1932

Abstract

Pregnancy has fascinated immunologists ever since Peter Medawar's observation that reproduction runs contrary to the founding tenets of immunology. During healthy pregnancy, maternal B cells interact with antigens of the foreign conceptus (placenta and fetus) yet do not elicit rejection. Instead, robust and redundant fetomaternal tolerance pathways generally prevent maternal B cells and antibodies from harming the placenta and fetus. Fetomaternal tolerance is not absolute, and unfortunately there exist several pregnancy complications that arise from breaks therein. Here, important historic and recent developments in the field of fetomaternal tolerance pertaining to maternal B cells and antibodies are reviewed. General rules from which to conceptualize humoral tolerance to the placenta and fetus are proposed. Significant but underexplored ideas are highlighted and topics for future research are suggested, findings from which are predicted to provide insight into the fundamental nature of tolerance and bolster efforts to combat immune-mediated pregnancy complications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023459
2025-01-24
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023459.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023459&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Burnet FM. 1969.. Cellular Immunology. Carlton, Victoria, Australia:: Melbourne Univ. Press
    [Google Scholar]
  2. 2.
    Rizzuto G, Erlebacher A. 2022.. Trophoblast antigens, fetal blood cell antigens, and the paradox of fetomaternal tolerance. . J. Exp. Med. 219::e20211515
    [Crossref] [Google Scholar]
  3. 3.
    Petersdorf EW, Longton GM, Anasetti C, Mickelson EM, McKinney SK, et al. 1997.. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. . Blood 89::181823
    [Crossref] [Google Scholar]
  4. 4.
    Visentin J, Bachelet T, Aubert O, Del Bello A, Martinez C, et al. 2020.. Reassessment of the clinical impact of preformed donor-specific anti-HLA-Cw antibodies in kidney transplantation. . Am. J. Transplant. 20::136574
    [Crossref] [Google Scholar]
  5. 5.
    Landsteiner KW, Alexander S. 1940.. An agglutinable factor in human blood recognized by immune sera for Rhesus blood. . Proc. Soc. Exp. Biol. Med. 43::223
    [Crossref] [Google Scholar]
  6. 6.
    Salmon JE, Guerra M, Kim M, Branch DW. 2022.. 1201 IMPACT Study: preliminary results of a trial with a biologic to prevent preeclampsia in women with antiphospholipid syndrome. . Lupus Sci. Med. 9::A8485
    [Google Scholar]
  7. 7.
    Medina KL, Smithson G, Kincade PW. 1993.. Suppression of B lymphopoiesis during normal pregnancy. . J. Exp. Med. 178::150715
    [Crossref] [Google Scholar]
  8. 8.
    Muzzio DO, Soldati R, Ehrhardt J, Utpatel K, Evert M, et al. 2014.. B cell development undergoes profound modifications and adaptations during pregnancy in mice. . Biol. Reprod. 91::115
    [Crossref] [Google Scholar]
  9. 9.
    Ait-Azzouzene D, Caucheteux S, Tchang F, Wantyghem J, Moutier R, et al. 2001.. Transgenic major histocompatibility complex class I antigen expressed in mouse trophoblast affects maternal immature B cells. . Biol. Reprod. 65::33744
    [Crossref] [Google Scholar]
  10. 10.
    Ait-Azzouzene D, Gendron MC, Houdayer M, Langkopf A, Burki K, et al. 1998.. Maternal B lymphocytes specific for paternal histocompatibility antigens are partially deleted during pregnancy. . J. Immunol. 161::267783
    [Crossref] [Google Scholar]
  11. 11.
    Ziegler KB, Muzzio DO, Matzner F, Bommer I, Ventimiglia MS, et al. 2018.. Human pregnancy is accompanied by modifications in B cell development and immunoglobulin profile. . J. Reprod. Immunol. 129::4047
    [Crossref] [Google Scholar]
  12. 12.
    Muzzio DO, Ziegler KB, Ehrhardt J, Zygmunt M, Jensen F. 2016.. Marginal zone B cells emerge as a critical component of pregnancy well-being. . Reproduction 151::2937
    [Crossref] [Google Scholar]
  13. 13.
    Jensen F, Muzzio D, Soldati R, Fest S, Zenclussen AC. 2013.. Regulatory B10 cells restore pregnancy tolerance in a mouse model. . Biol. Reprod. 89::90
    [Crossref] [Google Scholar]
  14. 14.
    Guzman-Genuino RM, Eldi P, Garcia-Valtanen P, Hayball JD, Diener KR. 2019.. Uterine B cells exhibit regulatory properties during the peri-implantation stage of murine pregnancy. . Front. Immunol. 10::2899
    [Crossref] [Google Scholar]
  15. 15.
    Robertson SA, Care AS, Moldenhauer LM. 2018.. Regulatory T cells in embryo implantation and the immune response to pregnancy. . J. Clin. Investig. 128::422435
    [Crossref] [Google Scholar]
  16. 16.
    Bondt A, Selman MH, Deelder AM, Hazes JM, Willemsen SP, et al. 2013.. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. . J. Proteome Res. 12::452231
    [Crossref] [Google Scholar]
  17. 17.
    Bondt A, Rombouts Y, Selman MH, Hensbergen PJ, Reiding KR, et al. 2014.. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. . Mol. Cell. Proteom. 13::302939
    [Crossref] [Google Scholar]
  18. 18.
    Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, et al. 1991.. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. . J. Autoimmun. 4::77994
    [Crossref] [Google Scholar]
  19. 19.
    Raju TS. 2008.. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. . Curr. Opin. Immunol. 20::47178
    [Crossref] [Google Scholar]
  20. 20.
    Hench PS. 1949.. Potential reversibility of rheumatoid arthritis. . Ann. Rheum. Dis. 8::9096
    [Crossref] [Google Scholar]
  21. 21.
    Kissel T, Toes REM, Huizinga TWJ, Wuhrer M. 2023.. Glycobiology of rheumatic diseases. . Nat. Rev. Rheumatol. 19::2843
    [Crossref] [Google Scholar]
  22. 22.
    Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, et al. 2012.. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. . Nat. Med. 18::14016
    [Crossref] [Google Scholar]
  23. 23.
    van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. 2016.. The emerging importance of IgG Fab glycosylation in immunity. . J. Immunol. 196::143541
    [Crossref] [Google Scholar]
  24. 24.
    Sabouri Z, Schofield P, Horikawa K, Spierings E, Kipling D, et al. 2014.. Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. . PNAS 111::E256775
    [Google Scholar]
  25. 25.
    van de Bovenkamp FS, Derksen NIL, Ooijevaar-de Heer P, van Schie KA, Kruithof S, et al. 2018.. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. . PNAS 115::19016
    [Crossref] [Google Scholar]
  26. 26.
    Malan Borel I, Gentile T, Angelucci J, Pividori J, Guala MC, et al. 1991.. IgG asymmetric molecules with antipaternal activity isolated from sera and placenta of pregnant human. . J. Reprod. Immunol. 20::12940
    [Crossref] [Google Scholar]
  27. 27.
    Zenclussen AC, Gentile T, Kortebani G, Mazzolli A, Margni R. 2001.. Asymmetric antibodies and pregnancy. . Am. J. Reprod. Immunol. 45::28994
    [Crossref] [Google Scholar]
  28. 28.
    Margni RA, Malan Borel I. 1998.. Paradoxical behavior of asymmetric IgG antibodies. . Immunol. Rev. 163::7787
    [Crossref] [Google Scholar]
  29. 29.
    Fouda GG, Martinez DR, Swamy GK, Permar SR. 2018.. The impact of IgG transplacental transfer on early life immunity. . Immunohorizons 2::1425
    [Crossref] [Google Scholar]
  30. 30.
    Erickson JJ, Archer-Hartmann S, Yarawsky AE, Miller JLC, Seveau S, et al. 2022.. Pregnancy enables antibody protection against intracellular infection. . Nature 606::76975
    [Crossref] [Google Scholar]
  31. 31.
    Canellada A, Blois S, Gentile T, Margni Idehu RA. 2002.. In vitro modulation of protective antibody responses by estrogen, progesterone and interleukin-6. . Am. J. Reprod. Immunol. 48::33443
    [Crossref] [Google Scholar]
  32. 32.
    Kelemen K, Bognar I, Paal M, Szekeres-Bartho J. 1996.. A progesterone-induced protein increases the synthesis of asymmetric antibodies. . Cell Immunol. 167::12934
    [Crossref] [Google Scholar]
  33. 33.
    Glendenning LM, Reynero KM, Kukan EM, Long MD, Cobb BA. 2023.. IgG sialylation occurs via the FcRn-mediated recycling pathway in endothelial cells. . bioRxiv 2023.06.30.547255. https://doi.org/10.1101/2023.06.30.547255
  34. 34.
    Jones MB, Oswald DM, Joshi S, Whiteheart SW, Orlando R, Cobb BA. 2016.. B-cell-independent sialylation of IgG. . PNAS 113::720712
    [Crossref] [Google Scholar]
  35. 35.
    Glendenning LM, Zhou JY, Reynero KM, Cobb BA. 2022.. Divergent Golgi trafficking limits B cell-mediated IgG sialylation. . J. Leukoc. Biol. 112::155566
    [Crossref] [Google Scholar]
  36. 36.
    Rolle L, Memarzadeh Tehran M, Morell-Garcia A, Raeva Y, Schumacher A, et al. 2013.. Cutting edge: IL-10-producing regulatory B cells in early human pregnancy. . Am. J. Reprod. Immunol. 70::44853
    [Crossref] [Google Scholar]
  37. 37.
    Fettke F, Schumacher A, Canellada A, Toledo N, Bekeredjian-Ding I, et al. 2016.. Maternal and fetal mechanisms of B cell regulation during pregnancy: Human chorionic gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis. . Front. Immunol. 7::495
    [Crossref] [Google Scholar]
  38. 38.
    Guzman-Genuino RM, Dimova T, You Y, Aldo P, Hayball JD, et al. 2019.. Trophoblasts promote induction of a regulatory phenotype in B cells that can protect against detrimental T cell-mediated inflammation. . Am. J. Reprod. Immunol. 82::e13187
    [Crossref] [Google Scholar]
  39. 39.
    Robertson SA, Skinner RJ, Care AS. 2006.. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. . J. Immunol. 177::488896
    [Crossref] [Google Scholar]
  40. 40.
    Busse M, Campe KJ, Nowak D, Schumacher A, Plenagl S, et al. 2019.. IL-10 producing B cells rescue mouse fetuses from inflammation-driven fetal death and are able to modulate T cell immune responses. . Sci. Rep. 9::9335
    [Crossref] [Google Scholar]
  41. 41.
    Rowe JH, Ertelt JM, Xin L, Way SS. 2012.. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. . Nature 490::1026
    [Crossref] [Google Scholar]
  42. 42.
    Huang B, Faucette AN, Pawlitz MD, Pei B, Goyert JW, et al. 2017.. Interleukin-33-induced expression of PIBF1 by decidual B cells protects against preterm labor. . Nat. Med. 23::12835
    [Crossref] [Google Scholar]
  43. 43.
    Busse M, Langwisch S, Tedford K, Fischer KD, Zenclussen AC. 2022.. Maternal B cell signaling orchestrates fetal development in mice. . Development 149::dev199783
    [Crossref] [Google Scholar]
  44. 44.
    Atyeo C, DeRiso EA, Davis C, Bordt EA, De Guzman RM, et al. 2021.. COVID-19 mRNA vaccines drive differential antibody Fc-functional profiles in pregnant, lactating, and nonpregnant women. . Sci. Transl. Med. 13::eabi8631
    [Crossref] [Google Scholar]
  45. 45.
    Kay AW, Blish CA. 2015.. Immunogenicity and clinical efficacy of influenza vaccination in pregnancy. . Front. Immunol. 6::289
    [Crossref] [Google Scholar]
  46. 46.
    Schlaudecker EP, Ambroggio L, McNeal MM, Finkelman FD, Way SS. 2018.. Declining responsiveness to influenza vaccination with progression of human pregnancy. . Vaccine 36::473441
    [Crossref] [Google Scholar]
  47. 47.
    Schlaudecker EP, McNeal MM, Dodd CN, Ranz JB, Steinhoff MC. 2012.. Pregnancy modifies the antibody response to trivalent influenza immunization. . J. Infect. Dis. 206::167073
    [Crossref] [Google Scholar]
  48. 48.
    Thompson MG, Li DK, Shifflett P, Sokolow LZ, Ferber JR, et al. 2014.. Effectiveness of seasonal trivalent influenza vaccine for preventing influenza virus illness among pregnant women: a population-based case-control study during the 2010–2011 and 2011–2012 influenza seasons. . Clin. Infect. Dis. 58::44957
    [Crossref] [Google Scholar]
  49. 49.
    Langel SN, Otero CE, Martinez DR, Permar SR. 2020.. Maternal gatekeepers: how maternal antibody Fc characteristics influence passive transfer and infant protection. . PLOS Pathog. 16::e1008303
    [Crossref] [Google Scholar]
  50. 50.
    Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. 2023.. The therapeutic age of the neonatal Fc receptor. . Nat. Rev. Immunol. 23::41532
    [Crossref] [Google Scholar]
  51. 51.
    Ornoy A, Miller RK. 2023.. Yolk sac development, function and role in rodent pregnancy. . Birth Defects Res. 115::124354
    [Crossref] [Google Scholar]
  52. 52.
    Kim J, Mohanty S, Ganesan LP, Hua K, Jarjoura D, et al. 2009.. FcRn in the yolk sac endoderm of mouse is required for IgG transport to fetus. . J. Immunol. 182::258389
    [Crossref] [Google Scholar]
  53. 53.
    Clements T, Rice TF, Vamvakas G, Barnett S, Barnes M, et al. 2020.. Update on transplacental transfer of IgG subclasses: impact of maternal and fetal factors. . Front. Immunol. 11::1920
    [Crossref] [Google Scholar]
  54. 54.
    Jennewein MF, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette FJ, et al. 2019.. Fc glycan-mediated regulation of placental antibody transfer. . Cell 178::20215.e14
    [Crossref] [Google Scholar]
  55. 55.
    Rosenberg YJ, Ordonez T, Khanwalkar US, Barnette P, Pandey S, et al. 2023.. Evidence for the role of a second Fc-binding receptor in placental IgG transfer in nonhuman primates. . mBio 14::e0034123
    [Crossref] [Google Scholar]
  56. 56.
    Martinez DR, Fong Y, Li SH, Yang F, Jennewein MF, et al. 2019.. Fc characteristics mediate selective placental transfer of IgG in HIV-infected women. . Cell 178::190201.e11
    [Crossref] [Google Scholar]
  57. 57.
    Faulk WP, Jeannet M, Creighton WD, Carbonara A. 1974.. Immunological studies of the human placenta. Characterization of immunoglobulins on trophoblastic basement membranes. . J. Clin. Investig. 54::101119
    [Crossref] [Google Scholar]
  58. 58.
    McCormick JN, Faulk WP, Fox H, Fudenberg HH. 1971.. Immunohistological and elution studies of the human placenta. . J. Exp. Med. 133::118
    [Crossref] [Google Scholar]
  59. 59.
    Bernard O, Ripoche MA, Bennett D. 1977.. Distribution of maternal immunoglobulins in the mouse uterus and embryo in the days after implantation. . J. Exp. Med. 145::5875
    [Crossref] [Google Scholar]
  60. 60.
    Parr EL, Parr MB. 1985.. Localization of immunoglobulins in the mouse uterus, embryo, and placenta during the second half of pregnancy. . J. Reprod. Immunol. 8::15371
    [Crossref] [Google Scholar]
  61. 61.
    Swinburne LM. 1970.. Leucocyte antigens and placental sponge. . Lancet 2::59294
    [Crossref] [Google Scholar]
  62. 62.
    Raghupathy R, Singh B, Wegmann TG. 1984.. Fate of antipaternal H-2 antibodies bound to the placenta in vivo. . Transplantation 37::296300
    [Crossref] [Google Scholar]
  63. 63.
    Wegmann TG, Mosmann TR, Carlson GA, Olijnyk O, Singh B. 1979.. The ability of the murine placenta to absorb monoclonal anti-fetal H-2K antibody from the maternal circulation. . J. Immunol. 123::102023
    [Crossref] [Google Scholar]
  64. 64.
    Wegmann TG, Singh B, Carlson GA. 1979.. Allogeneic placenta is a paternal strain antigen immunoabsorbent. . J. Immunol. 122::27074
    [Crossref] [Google Scholar]
  65. 65.
    Bell SC, Billington WD. 1983.. Humoral immune responses in murine pregnancy. III. Relationship between anti-paternal alloantibody levels in maternal serum, placenta and fetus. . J. Reprod. Immunol. 5::299310
    [Crossref] [Google Scholar]
  66. 66.
    Adeniyi-Jones SC, Ozato K. 1987.. Transfer of antibodies directed to paternal major histocompatibility class I antigens from pregnant mice to the developing fetus. . J. Immunol. 138::140815
    [Crossref] [Google Scholar]
  67. 67.
    Rizzuto G, Brooks JF, Tuomivaara ST, McIntyre TI, Ma S, et al. 2022.. Establishment of fetomaternal tolerance through glycan-mediated B cell suppression. . Nature 603::497502
    [Crossref] [Google Scholar]
  68. 68.
    Erlebacher A, Vencato D, Price KA, Zhang D, Glimcher LH. 2007.. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. . J. Clin. Investig. 117::1399411
    [Crossref] [Google Scholar]
  69. 69.
    Nitschke L. 2014.. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. . Glycobiology 24::80717
    [Crossref] [Google Scholar]
  70. 70.
    Smith KG, Tarlinton DM, Doody GM, Hibbs ML, Fearon DT. 1998.. Inhibition of the B cell by CD22: a requirement for Lyn. . J. Exp. Med. 187::80711
    [Crossref] [Google Scholar]
  71. 71.
    Macauley MS, Pfrengle F, Rademacher C, Nycholat CM, Gale AJ, et al. 2013.. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. . J. Clin. Investig. 123::307483
    [Crossref] [Google Scholar]
  72. 72.
    Currie GA, Van Doorninck W, Bagshawe KD. 1968.. Effect of neuraminidase on the immunogenicity of early mouse trophoblast. . Nature 219::19192
    [Crossref] [Google Scholar]
  73. 73.
    Winn VD, Gormley M, Paquet AC, Kjaer-Sorensen K, Kramer A, et al. 2009.. Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. . Endocrinology 150::45262
    [Crossref] [Google Scholar]
  74. 74.
    Tsai S, Hardison NE, James AH, Motsinger-Reif AA, Bischoff SR, et al. 2011.. Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. . Placenta 32::17582
    [Crossref] [Google Scholar]
  75. 75.
    Herzenberg LA, Gonzales B. 1962.. Appearance of H-2 agglutinins in outcrossed female mice. . PNAS 48::57073
    [Crossref] [Google Scholar]
  76. 76.
    Bell SC, Billington WD. 1980.. Major anti-paternal alloantibody induced by murine pregnancy is non-complement-fixing IgG1. . Nature 288::38788
    [Crossref] [Google Scholar]
  77. 77.
    Bell SC, Billington WD. 1981.. Humoral immune responses in murine pregnancy. I. Anti-paternal alloantibody levels in maternal serum. . J. Reprod. Immunol. 3::313
    [Crossref] [Google Scholar]
  78. 78.
    Bell SC, Billington WD. 1986.. Humoral immune responses in murine pregnancy. V. Relationship to the differential immunogenicity of placental and fetal tissues. . J. Reprod. Immunol. 9::289302
    [Crossref] [Google Scholar]
  79. 79.
    Roe R, Bell SC. 1982.. Humoral immune responses in murine pregnancy. II. Kinetics and nature of the response in females preimmunized against paternal alloantigens. . Immunology 46::2330
    [Google Scholar]
  80. 80.
    Suah AN, Tran DV, Khiew SH, Andrade MS, Pollard JM, et al. 2021.. Pregnancy-induced humoral sensitization overrides T cell tolerance to fetus-matched allografts in mice. . J. Clin. Investig. 131::e140715
    [Crossref] [Google Scholar]
  81. 81.
    Mitchison NA. 1953.. The effect on the offspring of maternal immunization in mice. . J. Genet. 51::40620
    [Crossref] [Google Scholar]
  82. 82.
    Hsi BL, Hunt JS, Atkinson JP. 1991.. Differential expression of complement regulatory proteins on subpopulations of human trophoblast cells. . J. Reprod. Immunol. 19::20923
    [Crossref] [Google Scholar]
  83. 83.
    Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. 2000.. A critical role for murine complement regulator Crry in fetomaternal tolerance. . Science 287::498501
    [Crossref] [Google Scholar]
  84. 84.
    Van Rood JJ, Eernisse JG, Van Leeuwen A. 1958.. Leucocyte antibodies in sera from pregnant women. . Nature 181::173536
    [Crossref] [Google Scholar]
  85. 85.
    Vilches M, Nieto A. 2015.. Analysis of pregnancy-induced anti-HLA antibodies using Luminex platform. . Transplant Proc. 47::260810
    [Crossref] [Google Scholar]
  86. 86.
    Masson E, Vidal C, Deschamps M, Bongain S, Thevenin C, et al. 2013.. Incidence and risk factors of anti-HLA immunization after pregnancy. . Hum. Immunol. 74::94651
    [Crossref] [Google Scholar]
  87. 87.
    Dankers MK, Witvliet MD, Roelen DL, de Lange P, Korfage N, et al. 2004.. The number of amino acid triplet differences between patient and donor is predictive for the antibody reactivity against mismatched human leukocyte antigens. . Transplantation 77::123639
    [Crossref] [Google Scholar]
  88. 88.
    Geneugelijk K, Honger G, van Deutekom HW, Thus KA, Kesmir C, et al. 2015.. Predicted indirectly recognizable HLA epitopes presented by HLA-DRB1 are related to HLA antibody formation during pregnancy. . Am. J. Transplant. 15::311222
    [Crossref] [Google Scholar]
  89. 89.
    Elsner RA, Shlomchik MJ. 2020.. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. . Immunity 53::113650
    [Crossref] [Google Scholar]
  90. 90.
    Porrett PM. 2018.. Biologic mechanisms and clinical consequences of pregnancy alloimmunization. . Am. J. Transplant. 18::105967
    [Crossref] [Google Scholar]
  91. 91.
    Bromberger B, Spragan D, Hashmi S, Morrison A, Thomasson A, et al. 2017.. Pregnancy-induced sensitization promotes sex disparity in living donor kidney transplantation. . J. Am. Soc. Nephrol. 28::302533
    [Crossref] [Google Scholar]
  92. 92.
    Lashley EE, Meuleman T, Claas FH. 2013.. Beneficial or harmful effect of antipaternal human leukocyte antibodies on pregnancy outcome? A systematic review and meta-analysis. . Am. J. Reprod. Immunol. 70::87103
    [Crossref] [Google Scholar]
  93. 93.
    De Winter DP, Hulzebos C, Van 't Oever RM, De Haas M, Verweij EJ, Lopriore E. 2023.. History and current standard of postnatal management in hemolytic disease of the fetus and newborn. . Eur. J. Pediatr. 182::489500
    [Crossref] [Google Scholar]
  94. 94.
    Mollison PL, Cutbush M. 1949.. Haemolytic disease of the newborn; criteria of severity. . Br. Med. J. 1::12330
    [Crossref] [Google Scholar]
  95. 95.
    Levine P, Katzin EM, Burnham L. 1941.. Isoimmunization in pregnancy: its possible bearing on the etiology of erythroblastosis foetalis. . J. Am. Med. Assoc. 116::82527
    [Crossref] [Google Scholar]
  96. 96.
    Christensen RD, Bahr TM, Ilstrup SJ, Dizon-Townson DS. 2023.. Alloimmune hemolytic disease of the fetus and newborn: genetics, structure, and function of the commonly involved erythrocyte antigens. . J. Perinatol. 43::145967
    [Crossref] [Google Scholar]
  97. 97.
    Jackson ME, Baker JM. 2021.. Hemolytic disease of the fetus and newborn: historical and current state. . Clin. Lab Med. 41::13351
    [Crossref] [Google Scholar]
  98. 98.
    Hidalgo C, Romano EL, Linares J, Suarez G. 1979.. Complement fixation by Rh blood group antibodies. . Transfusion 19::25054
    [Crossref] [Google Scholar]
  99. 99.
    Goossens D, da Silva N, Metral S, Cortes U, Callebaut I, et al. 2013.. Mice expressing RHAG and RHD human blood group genes. . PLOS ONE 8::e80460
    [Crossref] [Google Scholar]
  100. 100.
    Stowell SR, Henry KL, Smith NH, Hudson KE, Halverson GR, et al. 2013.. Alloantibodies to a paternally derived RBC KEL antigen lead to hemolytic disease of the fetus/newborn in a murine model. . Blood 122::1494504
    [Crossref] [Google Scholar]
  101. 101.
    Arthur CM, Stowell SR. 2023.. The development and consequences of red blood cell alloimmunization. . Annu. Rev. Pathol. Mech. Dis. 18::53764
    [Crossref] [Google Scholar]
  102. 102.
    He YD, Xu BN, Song D, Wang YQ, Yu F, et al. 2020.. Normal range of complement components during pregnancy: a prospective study. . Am. J. Reprod. Immunol. 83::e13202
    [Crossref] [Google Scholar]
  103. 103.
    Chonat S, Mener A, Verkerke H, Stowell SR. 2020.. Role of complement in alloimmunization and hyperhemolysis. . Curr. Opin. Hematol. 27::40614
    [Crossref] [Google Scholar]
  104. 104.
    Gahmberg CG. 1983.. Molecular characterization of the human red cell Rho(D) antigen. . EMBO J. 2::22327
    [Crossref] [Google Scholar]
  105. 105.
    Gupta GK, Balbuena-Merle R, Hendrickson JE, Tormey CA. 2020.. Immunohematologic aspects of alloimmunization and alloantibody detection: a focus on pregnancy and hemolytic disease of the fetus and newborn. . Transfus Apher. Sci. 59::102946
    [Crossref] [Google Scholar]
  106. 106.
    Xu H, Heyman B. 2020.. IgG-mediated suppression of antibody responses: hiding or snatching epitopes?. Scand. J. Immunol. 92::e12921
    [Crossref] [Google Scholar]
  107. 107.
    Moller G, Wigzell H. 1965.. Antibody synthesis at the cellular level. Antibody-induced suppression of 19s and 7s antibody response. . J. Exp. Med. 121::96989
    [Crossref] [Google Scholar]
  108. 108.
    Wigzell H. 1966.. Antibody synthesis at the cellular level. Antibody-induced suppression of 7S antibody synthesis. . J. Exp. Med. 124::95369
    [Crossref] [Google Scholar]
  109. 109.
    Shinde P, Howie HL, Stegmann TC, Hay AM, Waterman HR, et al. 2020.. IgG subclass determines suppression versus enhancement of humoral alloimmunity to Kell RBC antigens in mice. . Front. Immunol. 11::1516
    [Crossref] [Google Scholar]
  110. 110.
    Bernardo L, Yu H, Amash A, Zimring JC, Lazarus AH. 2015.. IgG-mediated immune suppression to erythrocytes by polyclonal antibodies can occur in the absence of activating or inhibitory Fcγ receptors in a full mouse model. . J. Immunol. 195::222430
    [Crossref] [Google Scholar]
  111. 111.
    Karlsson MC, Getahun A, Heyman B. 2001.. FcγRIIB in IgG-mediated suppression of antibody responses: different impact in vivo and in vitro. . J. Immunol. 167::555864
    [Crossref] [Google Scholar]
  112. 112.
    Liu J, Santhanakrishnan M, Natarajan P, Gibb DR, Eisenbarth SC, et al. 2016.. Antigen modulation as a potential mechanism of anti-KEL immunoprophylaxis in mice. . Blood 128::315968
    [Crossref] [Google Scholar]
  113. 113.
    Bonstein L, Haddad N. 2017.. Taking a wider view on fetal/neonatal alloimmune thrombocytopenia. . Thromb. Res. 151:(Suppl. 1):S1002
    [Crossref] [Google Scholar]
  114. 114.
    Sachs UJ. 2013.. Fetal/neonatal alloimmune thrombocytopenia. . Thromb. Res. 131:(Suppl. 1):S4246
    [Crossref] [Google Scholar]
  115. 115.
    Althaus J, Weir EG, Askin F, Kickler TS, Blakemore K. 2005.. Chronic villitis in untreated neonatal alloimmune thrombocytopenia: an etiology for severe early intrauterine growth restriction and the effect of intravenous immunoglobulin therapy. . Am. J. Obstet. Gynecol. 193::11004
    [Crossref] [Google Scholar]
  116. 116.
    Bussel JB, Vander Haar EL, Berkowitz RL. 2021.. New developments in fetal and neonatal alloimmune thrombocytopenia. . Am. J. Obstet. Gynecol. 225::12027
    [Crossref] [Google Scholar]
  117. 117.
    Chen P, Li C, Lang S, Zhu G, Reheman A, et al. 2010.. Animal model of fetal and neonatal immune thrombocytopenia: role of neonatal Fc receptor in the pathogenesis and therapy. . Blood 116::366068
    [Crossref] [Google Scholar]
  118. 118.
    Tiller H, Killie MK, Chen P, Eksteen M, Husebekk A, et al. 2012.. Toward a prophylaxis against fetal and neonatal alloimmune thrombocytopenia: induction of antibody-mediated immune suppression and prevention of severe clinical complications in a murine model. . Transfusion 52::144657
    [Crossref] [Google Scholar]
  119. 119.
    Yougbare I, Lang S, Yang H, Chen P, Zhao X, et al. 2015.. Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage. . J. Clin. Investig. 125::154556
    [Crossref] [Google Scholar]
  120. 120.
    Yougbare I, Tai WS, Zdravic D, Oswald BE, Lang S, et al. 2017.. Activated NK cells cause placental dysfunction and miscarriages in fetal alloimmune thrombocytopenia. . Nat. Commun. 8::224
    [Crossref] [Google Scholar]
  121. 121.
    Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM, et al. 2012.. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. . FASEB J. 26::487685
    [Crossref] [Google Scholar]
  122. 122.
    Kapur R, Kustiawan I, Vestrheim A, Koeleman CA, Visser R, et al. 2014.. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. . Blood 123::47180
    [Crossref] [Google Scholar]
  123. 123.
    Dubruc E, Lebreton F, Giannoli C, Rabilloud M, Huissoud C, et al. 2016.. Placental histological lesions in fetal and neonatal alloimmune thrombocytopenia: a retrospective cohort study of 21 cases. . Placenta 48::1049
    [Crossref] [Google Scholar]
  124. 124.
    de Vos TW, Winkelhorst D, Baelde HJ, Dijkstra KL, van Bergen RDM, et al. 2021.. Placental complement activation in fetal and neonatal alloimmune thrombocytopenia: an observational study. . Int. J. Mol. Sci. 22::6763
    [Crossref] [Google Scholar]
  125. 125.
    Knight JS, Branch DW, Ortel TL. 2023.. Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. . BMJ 380::e069717
    [Crossref] [Google Scholar]
  126. 126.
    Walter IJ, Klein Haneveld MJ, Lely AT, Bloemenkamp KWM, Limper M, Kooiman J. 2021.. Pregnancy outcome predictors in antiphospholipid syndrome: a systematic review and meta-analysis. . Autoimmun. Rev. 20::102901
    [Crossref] [Google Scholar]
  127. 127.
    Tincani A, Nalli C, Reggia R, Zatti S, Lojacono A. 2017.. Obstetric manifestations of the antiphospholipid syndrome. . Handb. Syst. Autoimmun. 10::10720
    [Crossref] [Google Scholar]
  128. 128.
    Vinatier D, Dufour P, Cosson M, Houpeau JL. 2001.. Antiphospholipid syndrome and recurrent miscarriages. . Eur. J. Obstet. Gynecol. Reprod. Biol. 96::3750
    [Crossref] [Google Scholar]
  129. 129.
    de Groot PG, Urbanus RT. 2012.. The significance of autoantibodies against β2-glycoprotein I. . Blood 120::26674
    [Crossref] [Google Scholar]
  130. 130.
    Ulrich V, Gelber SE, Vukelic M, Sacharidou A, Herz J, et al. 2016.. ApoE receptor 2 mediation of trophoblast dysfunction and pregnancy complications induced by antiphospholipid antibodies in mice. . Arthritis Rheumatol. 68::73039
    [Crossref] [Google Scholar]
  131. 131.
    Tang KT, Wu TY, Chen HH, Lin CC, Hsu YH. 2021.. Cardiolipin interacts with beta-2-glycoprotein I and forms an open conformation—mechanisms analyzed using hydrogen/deuterium exchange. . Protein Sci. 30::92739
    [Crossref] [Google Scholar]
  132. 132.
    Robertson SA, Roberts CT, van Beijering E, Pensa K, Sheng Y, et al. 2004.. Effect of β2-glycoprotein I null mutation on reproductive outcome and antiphospholipid antibody-mediated pregnancy pathology in mice. . Mol. Hum. Reprod. 10::40916
    [Crossref] [Google Scholar]
  133. 133.
    Tong M, Viall CA, Chamley LW. 2014.. Antiphospholipid antibodies and the placenta: a systematic review of their in vitro effects and modulation by treatment. . Hum. Reproduct. Update 21::97118
    [Crossref] [Google Scholar]
  134. 134.
    Berman J, Girardi G, Salmon JE. 2005.. TNF-α is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. . J. Immunol. 174::48590
    [Crossref] [Google Scholar]
  135. 135.
    Girardi G, Berman J, Redecha P, Spruce L, Thurman JM, et al. 2003.. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. . J. Clin. Investig. 112::164454
    [Crossref] [Google Scholar]
  136. 136.
    Girardi G, Redecha P, Salmon JE. 2004.. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. . Nat. Med. 10::122226
    [Crossref] [Google Scholar]
  137. 137.
    Holers VM, Girardi G, Mo L, Guthridge JM, Molina H, et al. 2002.. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. . J. Exp. Med. 195::21120
    [Crossref] [Google Scholar]
  138. 138.
    Rand JH, Wu X-X, Andree HAM, Lockwood CJ, Guller S, et al. 1997.. Pregnancy loss in the antiphospholipid-antibody syndrome—a possible thrombogenic mechanism. . N. Engl. J. Med. 337::15460
    [Crossref] [Google Scholar]
  139. 139.
    Sebire NJ, Fox H, Backos M, Rai R, Paterson C, Regan L. 2002.. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure. . Hum. Reprod. 17::106771
    [Crossref] [Google Scholar]
  140. 140.
    Viall CA, Chamley LW. 2015.. Histopathology in the placentae of women with antiphospholipid antibodies: a systematic review of the literature. . Autoimmun. Rev. 14::44671
    [Crossref] [Google Scholar]
  141. 141.
    Blank M, Cohen J, Toder V, Shoenfeld Y. 1991.. Induction of anti-phospholipid syndrome in naive mice with mouse lupus monoclonal and human polyclonal anti-cardiolipin antibodies. . PNAS 88::306973
    [Crossref] [Google Scholar]
  142. 142.
    Bakimer R, Fishman P, Blank M, Sredni B, Djaldetti M, Shoenfeld Y. 1992.. Induction of primary antiphospholipid syndrome in mice by immunization with a human monoclonal anticardiolipin antibody (H-3). . J. Clin. Investig. 89::155863
    [Crossref] [Google Scholar]
  143. 143.
    Ikematsu W, Luan FL, La Rosa L, Beltrami B, Nicoletti F, et al. 1998.. Human anticardiolipin monoclonal autoantibodies cause placental necrosis and fetal loss in BALB/c mice. . Arthritis Rheum. 41::102639
    [Crossref] [Google Scholar]
  144. 144.
    Abeln M, Albers I, Peters-Bernard U, Flachsig-Schulz K, Kats E, et al. 2019.. Sialic acid is a critical fetal defense against maternal complement attack. . J. Clin. Investig. 129::42236
    [Crossref] [Google Scholar]
  145. 145.
    Girardi G, Yarilin D, Thurman JM, Holers VM, Salmon JE. 2006.. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. . J. Exp. Med. 203::216575
    [Crossref] [Google Scholar]
  146. 146.
    Salmon JE, Heuser C, Triebwasser M, Liszewski MK, Kavanagh D, et al. 2011.. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. . PLOS Med. 8::e1001013
    [Crossref] [Google Scholar]
  147. 147.
    Clark EA, Silver RM, Branch DW. 2007.. Do antiphospholipid antibodies cause preeclampsia and HELLP syndrome?. Curr. Rheumatol. Rep. 9::21925
    [Crossref] [Google Scholar]
  148. 148.
    Lynch AM, Salmon JE. 2010.. Dysregulated complement activation as a common pathway of injury in preeclampsia and other pregnancy complications. . Placenta 31::56167
    [Crossref] [Google Scholar]
  149. 149.
    Caprioli J, Noris M, Brioschi S, Pianetti G, Castelletti F, et al. 2006.. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. . Blood 108::126779
    [Crossref] [Google Scholar]
  150. 150.
    Buyon JP, Kim MY, Guerra MM, Laskin CA, Petri M, et al. 2015.. Predictors of pregnancy outcomes in patients with lupus: a cohort study. . Ann. Intern. Med. 163::15363
    [Crossref] [Google Scholar]
  151. 151.
    Kim MY, Guerra MM, Kaplowitz E, Laskin CA, Petri M, et al. 2018.. Complement activation predicts adverse pregnancy outcome in patients with systemic lupus erythematosus and/or antiphospholipid antibodies. . Ann. Rheum. Dis. 77::54955
    [Crossref] [Google Scholar]
  152. 152.
    Garutti M, Lambertini M, Puglisi F. 2021.. Checkpoint inhibitors, fertility, pregnancy, and sexual life: a systematic review. . ESMO Open 6::100276
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023459
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023459
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error