prematurity. . Arch. Neurol. 55::297300
    [Crossref] [Google Scholar]
  9. 9.
    Volpe JJ. 2015.. Impaired neurodevelopmental outcome after mild germinal matrix-intraventricular hemorrhage. . Pediatrics 136::118587
    [Crossref] [Google Scholar]
  10. 10.
    Leijser LM, de Vries LS. 2019.. Preterm brain injury: germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. . Handb. Clin. Neurol. 162::17399
    [Crossref] [Google Scholar]
  11. 11.
    Inder TE, Perlman JM, Volpe JJ. 2018.. Preterm intraventricular hemorrhage/posthemorrhagic hydrocephalus. . In Volpe's Neurology of the Newborn, ed. JJ Volpe , pp. 63798. Amsterdam:: Elsevier
    [Google Scholar]
  12. 12.
    Ballabh P. 2010.. Intraventricular hemorrhage in premature infants: mechanism of disease. . Pediatr. Res. 67::18
    [Crossref] [Google Scholar]
  13. 13.
    Kinoshita Y, Okudera T, Tsuru E, Yokota A. 2001.. Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. . AJNR Am. J. Neuroradiol. 22::38288
    [Google Scholar]
  14. 14.
    Battin MR, Maalouf EF, Counsell SJ, Herlihy AH, Rutherford MA, et al. 1998.. Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. . Pediatrics 101::95762
    [Crossref] [Google Scholar]
  15. 15.
    Habas PA, Kim K, Corbett-Detig JM, Rousseau F, Glenn OA, et al. 2010.. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. . Neuroimage 53::46070
    [Crossref] [Google Scholar]
  16. 16.
    Scott JA, Habas PA, Kim K, Rajagopalan V, Hamzelou KS, et al. 2011.. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI. . Int. J. Dev. Neurosci. 29::52936
    [Crossref] [Google Scholar]
  17. 17.
    Corbin JG, Gaiano N, Juliano SL, Poluch S, Stancik E, Haydar TF. 2008.. Regulation of neural progenitor cell development in the nervous system. . J. Neurochem. 106::227287
    [Crossref] [Google Scholar]
  18. 18.
    Ulfig N. 2002.. Ganglionic eminence of the human fetal brain—new vistas. . Anat. Rec. 267::19195
    [Crossref] [Google Scholar]
  19. 19.
    Del Bigio MR. 2011.. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. . Brain 134::134461
    [Crossref] [Google Scholar]
  20. 20.
    Rowitch DH, Kriegstein AR. 2010.. Developmental genetics of vertebrate glial-cell specification. . Nature 468::21422
    [Crossref] [Google Scholar]
  21. 21.
    Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, et al. 2018.. Shared and distinct transcriptomic cell types across neocortical areas. . Nature 563::7278
    [Crossref] [Google Scholar]
  22. 22.
    Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, et al. 2019.. Conserved cell types with divergent features in human versus mouse cortex. . Nature 573::6168
    [Crossref] [Google Scholar]
  23. 23.
    Krienen FM, Goldman M, Zhang Q, del Rosario RCH, Florio M, et al. 2020.. Innovations present in the primate interneuron repertoire. . Nature 586::26269
    [Crossref] [Google Scholar]
  24. 24.
    Sussel L, Marin O, Kimura S, Rubenstein JL. 1999.. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. . Development 126::335970
    [Crossref] [Google Scholar]
  25. 25.
    Kessaris N, Magno L, Rubin AN, Oliveira MG. 2014.. Genetic programs controlling cortical interneuron fate. . Curr. Opin. Neurobiol. 26::7987
    [Crossref] [Google Scholar]
  26. 26.
    Lim L, Mi D, Llorca A, Marin O. 2018.. Development and functional diversification of cortical interneurons. . Neuron 100::294313
    [Crossref] [Google Scholar]
  27. 27.
    Mi D, Li Z, Lim L, Li M, Moissidis M, et al. 2018.. Early emergence of cortical interneuron diversity in the mouse embryo. . Science 360::8185
    [Crossref] [Google Scholar]
  28. 28.
    Wonders CP, Anderson SA. 2006.. The origin and specification of cortical interneurons. . Nat. Rev. Neurosci. 7::68796
    [Crossref] [Google Scholar]
  29. 29.
    Long JE, Cobos I, Potter GB, Rubenstein JL. 2009.. Dlx1&2 and Mash1 transcription factors control MGE and CGE patterning and differentiation through parallel and overlapping pathways. . Cereb. Cortex 19:(Suppl. 1):i96106
    [Crossref] [Google Scholar]
  30. 30.
    Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, et al. 2012.. Fate-restricted neural progenitors in the mammalian cerebral cortex. . Science 337::74649
    [Crossref] [Google Scholar]
  31. 31.
    Kriegstein A, Alvarez-Buylla A. 2009.. The glial nature of embryonic and adult neural stem cells. . Annu. Rev. Neurosci. 32::14984
    [Crossref] [Google Scholar]
  32. 32.
    Bandler RC, Mayer C, Fishell G. 2017.. Cortical interneuron specification: the juncture of genes, time and geometry. . Curr. Opin. Neurobiol. 42::1724
    [Crossref] [Google Scholar]
  33. 33.
    Canitano R, Pallagrosi M. 2017.. Autism spectrum disorders and schizophrenia spectrum disorders: excitation/inhibition imbalance and developmental trajectories. . Front. Psychiatry 8::69
    [Crossref] [Google Scholar]
  34. 34.
    Chattopadhyaya B, Cristo GD. 2012.. GABAergic circuit dysfunctions in neurodevelopmental disorders. . Front. Psychiatry 3::51
    [Crossref] [Google Scholar]
  35. 35.
    Marin O. 2012.. Interneuron dysfunction in psychiatric disorders. . Nat. Rev. Neurosci. 13::10720
    [Crossref] [Google Scholar]
  36. 36.
    Letinic K, Zoncu R, Rakic P. 2002.. Origin of GABAergic neurons in the human neocortex. . Nature 417::64549
    [Crossref] [Google Scholar]
  37. 37.
    Delgado RN, Allen DE, Keefe MG, Mancia Leon WR, Ziffra RS, et al. 2022.. Individual human cortical progenitors can produce excitatory and inhibitory neurons. . Nature 601::397403
    [Crossref] [Google Scholar]
  38. 38.
    Hansen DV, Lui JH, Flandin P, Yoshikawa K, Rubenstein JL, et al. 2013.. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. . Nat. Neurosci. 16::157687
    [Crossref] [Google Scholar]
  39. 39.
    Ma T, Wang C, Wang L, Zhou X, Tian M, et al. 2013.. Subcortical origins of human and monkey neocortical interneurons. . Nat. Neurosci. 16::158897
    [Crossref] [Google Scholar]
  40. 40.
    Molnar Z, Butt SJ. 2013.. Best-laid schemes for interneuron origin of mice and men. . Nat. Neurosci. 16::151214
    [Crossref] [Google Scholar]
  41. 41.
    Shi Y, Wang M, Mi D, Lu T, Wang B, et al. 2021.. Mouse and human share conserved transcriptional programs for interneuron development. . Science 374::eabj6641
    [Crossref] [Google Scholar]
  42. 42.
    Paredes MF, Mora C, Flores-Ramirez Q, Cebrian-Silla A, Del Dosso A, et al. 2022.. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. . Science 375::eabk2346
    [Crossref] [Google Scholar]
  43. 43.
    Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, et al. 2016.. Extensive migration of young neurons into the infant human frontal lobe. . Science 354::aaf7073
    [Crossref] [Google Scholar]
  44. 44.
    Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, et al. 2013.. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. . Cell Stem Cell 12::57386
    [Crossref] [Google Scholar]
  45. 45.
    Southwell DG, Nicholas CR, Basbaum AI, Stryker MP, Kriegstein AR, et al. 2014.. Interneurons from embryonic development to cell-based therapy. . Science 344::1240622
    [Crossref] [Google Scholar]
  46. 46.
    Hunt RF, Baraban SC. 2015.. Interneuron transplantation as a treatment for epilepsy. . Cold Spring Harb. Perspect. Med. 5::a022376
    [Crossref] [Google Scholar]
  47. 47.
    Ayloo S, Gu C. 2019.. Transcytosis at the blood-brain barrier. . Curr. Opin. Neurobiol. 57::3238
    [Crossref] [Google Scholar]
  48. 48.
    Langen UH, Ayloo S, Gu C. 2019.. Development and cell biology of the blood-brain barrier. . Annu. Rev. Cell Dev. Biol. 35::591613
    [Crossref] [Google Scholar]
  49. 49.
    Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, et al. 2008.. Wnt/β-catenin signaling controls development of the blood-brain barrier. . J. Cell Biol. 183::40917
    [Crossref] [Google Scholar]
  50. 50.
    Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. 2008.. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. . Science 322::124750
    [Crossref] [Google Scholar]
  51. 51.
    Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. 2009.. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. . PNAS 106::64146
    [Crossref] [Google Scholar]
  52. 52.
    Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, et al. 2012.. Death receptors DR6 and TROY regulate brain vascular development. . Dev. Cell 22::40317
    [Crossref] [Google Scholar]
  53. 53.
    Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. 2012.. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. . Cell 151::133244
    [Crossref] [Google Scholar]
  54. 54.
    Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, et al. 2011.. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. . Science 334::172731
    [Crossref] [Google Scholar]
  55. 55.
    Mizee MR, Wooldrik D, Lakeman KA, van het Hof B, Drexhage JA, et al. 2013.. Retinoic acid induces blood-brain barrier development. . J. Neurosci. 33::166071
    [Crossref] [Google Scholar]
  56. 56.
    Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, et al. 2014.. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. . Development 141::448999
    [Crossref] [Google Scholar]
  57. 57.
    Chang J, Mancuso MR, Maier C, Liang X, Yuki K, et al. 2017.. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. . Nat. Med. 23::45060
    [Crossref] [Google Scholar]
  58. 58.
    Kuhnert F, Mancuso MR, Shamloo A, Wang HT, Choksi V, et al. 2010.. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. . Science 330::98589
    [Crossref] [Google Scholar]
  59. 59.
    Yang D, Baumann JM, Sun YY, Tang M, Dunn RS, et al. 2013.. Overexpression of vascular endothelial growth factor in the germinal matrix induces neurovascular proteases and intraventricular hemorrhage. . Sci. Transl. Med. 5::193ra90
    [Google Scholar]
  60. 60.
    Hynes RO. 2002.. Integrins: bidirectional, allosteric signaling machines. . Cell 110::67387
    [Crossref] [Google Scholar]
  61. 61.
    Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt LF. 2002.. β8 integrins are required for vascular morphogenesis in mouse embryos. . Development 129::2891903
    [Crossref] [Google Scholar]
  62. 62.
    Komabayashi-Suzuki M, Yamanishi E, Watanabe C, Okamura M, Tabata H, et al. 2019.. Spatiotemporally dependent vascularization is differently utilized among neural progenitor subtypes during neocortical development. . Cell Rep. 29::111329.e5
    [Crossref] [Google Scholar]
  63. 63.
    Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, et al. 2008.. A specialized vascular niche for adult neural stem cells. . Cell Stem Cell 3::27988
    [Crossref] [Google Scholar]
  64. 64.
    Huang X, Trinh T, Aljoufi A, Broxmeyer HE. 2018.. Hypoxia signaling pathway in stem cell regulation: good and evil. . Curr. Stem Cell Rep. 4::14957
    [Crossref] [Google Scholar]
  65. 65.
    Li G, Liu J, Guan Y, Ji X. 2021.. The role of hypoxia in stem cell regulation of the central nervous system: from embryonic development to adult proliferation. . CNS Neurosci. Ther. 27::144657
    [Crossref] [Google Scholar]
  66. 66.
    Di Marco B, Crouch EE, Shah B, Duman C, Paredes MF, et al. 2020.. Reciprocal interaction between vascular filopodia and neural stem cells shapes neurogenesis in the ventral telencephalon. . Cell Rep. 33::108256
    [Crossref] [Google Scholar]
  67. 67.
    Tan X, Liu WA, Zhang XJ, Shi W, Ren SQ, et al. 2016.. Vascular influence on ventral telencephalic progenitors and neocortical interneuron production. . Dev. Cell 36::62438
    [Crossref] [Google Scholar]
  68. 68.
    Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, et al. 2018.. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. . eLife 7::e36187
    [Crossref] [Google Scholar]
  69. 69.
    Jung B, Arnold TD, Raschperger E, Gaengel K, Betsholtz C. 2018.. Visualization of vascular mural cells in developing brain using genetically labeled transgenic reporter mice. . J. Cereb. Blood Flow Metab. 38::45668
    [Crossref] [Google Scholar]
  70. 70.
    Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, et al. 2018.. A molecular atlas of cell types and zonation in the brain vasculature. . Nature 554::47580
    [Crossref] [Google Scholar]
  71. 71.
    Schaeffer S, Iadecola C. 2021.. Revisiting the neurovascular unit. . Nat. Neurosci. 24::1198209
    [Crossref] [Google Scholar]
  72. 72.
    Ballabh P, Braun A, Nedergaard M. 2004.. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. . Pediatr. Res. 56::11724
    [Crossref] [Google Scholar]
  73. 73.
    Grunnet ML. 1989.. Morphometry of blood vessels in the cortex and germinal plate of premature neonates. . Pediatr. Neurol. 5::1216
    [Crossref] [Google Scholar]
  74. 74.
    Povlishock JT, Martinez AJ, Moossy J. 1977.. The fine structure of blood vessels of the telencephalic germinal matrix in the human fetus. . Am. J. Anat. 149::43952
    [Crossref] [Google Scholar]
  75. 75.
    Crouch EE, Bhaduri A, Andrews MG, Cebrian-Silla A, Diafos LN, et al. 2022.. Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain. . Cell 185::375369.e18
    [Crossref] [Google Scholar]
  76. 76.
    Crouch EE, Diafos LN, Valenzuela EJ, Wedderburn-Pugh K, Birrueta JO, et al. 2024.. Profiling human brain vascular cells using single-cell transcriptomics and organoids. . Nat. Protoc. 19::60328
    [Crossref] [Google Scholar]
  77. 77.
    Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, et al. 2020.. Midkine: the who, what, where, and when of a promising neurotrophic therapy for perinatal brain injury. . Front. Neurol. 11::568814
    [Crossref] [Google Scholar]
  78. 78.
    Crouch EE, Joseph T, Marsan E, Huang EJ. 2023.. Disentangling brain vasculature in neurogenesis and neurodegeneration using single-cell transcriptomics. . Trends Neurosci. 46::55165
    [Crossref] [Google Scholar]
  79. 79.
    Bassan H, Limperopoulos C, Visconti K, Mayer DL, Feldman HA, et al. 2007.. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. . Pediatrics 120::78592
    [Crossref] [Google Scholar]
  80. 80.
    McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H, et al. 2002.. Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking αv integrins. . Mol. Cell. Biol. 22::766777
    [Crossref] [Google Scholar]
  81. 81.
    Proctor JM, Zang K, Wang D, Wang R, Reichardt LF. 2005.. Vascular development of the brain requires β8 integrin expression in the neuroepithelium. . J. Neurosci. 25::994048
    [Crossref] [Google Scholar]
  82. 82.
    Arnold TD, Ferrero GM, Qiu H, Phan IT, Akhurst RJ, et al. 2012.. Defective retinal vascular endothelial cell development as a consequence of impaired integrin αVβ8-mediated activation of transforming growth factor-β. . J. Neurosci. 32::1197206
    [Crossref] [Google Scholar]
  83. 83.
    McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D, et al. 2005.. Selective ablation of αv integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. . Development 132::16576
    [Crossref] [Google Scholar]
  84. 84.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, et al. 2010.. Pericytes regulate the blood-brain barrier. . Nature 468::55761
    [Crossref] [Google Scholar]
  85. 85.
    Daneman R, Zhou L, Kebede AA, Barres BA. 2010.. Pericytes are required for blood-brain barrier integrity during embryogenesis. . Nature 468::56266
    [Crossref] [Google Scholar]
  86. 86.
    Ballabh P, Xu H, Hu F, Braun A, Smith K, et al. 2007.. Angiogenic inhibition reduces germinal matrix hemorrhage. . Nat. Med. 13::47785
    [Crossref] [Google Scholar]
  87. 87.
    Cartier A, Hla T. 2019.. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. . Science 366::eaar5551
    [Crossref] [Google Scholar]
  88. 88.
    Cyster JG, Schwab SR. 2012.. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. . Annu. Rev. Immunol. 30::6994
    [Crossref] [Google Scholar]
  89. 89.
    Chen J, Crouch EE, Zawadzki ME, Jacobs KA, Mayo LN, et al. 2024.. Proinflammatory immune cells disrupt angiogenesis and promote germinal matrix hemorrhage in prenatal human brain. . Nat. Neurosci. 27::211529
    [Crossref] [Google Scholar]
  90. 90.
    Cho C, Smallwood PM, Nathans J. 2017.. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. . Neuron 95::105673. Erratum . 2017.. Neuron 95::122125
    [Google Scholar]
  91. 91.
    Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, et al. 2005.. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. . Science 308::116771
    [Crossref] [Google Scholar]
  92. 92.
    Lekic T, Manaenko A, Rolland W, Tang J, Zhang JH. 2011.. A novel preclinical model of germinal matrix hemorrhage using neonatal rats. . Acta Neurochir. Suppl. 111::5560
    [Crossref] [Google Scholar]
  93. 93.
    Li P, Zhao G, Ding Y, Wang T, Flores J, et al. 2019.. Rh-IFN-α attenuates neuroinflammation and improves neurological function by inhibiting NF-κB through JAK1-STAT1/TRAF3 pathway in an experimental GMH rat model. . Brain Behav. Immun. 79::17485
    [Crossref] [Google Scholar]
  94. 94.
    Tao Y, Li L, Jiang B, Feng Z, Yang L, et al. 2016.. Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. . Brain Behav. Immun. 58::11829
    [Crossref] [Google Scholar]
  95. 95.
    Segado-Arenas A, Infante-Garcia C, Benavente-Fernandez I, Sanchez-Sotano D, Ramos-Rodriguez JJ, et al. 2018.. Cognitive impairment and brain and peripheral alterations in a murine model of intraventricular hemorrhage in the preterm newborn. . Mol. Neurobiol. 55::4896910
    [Crossref] [Google Scholar]
  96. 96.
    Lorenzo AV, Welch K, Conner S. 1982.. Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. . J. Neurosurg. 56::40410
    [Crossref] [Google Scholar]
  97. 97.
    Dawes WJ, Zhang X, Fancy SPJ, Rowitch D, Marino S. 2016.. Moderate-grade germinal matrix haemorrhage activates cell division in the neonatal mouse subventricular zone. . Dev. Neurosci. 38::43044
    [Crossref] [Google Scholar]
  98. 98.
    Sadegh C, Xu H, Sutin J, Fatou B, Gupta S, et al. 2023.. Choroid plexus-targeted NKCC1 overexpression to treat post-hemorrhagic hydrocephalus. . Neuron 111::1591608.e4
    [Crossref] [Google Scholar]
  99. 99.
    Jain S, Baer RJ, McCulloch CE, Rogers E, Rand L, et al. 2021.. Association of maternal immune activation during pregnancy and neurologic outcomes in offspring. . J. Pediatr. 238::8793.e3
    [Crossref] [Google Scholar]
  100. 100.
    Gravina G, Ardalan M, Chumak T, Rydbeck H, Wang X, et al. 2023.. Transcriptome network analysis links perinatal Staphylococcus epidermidis infection to microglia reprogramming in the immature hippocampus. . Glia 71::223449
    [Crossref] [Google Scholar]
  101. 101.
    Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, et al. 2015.. The role of inflammation in perinatal brain injury. . Nat. Rev. Neurol. 11::192208
    [Crossref] [Google Scholar]
  102. 102.
    Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V. 2014.. Neurobiology of premature brain injury. . Nat. Neurosci. 17::34146
    [Crossref] [Google Scholar]
  103. 103.
    Li Q, Barres BA. 2018.. Microglia and macrophages in brain homeostasis and disease. . Nat. Rev. Immunol. 18::22542
    [Crossref] [Google Scholar]
  104. 104.
    Thion MS, Ginhoux F, Garel S. 2018.. Microglia and early brain development: an intimate journey. . Science 362::18589
    [Crossref] [Google Scholar]
  105. 105.
    Monier A, Evrard P, Gressens P, Verney C. 2006.. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. . J. Comp. Neurol. 499::56582
    [Crossref] [Google Scholar]
  106. 106.
    Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C. 2007.. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. . J. Neuropathol. Exp. Neurol. 66::37282
    [Crossref] [Google Scholar]
  107. 107.
    Rezaie P, Dean A, Male D, Ulfig N. 2005.. Microglia in the cerebral wall of the human telencephalon at second trimester. . Cereb. Cortex 15::93849
    [Crossref] [Google Scholar]
  108. 108.
    Rezaie P, Male D. 1999.. Colonisation of the developing human brain and spinal cord by microglia: a review. . Microsc. Res. Tech. 45::35982
    [Crossref] [Google Scholar]
  109. 109.
    Masuda T, Amann L, Monaco G, Sankowski R, Staszewski O, et al. 2022.. Specification of CNS macrophage subsets occurs postnatally in defined niches. . Nature 604::74048
    [Crossref] [Google Scholar]
  110. 110.
    Mondo E, Becker SC, Kautzman AG, Schifferer M, Baer CE, et al. 2020.. A developmental analysis of juxtavascular microglia dynamics and interactions with the vasculature. . J. Neurosci. 40::650321
    [Crossref] [Google Scholar]
  111. 111.
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, et al. 2010.. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. . Blood 116::82940
    [Crossref] [Google Scholar]
  112. 112.
    Kracht L, Borggrewe M, Eskandar S, Brouwer N, Chuva de Sousa Lopes SM, et al. 2020.. Human fetal microglia acquire homeostatic immune-sensing properties early in development. . Science 369::53037
    [Crossref] [Google Scholar]
  113. 113.
    Han CZ, Li RZ, Hansen E, Trescott S, Fixsen BR, et al. 2023.. Human microglia maturation is underpinned by specific gene regulatory networks. . Immunity 56::215271.e13
    [Crossref] [Google Scholar]
  114. 114.
    Gerhardt T, Ley K. 2015.. Monocyte trafficking across the vessel wall. . Cardiovasc. Res. 107::32130
    [Crossref] [Google Scholar]
  115. 115.
    Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, et al. 2019.. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. . Immunity 50::25371.e6
    [Crossref] [Google Scholar]
  116. 116.
    Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, et al. 2019.. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. . Neuron 101::20723.e10
    [Crossref] [Google Scholar]
  117. 117.
    Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, et al. 2019.. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. . Nat. Commun. 10::5816
    [Crossref] [Google Scholar]
  118. 118.
    Edens HA, Parkos CA. 2003.. Neutrophil transendothelial migration and alteration in vascular permeability: focus on neutrophil-derived azurocidin. . Curr. Opin. Hematol. 10::2530
    [Crossref] [Google Scholar]
  119. 119.
    Darash-Yahana M, Gillespie JW, Hewitt SM, Chen YY, Maeda S, et al. 2009.. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers. . PLOS ONE 4::e6695
    [Crossref] [Google Scholar]
  120. 120.
    Matloubian M, David A, Engel S, Ryan JE, Cyster JG. 2000.. A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. . Nat. Immunol. 1::298304
    [Crossref] [Google Scholar]
  121. 121.
    Mendelson K, Evans T, Hla T. 2014.. Sphingosine 1-phosphate signalling. . Development 141::59
    [Crossref] [Google Scholar]
  122. 122.
    Egesa WI, Odoch S, Odong RJ, Nakalema G, Asiimwe D, et al. 2021.. Germinal matrix-intraventricular hemorrhage: a tale of preterm infants. . Int. J. Pediatr. 2021::6622598
    [Crossref] [Google Scholar]
  123. 123.
    McCrea HJ, Ment LR. 2008.. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. . Clin. Perinatol. 35::77792
    [Crossref] [Google Scholar]
  124. 124.
    Zhang L, Ran L, Garcia GE, Wang XH, Han S, et al. 2009.. Chemokine CXCL16 regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle regeneration. . Am. J. Pathol. 175::251827
    [Crossref] [Google Scholar]
  125. 125.
    Korbecki J, Bajdak-Rusinek K, Kupnicka P, Kapczuk P, Siminska D, et al. 2021.. The role of CXCL16 in the pathogenesis of cancer and other diseases. . Int. J. Mol. Sci. 22::3490
    [Crossref] [Google Scholar]
  126. 126.
    Aroca-Crevillen A, Vicanolo T, Ovadia S, Hidalgo A. 2024.. Neutrophils in physiology and pathology. . Annu. Rev. Pathol. Mech. Dis. 19::22759
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023446
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023446
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error