1932

Abstract

The cysteinyl leukotrienes (CysLTs), LTC, LTD, and LTE, are potent lipid mediators derived from arachidonic acid through the 5-lipoxygenase pathway. These mediators produce both inflammation and bronchoconstriction through three distinct G protein–coupled receptors (GPCRs)—CysLT, CysLT, and OXGR1 (also known as CysLT or GPR99). While CysLT-mediated functions in the effector phase of allergic inflammation and asthma have been established for some time, recent work has demonstrated novel roles for these mediators and their receptors in the induction and amplification of type 2 inflammation. Additionally, in vitro studies and murine models have uncovered diverse regulatory mechanisms that restrain or amplify CysLT receptor activation and CysLT receptor function. This review provides an overview of CysLT biosynthesis and its regulation, the molecular and functional pharmacology of CysLT receptors, and an overview of the established and emerging roles of CysLTs in asthma, aspirin-exacerbated respiratory disease, and type 2 inflammation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023509
2025-01-24
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023509.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023509&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Samuelsson B. 2000.. The discovery of the leukotrienes. . Am. J. Respir. Crit. Care Med. 161::S26
    [Crossref] [Google Scholar]
  2. 2.
    Peters-Golden M, Henderson WR Jr. 2007.. Leukotrienes. . N. Engl. J. Med. 357::184154
    [Crossref] [Google Scholar]
  3. 3.
    Haeggstrom JZ, Funk CD. 2011.. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. . Chem. Rev. 111::586698
    [Crossref] [Google Scholar]
  4. 4.
    Murphy RC, Hammarstrom S, Samuelsson B. 1979.. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. . PNAS 76::427579
    [Crossref] [Google Scholar]
  5. 5.
    Ualiyeva S, Hallen N, Kanaoka Y, Ledderose C, Matsumoto I, et al. 2020.. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. . Sci. Immunol. 5::eaax7224
    [Crossref] [Google Scholar]
  6. 6.
    McGinty JW, Ting HA, Billipp TE, Nadjsombati MS, Khan DM, et al. 2020.. Tuft-cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity. . Immunity 52::52841.e7
    [Crossref] [Google Scholar]
  7. 7.
    Bankova LG, Dwyer DF, Yoshimoto E, Ualiyeva S, McGinty JW, et al. 2018.. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. . Sci. Immunol. 3::eaat9453
    [Crossref] [Google Scholar]
  8. 8.
    Ohnishi H, Miyahara N, Gelfand EW. 2008.. The role of leukotriene B4 in allergic diseases. . Allergol. Int. 57::29198
    [Crossref] [Google Scholar]
  9. 9.
    Sala A, Buccellati C, Zarini S, Bolla M, Bonazzi A, Folco GC. 1997.. The polymorphonuclear leukocyte: a cell tuned for transcellular biosynthesis of cys-leukotrienes. . J. Physiol. Pharmacol. 48::66573
    [Google Scholar]
  10. 10.
    Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S, et al. 2012.. Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. . Blood 119::379098
    [Crossref] [Google Scholar]
  11. 11.
    Folco G, Murphy RC. 2006.. Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. . Pharmacol. Rev. 58::37588
    [Crossref] [Google Scholar]
  12. 12.
    McGovern T, Ano S, Farahnak S, McCuaig S, Martin JG. 2020.. Cellular source of cysteinyl leukotrienes following chlorine exposure. . Am. J. Respir. Cell Mol. Biol. 63::68189
    [Crossref] [Google Scholar]
  13. 13.
    Esser J, Gehrmann U, D'Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, et al. 2010.. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. . J. Allergy Clin. Immunol. 126::103240.e4
    [Crossref] [Google Scholar]
  14. 14.
    Majumdar R, Tavakoli Tameh A, Arya SB, Parent CA. 2021.. Exosomes mediate LTB4 release during neutrophil chemotaxis. . PLOS Biol. 19::e3001271
    [Crossref] [Google Scholar]
  15. 15.
    Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, et al. 2011.. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. . J. Exp. Med. 208::593604
    [Crossref] [Google Scholar]
  16. 16.
    Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y. 2009.. Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. . J. Immunol. 182::111928
    [Crossref] [Google Scholar]
  17. 17.
    Pan D, Buchheit KM, Samuchiwal SK, Liu T, Cirka H, et al. 2019.. COX-1 mediates IL-33-induced extracellular signal-regulated kinase activation in mast cells: implications for aspirin sensitivity. . J. Allergy Clin. Immunol. 143::104757.e8
    [Crossref] [Google Scholar]
  18. 18.
    Honda A, Sugimoto Y, Namba T, Watabe A, Irie A, et al. 1993.. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype. . J. Biol. Chem. 268::775962
    [Crossref] [Google Scholar]
  19. 19.
    Flamand N, Surette ME, Picard S, Bourgoin S, Borgeat P. 2002.. Cyclic AMP-mediated inhibition of 5-lipoxygenase translocation and leukotriene biosynthesis in human neutrophils. . Mol. Pharmacol. 62::25056
    [Crossref] [Google Scholar]
  20. 20.
    Luo M, Jones SM, Phare SM, Coffey MJ, Peters-Golden M, Brock TG. 2004.. Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. . J. Biol. Chem. 279::4151220
    [Crossref] [Google Scholar]
  21. 21.
    Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, et al. 2017.. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. . J. Clin. Investig. 127::316776
    [Crossref] [Google Scholar]
  22. 22.
    Ali A, Ford-Hutchinson AW, Nicholson DW. 1994.. Activation of protein kinase C down-regulates leukotriene C4 synthase activity and attenuates cysteinyl leukotriene production in an eosinophilic substrain of HL-60 cells. . J. Immunol. 153::77688
    [Crossref] [Google Scholar]
  23. 23.
    Cowburn AS, Holgate ST, Sampson AP. 1999.. IL-5 increases expression of 5-lipoxygenase-activating protein and translocates 5-lipoxygenase to the nucleus in human blood eosinophils. . J. Immunol. 163::45665
    [Crossref] [Google Scholar]
  24. 24.
    Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA. 2001.. T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. . J. Exp. Med. 193::12333
    [Crossref] [Google Scholar]
  25. 25.
    Steinhilber D, Radmark O, Samuelsson B. 1993.. Transforming growth factor beta upregulates 5-lipoxygenase activity during myeloid cell maturation. . PNAS 90::598488
    [Crossref] [Google Scholar]
  26. 26.
    Riddick CA, Serio KJ, Hodulik CR, Ring WL, Regan MS, Bigby TD. 1999.. TGF-β increases leukotriene C4 synthase expression in the monocyte-like cell line, THP-1. . J. Immunol. 162::11017
    [Crossref] [Google Scholar]
  27. 27.
    Di Capite J, Shirley A, Nelson C, Bates G, Parekh AB. 2009.. Intercellular Ca2+ wave propagation involving positive feedback between CRAC channels and cysteinyl leukotrienes. . FASEB J. 23::894905
    [Crossref] [Google Scholar]
  28. 28.
    Di Capite J, Nelson C, Bates G, Parekh AB. 2009.. Targeting Ca2+ release-activated Ca2+ channel channels and leukotriene receptors provides a novel combination strategy for treating nasal polyposis. . J. Allergy Clin. Immunol. 124::101421.e3
    [Crossref] [Google Scholar]
  29. 29.
    Lazarinis N, Bood J, Gomez C, Kolmert J, Lantz AS, et al. 2018.. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor. . J. Allergy Clin. Immunol. 142::108089
    [Crossref] [Google Scholar]
  30. 30.
    Back M, Powell WS, Dahlen SE, Drazen JM, Evans JF, et al. 2014.. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR Review 7. . Br. J. Pharmacol. 171::355174
    [Crossref] [Google Scholar]
  31. 31.
    Metters KM, Zamboni RJ. 1993.. Photoaffinity labeling of the leukotriene D4 receptor in guinea pig lung. . J. Biol. Chem. 268::648795
    [Crossref] [Google Scholar]
  32. 32.
    Lynch KR, O'Neill GP, Liu Q, Im DS, Sawyer N, et al. 1999.. Characterization of the human cysteinyl leukotriene CysLT1 receptor. . Nature 399::78993
    [Crossref] [Google Scholar]
  33. 33.
    Maekawa A, Kanaoka Y, Lam BK, Austen KF. 2001.. Identification in mice of two isoforms of the cysteinyl leukotriene 1 receptor that result from alternative splicing. . PNAS 98::225661
    [Crossref] [Google Scholar]
  34. 34.
    Martin V, Sawyer N, Stocco R, Unett D, Lerner MR, et al. 2001.. Molecular cloning and functional characterization of murine cysteinyl-leukotriene 1 (CysLT1) receptors. . Biochem. Pharmacol. 62::1193200
    [Crossref] [Google Scholar]
  35. 35.
    Mong S, Scott MO, Lewis MA, Wu HL, Hogaboom GK, et al. 1985.. Leukotriene E4 binds specifically to LTD4 receptors in guinea pig lung membranes. . Eur. J. Pharmacol. 109::18392
    [Crossref] [Google Scholar]
  36. 36.
    Foster HR, Fuerst E, Branchett W, Lee TH, Cousins DJ, Woszczek G. 2016.. Leukotriene E4 is a full functional agonist for human cysteinyl leukotriene type 1 receptor-dependent gene expression. . Sci. Rep. 6::20461
    [Crossref] [Google Scholar]
  37. 37.
    Mellor EA, Austen KF, Boyce JA. 2002.. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. . J. Exp. Med. 195::58392
    [Crossref] [Google Scholar]
  38. 38.
    Kanaoka Y, Boyce JA. 2004.. Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. . J. Immunol. 173::150310
    [Crossref] [Google Scholar]
  39. 39.
    Yokomizo T, Nakamura M, Shimizu T. 2018.. Leukotriene receptors as potential therapeutic targets. . J. Clin. Investig. 128::2691701
    [Crossref] [Google Scholar]
  40. 40.
    Sarau HM, Ames RS, Chambers J, Ellis C, Elshourbagy N, et al. 1999.. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. . Mol. Pharmacol. 56::65763
    [Crossref] [Google Scholar]
  41. 41.
    Mellor EA, Maekawa A, Austen KF, Boyce JA. 2001.. Cysteinyl leukotriene receptor 1 is also a pyrimidinergic receptor and is expressed by human mast cells. . PNAS 98::796469
    [Crossref] [Google Scholar]
  42. 42.
    Figueroa DJ, Breyer RM, Defoe SK, Kargman S, Daugherty BL, et al. 2001.. Expression of the cysteinyl leukotriene 1 receptor in normal human lung and peripheral blood leukocytes. . Am. J. Respir. Crit. Care Med. 163::22633
    [Crossref] [Google Scholar]
  43. 43.
    Mita H, Hasegawa M, Saito H, Akiyama K. 2001.. Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. . Clin. Exp. Allergy 31::171423
    [Crossref] [Google Scholar]
  44. 44.
    Stevens WW, Staudacher AG, Hulse KE, Carter RG, Winter DR, et al. 2021.. Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. . J. Allergy Clin. Immunol. 147::60012
    [Crossref] [Google Scholar]
  45. 45.
    Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, et al. 2000.. Characterization of the human cysteinyl leukotriene 2 receptor. . J. Biol. Chem. 275::3053136
    [Crossref] [Google Scholar]
  46. 46.
    Liu T, Barrett NA, Nagai J, Lai J, Feng C, Boyce JA. 2021.. Leukotriene D4 paradoxically limits LTC4-driven platelet activation and lung immunopathology. . J. Allergy Clin. Immunol. 148::195208.e5
    [Crossref] [Google Scholar]
  47. 47.
    Wunder F, Tinel H, Kast R, Geerts A, Becker EM, et al. 2010.. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT2) receptor. . Br. J. Pharmacol. 160::399409
    [Crossref] [Google Scholar]
  48. 48.
    Yan D, Stocco R, Sawyer N, Nesheim ME, Abramovitz M, Funk CD. 2010.. Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT2) agonist, N-methyl-leukotriene C4, in calcium reporter and β arrestin assays. . Mol. Pharmacol. 79::27078
    [Crossref] [Google Scholar]
  49. 49.
    Takasaki J, Kamohara M, Matsumoto M, Saito T, Sugimoto T, et al. 2000.. The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT2 receptor. . Biochem. Biophys. Res. Commun. 274::31622
    [Crossref] [Google Scholar]
  50. 50.
    Nothacker HP, Wang Z, Zhu Y, Reinscheid RK, Lin SH, Civelli O. 2000.. Molecular cloning and characterization of a second human cysteinyl leukotriene receptor: discovery of a subtype selective agonist. . Mol. Pharmacol. 58::16018
    [Crossref] [Google Scholar]
  51. 51.
    Hui Y, Yang G, Galczenski H, Figueroa DJ, Austin CP, et al. 2001.. The murine cysteinyl leukotriene 2 (CysLT2) receptor. cDNA and genomic cloning, alternative splicing, and in vitro characterization. . J. Biol. Chem. 276::4748995
    [Crossref] [Google Scholar]
  52. 52.
    Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, et al. 2003.. Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: functional distinction from CysLT1R. . PNAS 100::1158993
    [Crossref] [Google Scholar]
  53. 53.
    Kamohara M, Takasaki J, Matsumoto M, Matsumoto S, Saito T, et al. 2001.. Functional characterization of cysteinyl leukotriene CysLT2 receptor on human coronary artery smooth muscle cells. . Biochem. Biophys. Res. Commun. 287::108892
    [Crossref] [Google Scholar]
  54. 54.
    Barajas-Espinosa A, Ochoa-Cortes F, Moos MP, Ramirez FD, Vanner SJ, Funk CD. 2011.. Characterization of the cysteinyl leukotriene 2 receptor in novel expression sites of the gastrointestinal tract. . Am. J. Pathol. 178::268289
    [Crossref] [Google Scholar]
  55. 55.
    Barrett NA, Fernandez JM, Maekawa A, Xing W, Li L, et al. 2012.. Cysteinyl leukotriene 2 receptor on dendritic cells negatively regulates ligand-dependent allergic pulmonary inflammation. . J. Immunol. 189::455665
    [Crossref] [Google Scholar]
  56. 56.
    Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA. 2007.. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. . Blood 110::326370
    [Crossref] [Google Scholar]
  57. 57.
    Liu T, Barrett NA, Kanaoka Y, Buchheit K, Laidlaw TM, et al. 2019.. Cysteinyl leukotriene receptor 2 drives lung immunopathology through a platelet and high mobility box 1-dependent mechanism. . Mucosal Immunol. 12::67990
    [Crossref] [Google Scholar]
  58. 58.
    Ceraudo E, Horioka M, Mattheisen JM, Hitchman TD, Moore AR, et al. 2021.. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. . J. Biol. Chem. 296::100163
    [Crossref] [Google Scholar]
  59. 59.
    Gusach A, Luginina A, Marin E, Brouillette RL, Besserer-Offroy E, et al. 2019.. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. . Nat. Commun. 10::5573
    [Crossref] [Google Scholar]
  60. 60.
    He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, et al. 2004.. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. . Nature 429::18893
    [Crossref] [Google Scholar]
  61. 61.
    Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, et al. 2013.. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. . J. Biomol. Screen. 18::599609
    [Crossref] [Google Scholar]
  62. 62.
    Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, et al. 2013.. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. . Pharmacol. Rev. 65::96786
    [Crossref] [Google Scholar]
  63. 63.
    Kanaoka Y, Maekawa A, Austen KF. 2013.. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. . J. Biol. Chem. 288::1096772
    [Crossref] [Google Scholar]
  64. 64.
    Zeng YR, Song JB, Wang D, Huang ZX, Zhang C, et al. 2023.. The immunometabolite itaconate stimulates OXGR1 to promote mucociliary clearance during the pulmonary innate immune response. . J. Clin. Investig. 133::e160463
    [Crossref] [Google Scholar]
  65. 65.
    Kanaoka Y, Boyce JA. 2014.. Cysteinyl leukotrienes and their receptors; emerging concepts. . Allergy Asthma Immunol. Res. 6::28895
    [Crossref] [Google Scholar]
  66. 66.
    Bankova LG, Lai J, Yoshimoto E, Boyce JA, Austen KF, et al. 2016.. Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein-coupled receptor, GPR99. . PNAS 113::624247
    [Crossref] [Google Scholar]
  67. 67.
    Shirasaki H, Kanaizumi E, Himi T. 2017.. Expression and localization of GPR99 in human nasal mucosa. . Auris Nasus Larynx 44::16267
    [Crossref] [Google Scholar]
  68. 68.
    Nonaka Y, Hiramoto T, Fujita N. 2005.. Identification of endogenous surrogate ligands for human P2Y12 receptors by in silico and in vitro methods. . Biochem. Biophys. Res. Commun. 337::28188
    [Crossref] [Google Scholar]
  69. 69.
    Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, et al. 2009.. Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. . J. Exp. Med. 206::254355
    [Crossref] [Google Scholar]
  70. 70.
    Suh DH, Trinh HKT, Liu JN, Pham LD, Park SM, et al. 2016.. P2Y12 antagonist attenuates eosinophilic inflammation and airway hyperresponsiveness in a mouse model of asthma. . J. Cell. Mol. Med. 20::33341
    [Crossref] [Google Scholar]
  71. 71.
    Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, et al. 2006.. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. . EMBO J. 25::461527
    [Crossref] [Google Scholar]
  72. 72.
    Fumagalli M, Daniele S, Lecca D, Lee PR, Parravicini C, et al. 2011.. Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. . J. Biol. Chem. 286::10593604
    [Crossref] [Google Scholar]
  73. 73.
    Benned-Jensen T, Rosenkilde MM. 2010.. Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants. . Br. J. Pharmacol. 159::1092105
    [Crossref] [Google Scholar]
  74. 74.
    Maekawa A, Balestrieri B, Austen KF, Kanaoka Y. 2009.. GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. . PNAS 106::1168590
    [Crossref] [Google Scholar]
  75. 75.
    Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. 2017.. Pharmacological properties and biological functions of the GPR17 receptor, a potential target for neuro-regenerative medicine. . Adv. Exp. Med. Biol. 1051::16992
    [Crossref] [Google Scholar]
  76. 76.
    Marschallinger J, Schaffner I, Klein B, Gelfert R, Rivera FJ, et al. 2015.. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. . Nat. Commun. 6::8466
    [Crossref] [Google Scholar]
  77. 77.
    Capra V, Ravasi S, Accomazzo MR, Citro S, Grimoldi M, et al. 2005.. CysLT1 receptor is a target for extracellular nucleotide-induced heterologous desensitization: a possible feedback mechanism in inflammation. . J. Cell Sci. 118::562536
    [Crossref] [Google Scholar]
  78. 78.
    Dalli J, Ramon S, Norris PC, Colas RA, Serhan CN. 2015.. Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. . FASEB J. 29::212036
    [Crossref] [Google Scholar]
  79. 79.
    Dalli J, Chiang N, Serhan CN. 2014.. Identification of 14-series sulfido-conjugated mediators that promote resolution of infection and organ protection. . PNAS 111::E475361
    [Crossref] [Google Scholar]
  80. 80.
    de la Rosa X, Norris PC, Chiang N, Rodriguez AR, Spur BW, Serhan CN. 2018.. Identification and complete stereochemical assignments of the new resolvin conjugates in tissue regeneration in human tissues that stimulate proresolving phagocyte functions and tissue regeneration. . Am. J. Pathol. 188::95066
    [Crossref] [Google Scholar]
  81. 81.
    Chiang N, Riley IR, Dalli J, Rodriguez AR, Spur BW, Serhan CN. 2018.. New maresin conjugates in tissue regeneration pathway counters leukotriene D4-stimulated vascular responses. . FASEB J. 32::404352
    [Crossref] [Google Scholar]
  82. 82.
    Levy BD, Abdulnour RE, Tavares A, Bruggemann TR, Norris PC, et al. 2020.. Cysteinyl maresins regulate the prophlogistic lung actions of cysteinyl leukotrienes. . J. Allergy Clin. Immunol. 145::33544
    [Crossref] [Google Scholar]
  83. 83.
    Safholm J, Abma W, Bankova LG, Boyce JA, Al-Ameri M, et al. 2022.. Cysteinyl-maresin 3 inhibits IL-13 induced airway hyperresponsiveness through alternative activation of the CysLT1 receptor. . Eur. J. Pharmacol. 934::175257
    [Crossref] [Google Scholar]
  84. 84.
    Weiss JW, Drazen JM, Coles N, McFadden ER Jr., Weller PF, et al. 1982.. Bronchoconstrictor effects of leukotriene C in humans. . Science 216::19698
    [Crossref] [Google Scholar]
  85. 85.
    Weiss JW, Drazen JM, McFadden ER Jr., Weller PF, Corey EJ, et al. 1982.. Comparative bronchoconstrictor effects of histamine, leukotriene C, and leukotriene D in normal human volunteers. . Trans. Assoc. Am. Phys. 95::3035
    [Google Scholar]
  86. 86.
    Davidson AB, Lee TH, Scanlon PD, Solway J, McFadden ER Jr., et al. 1987.. Bronchoconstrictor effects of leukotriene E4 in normal and asthmatic subjects. . Am. Rev. Respir. Dis. 135::33337
    [Google Scholar]
  87. 87.
    Arm JP, O'Hickey SP, Spur BW, Lee TH. 1989.. Airway responsiveness to histamine and leukotriene E4 in subjects with aspirin-induced asthma. . Am. Rev. Respir. Dis. 140::14853
    [Crossref] [Google Scholar]
  88. 88.
    Christie PE, Hawksworth R, Spur BW, Lee TH. 1992.. Effect of indomethacin on leukotriene4-induced histamine hyperresponsiveness in asthmatic subjects. . Am. Rev. Respir. Dis. 146::150610
    [Crossref] [Google Scholar]
  89. 89.
    O'Sullivan S, Roquet A, Dahlen B, Dahlen S, Kumlin M. 1998.. Urinary excretion of inflammatory mediators during allergen-induced early and late phase asthmatic reactions. . Clin. Exp. Allergy 28::133239
    [Crossref] [Google Scholar]
  90. 90.
    Manning PJ, Rokach J, Malo JL, Ethier D, Cartier A, et al. 1990.. Urinary leukotriene E4 levels during early and late asthmatic responses. . J. Allergy Clin. Immunol. 86::21120
    [Crossref] [Google Scholar]
  91. 91.
    Drazen JM, O'Brien J, Sparrow D, Weiss ST, Martins MA, et al. 1992.. Recovery of leukotriene E4 from the urine of patients with airway obstruction. . Am. Rev. Respir. Dis. 146::1048
    [Crossref] [Google Scholar]
  92. 92.
    Divekar R, Hagan J, Rank M, Park M, Volcheck G, et al. 2016.. Diagnostic utility of urinary LTE4 in asthma, allergic rhinitis, chronic rhinosinusitis, nasal polyps, and aspirin sensitivity. . J. Allergy Clin. Immunol. Pract. 4::66570
    [Crossref] [Google Scholar]
  93. 93.
    Rabinovitch N, Zhang L, Gelfand EW. 2006.. Urine leukotriene E4 levels are associated with decreased pulmonary function in children with persistent airway obstruction. . J. Allergy Clin. Immunol. 118::63540
    [Crossref] [Google Scholar]
  94. 94.
    Green SA, Malice MP, Tanaka W, Tozzi CA, Reiss TF. 2004.. Increase in urinary leukotriene LTE4 levels in acute asthma: correlation with airflow limitation. . Thorax 59::1004
    [Crossref] [Google Scholar]
  95. 95.
    Liu MC, Dube LM, Lancaster J, Swanson LJ, Rosenstein L, McConnell M, et al. 1996.. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. . J. Allergy Clin. Immunol. 98::85971
    [Crossref] [Google Scholar]
  96. 96.
    Camargo CA Jr., Smithline HA, Malice MP, Green SA, Reiss TF. 2003.. A randomized controlled trial of intravenous montelukast in acute asthma. . Am. J. Respir. Crit. Care Med. 167::52833
    [Crossref] [Google Scholar]
  97. 97.
    Israel E, Chervinsky PS, Friedman B, Van Bavel J, Skalky CS, et al. 2002.. Effects of montelukast and beclomethasone on airway function and asthma control. . J. Allergy Clin. Immunol. 110::84754
    [Crossref] [Google Scholar]
  98. 98.
    Sekioka T, Kadode M, Fujii M, Kawabata K, Abe T, et al. 2015.. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction. . Allergol. Int. 64::35158
    [Crossref] [Google Scholar]
  99. 99.
    Nakamura Y, Hoshino M, Sim JJ, Ishii K, Hosaka K, Sakamoto T. 1998.. Effect of the leukotriene receptor antagonist pranlukast on cellular infiltration in the bronchial mucosa of patients with asthma. . Thorax 53::83541
    [Crossref] [Google Scholar]
  100. 100.
    Pizzichini E, Leff JA, Reiss TF, Hendeles L, Boulet LP, et al. 1999.. Montelukast reduces airway eosinophilic inflammation in asthma: a randomized, controlled trial. . Eur. Respir. J. 14::1218
    [Crossref] [Google Scholar]
  101. 101.
    Bisgaard H, Loland L, Oj JA. 1999.. NO in exhaled air of asthmatic children is reduced by the leukotriene receptor antagonist montelukast. . Am. J. Respir. Crit. Care Med. 160::122731
    [Crossref] [Google Scholar]
  102. 102.
    Pillai SG, Cousens DJ, Barnes AA, Buckley PT, Chiano MN, et al. 2004.. A coding polymorphism in the CYSLT2 receptor with reduced affinity to LTD4 is associated with asthma. . Pharmacogenetics 14::62733
    [Crossref] [Google Scholar]
  103. 103.
    Thompson MD, Storm van's Gravesande K, Galczenski H, Burnham WM, Siminovitch KA, et al. 2003.. A cysteinyl leukotriene 2 receptor variant is associated with atopy in the population of Tristan da Cunha. . Pharmacogenetics 13::64149
    [Crossref] [Google Scholar]
  104. 104.
    Panettieri RA, Tan EM, Ciocca V, Luttmann MA, Leonard TB, Hay DW. 1998.. Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction in vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. . Am. J. Respir. Cell Mol. Biol. 19::45361
    [Crossref] [Google Scholar]
  105. 105.
    Cohen P, Noveral JP, Bhala A, Nunn SE, Herrick DJ, Grunstein MM. 1995.. Leukotriene D4 facilitates airway smooth muscle cell proliferation via modulation of the IGF axis. . Am. J. Physiol. Lung Cell. Mol. Physiol. 269::L15157
    [Crossref] [Google Scholar]
  106. 106.
    Trian T, Allard B, Dupin I, Carvalho G, Ousova O, et al. 2015.. House dust mites induce proliferation of severe asthmatic smooth muscle cells via an epithelium-dependent pathway. . Am. J. Respir. Crit. Care Med. 191::53846
    [Crossref] [Google Scholar]
  107. 107.
    Paruchuri S, Mezhybovska M, Juhas M, Sjolander A. 2006.. Endogenous production of leukotriene D4 mediates autocrine survival and proliferation via CysLT1 receptor signalling in intestinal epithelial cells. . Oncogene 25::666065
    [Crossref] [Google Scholar]
  108. 108.
    Leikauf GD, Claesson HE, Doupnik CA, Hybbinette S, Grafstrom RC. 1990.. Cysteinyl leukotrienes enhance growth of human airway epithelial cells. . Am. J. Physiol. Lung Cell. Mol. Physiol. 259::L25561
    [Crossref] [Google Scholar]
  109. 109.
    Dholia N, Yadav UCS. 2018.. Lipid mediator Leukotriene D4-induces airway epithelial cells proliferation through EGFR/ERK1/2 pathway. . Prostaglandins Other Lipid Mediat. 136::5563
    [Crossref] [Google Scholar]
  110. 110.
    Baud L, Perez J, Denis M, Ardaillou R. 1987.. Modulation of fibroblast proliferation by sulfidopeptide leukotrienes: effect of indomethacin. . J. Immunol. 138::119095
    [Crossref] [Google Scholar]
  111. 111.
    Abe M, Kurosawa M, Ishikawa O, Miyachi Y. 2000.. Effect of mast cell-derived mediators and mast cell-related neutral proteases on human dermal fibroblast proliferation and type I collagen production. . J. Allergy Clin. Immunol. 106::S7884
    [Crossref] [Google Scholar]
  112. 112.
    Marom Z, Shelhamer JH, Bach MK, Morton DR, Kaliner M. 1982.. Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. . Am. Rev. Respir. Dis. 126::44951
    [Google Scholar]
  113. 113.
    Shirasaki H, Kanaizumi E, Seki N, Himi T. 2015.. Leukotriene E4 induces MUC5AC release from human airway epithelial NCI-H292 cells. . Allergol. Int. 64::16974
    [Crossref] [Google Scholar]
  114. 114.
    Cahill KN, Bensko JC, Boyce JA, Laidlaw TM. 2015.. Prostaglandin D2: a dominant mediator of aspirin-exacerbated respiratory disease. . J. Allergy Clin. Immunol. 135::24552
    [Crossref] [Google Scholar]
  115. 115.
    Laidlaw TM, Boyce JA. 2023.. Updates on immune mechanisms in aspirin-exacerbated respiratory disease. . J. Allergy Clin. Immunol. 151::3019
    [Crossref] [Google Scholar]
  116. 116.
    Mullur J, Buchheit KM. 2023.. Aspirin-exacerbated respiratory disease: updates in the era of biologics. . Ann. Allergy Asthma Immunol. 131::31724
    [Crossref] [Google Scholar]
  117. 117.
    Badrani JH, Doherty TA. 2021.. Cellular interactions in aspirin-exacerbated respiratory disease. . Curr. Opin. Allergy Clin. Immunol. 21::6570
    [Crossref] [Google Scholar]
  118. 118.
    Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson S, Chee P, et al. 1991.. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. . Am. Rev. Respir. Dis. 143::102529
    [Crossref] [Google Scholar]
  119. 119.
    Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, et al. 1998.. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. . J. Clin. Investig. 101::83446
    [Crossref] [Google Scholar]
  120. 120.
    Yoshida S, Amayasu H, Sakamoto H, Onuma K, Shoji T, et al. 1998.. Cromolyn sodium prevents bronchoconstriction and urinary LTE4 excretion in aspirin-induced asthma. . Ann. Allergy Asthma Immunol. 80::17176
    [Crossref] [Google Scholar]
  121. 121.
    Robuschi M, Gambaro G, Sestini P, Pieroni MG, Refini RM, et al. 1997.. Attenuation of aspirin-induced bronchoconstriction by sodium cromoglycate and nedocromil sodium. . Am. J. Respir. Crit Care Med. 155::146164
    [Crossref] [Google Scholar]
  122. 122.
    Roca-Ferrer J, Garcia-Garcia FJ, Pereda J, Perez-Gonzalez M, Pujols L, et al. 2011.. Reduced expression of COXs and production of prostaglandin E2 in patients with nasal polyps with or without aspirin-intolerant asthma. . J. Allergy Clin. Immunol. 128::6672.e1
    [Crossref] [Google Scholar]
  123. 123.
    Yoshimura T, Yoshikawa M, Otori N, Haruna S, Moriyama H. 2008.. Correlation between the prostaglandin D2/E2 ratio in nasal polyps and the recalcitrant pathophysiology of chronic rhinosinusitis associated with bronchial asthma. . Allergol. Int. 57::42936
    [Crossref] [Google Scholar]
  124. 124.
    Machado-Carvalho L, Martin M, Torres R, Gabasa M, Alobid I, et al. 2016.. Low E-prostanoid 2 receptor levels and deficient induction of the IL-1β/IL-1 type I receptor/COX-2 pathway: vicious circle in patients with aspirin-exacerbated respiratory disease. . J. Allergy Clin. Immunol. 137::99107.e7
    [Crossref] [Google Scholar]
  125. 125.
    Cahill KN, Raby BA, Zhou X, Guo F, Thibault D, et al. 2016.. Impaired E prostanoid2 expression and resistance to prostaglandin E2 in nasal polyp fibroblasts from subjects with aspirin-exacerbated respiratory disease. . Am. J. Respir. Cell Mol. Biol. 54::3440
    [Crossref] [Google Scholar]
  126. 126.
    Corrigan CJ, Napoli RL, Meng Q, Fang C, Wu H, et al. 2012.. Reduced expression of the prostaglandin E2 receptor E-prostanoid 2 on bronchial mucosal leukocytes in patients with aspirin-sensitive asthma. . J. Allergy Clin. Immunol. 129::163646
    [Crossref] [Google Scholar]
  127. 127.
    Ying S, Meng Q, Scadding G, Parikh A, Corrigan CJ, Lee TH. 2006.. Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. . J. Allergy Clin. Immunol. 117::31218
    [Crossref] [Google Scholar]
  128. 128.
    Sladek K, Szczeklik A. 1993.. Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma. . Eur. Respir. J. 6::39199
    [Crossref] [Google Scholar]
  129. 129.
    Christie PE, Schmitz-Schumann M, Spur BW, Lee TH. 1993.. Airway responsiveness to leukotriene C4 (LTC4), leukotriene E4 (LTE4) and histamine in aspirin-sensitive asthmatic subjects. . Eur. Respir. J. 6::146873
    [Crossref] [Google Scholar]
  130. 130.
    Sestini P, Armetti L, Gambaro G, Pieroni MG, Refini RM, et al. 1996.. Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. . Am. J. Respir. Crit. Care Med. 153::57275
    [Crossref] [Google Scholar]
  131. 131.
    Bochenek G, Nagraba K, Nizankowska E, Szczeklik A. 2003.. A controlled study of 9α,11β-PGF2 (a prostaglandin D2 metabolite) in plasma and urine of patients with bronchial asthma and healthy controls after aspirin challenge. . J. Allergy Clin. Immunol. 111::74349
    [Crossref] [Google Scholar]
  132. 132.
    Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Rubin P, et al. 1994.. Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. . J. Allergy Clin. Immunol. 94::104656
    [Crossref] [Google Scholar]
  133. 133.
    Dwyer DF, Ordovas-Montanes J, Allon SJ, Buchheit KM, Vukovic M, et al. 2021.. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. . Sci. Immunol. 6::eabb7221
    [Crossref] [Google Scholar]
  134. 134.
    Hirata H, Arima M, Fukushima Y, Honda K, Sugiyama K, et al. 2011.. Over-expression of the LTC4 synthase gene in mice reproduces human aspirin-induced asthma. . Clin. Exp. Allergy 41::113342
    [Crossref] [Google Scholar]
  135. 135.
    Liu T, Laidlaw TM, Katz HR, Boyce JA. 2013.. Prostaglandin E2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes. . PNAS 110::1698792
    [Crossref] [Google Scholar]
  136. 136.
    Liu T, Barrett NA, Kanaoka Y, Yoshimoto E, Garofalo D, et al. 2018.. Type 2 cysteinyl leukotriene receptors drive IL-33-dependent type 2 immunopathology and aspirin sensitivity. . J. Immunol. 200::91527
    [Crossref] [Google Scholar]
  137. 137.
    Liu T, Kanaoka Y, Barrett NA, Feng C, Garofalo D, et al. 2015.. Aspirin-exacerbated respiratory disease involves a cysteinyl leukotriene-driven IL-33-mediated mast cell activation pathway. . J. Immunol. 195::353745
    [Crossref] [Google Scholar]
  138. 138.
    Cummings HE, Liu T, Feng C, Laidlaw TM, Conley PB, et al. 2013.. Cutting edge: Leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. . J. Immunol. 191::580710
    [Crossref] [Google Scholar]
  139. 139.
    Foer D, Amin T, Nagai J, Tani Y, Feng C, et al. 2023.. Glucagon-like peptide-1 receptor pathway attenuates platelet activation in aspirin-exacerbated respiratory disease. . J. Immunol. 211::180613
    [Crossref] [Google Scholar]
  140. 140.
    Jacques CA, Spur BW, Johnson M, Lee TH. 1991.. The mechanism of LTE4-induced histamine hyperresponsiveness in guinea-pig tracheal and human bronchial smooth muscle, in vitro. . Br. J. Pharmacol. 104::85966
    [Crossref] [Google Scholar]
  141. 141.
    Laidlaw TM, Buchheit KM, Cahill KN, Hacker J, Cho L, et al. 2023.. Trial of thromboxane receptor inhibition with ifetroban: TP receptors regulate eicosanoid homeostasis in aspirin-exacerbated respiratory disease. . J. Allergy Clin. Immunol. 152::70010.e3
    [Crossref] [Google Scholar]
  142. 142.
    Kim DC, Hsu FI, Barrett NA, Friend DS, Grenningloh R, et al. 2006.. Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation. . J. Immunol. 176::444048
    [Crossref] [Google Scholar]
  143. 143.
    Thivierge M, Stankova J, Rola-Pleszczynski M. 2006.. Toll-like receptor agonists differentially regulate cysteinyl-leukotriene receptor 1 expression and function in human dendritic cells. . J. Allergy Clin. Immunol. 117::115562
    [Crossref] [Google Scholar]
  144. 144.
    Robbiani DF, Finch RA, Jager D, Muller WA, Sartorelli AC, Randolph GJ. 2000.. The leukotriene C4 transporter MRP1 regulates CCL19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. . Cell 103::75768
    [Crossref] [Google Scholar]
  145. 145.
    Machida I, Matsuse H, Kondo Y, Kawano T, Saeki S, et al. 2004.. Cysteinyl leukotrienes regulate dendritic cell functions in a murine model of asthma. . J. Immunol. 172::183338
    [Crossref] [Google Scholar]
  146. 146.
    Okunishi K, Dohi M, Nakagome K, Tanaka R, Yamamoto K. 2004.. A novel role of cysteinyl leukotrienes to promote dendritic cell activation in the antigen-induced immune responses in the lung. . J. Immunol. 173::6393402
    [Crossref] [Google Scholar]
  147. 147.
    Clarke DL, Davis NH, Campion CL, Foster ML, Heasman SC, et al. 2014.. Dectin-2 sensing of house dust mite is critical for the initiation of airway inflammation. . Mucosal Immunol. 7::55867
    [Crossref] [Google Scholar]
  148. 148.
    Maekawa A, Xing W, Austen KF, Kanaoka Y. 2010.. GPR17 regulates immune pulmonary inflammation induced by house dust mites. . J. Immunol. 185::184654
    [Crossref] [Google Scholar]
  149. 149.
    Parmentier CN, Fuerst E, McDonald J, Bowen H, Lee TH, et al. 2012.. Human TH2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1. . J. Allergy Clin. Immunol. 129::113642
    [Crossref] [Google Scholar]
  150. 150.
    Xue L, Barrow A, Fleming VM, Hunter MG, Ogg G, et al. 2012.. Leukotriene E4 activates human Th2 cells for exaggerated proinflammatory cytokine production in response to prostaglandin D2. . J. Immunol. 188::694702
    [Crossref] [Google Scholar]
  151. 151.
    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, et al. 2013.. Innate lymphoid cells—a proposal for uniform nomenclature. . Nat. Rev. Immunol. 13::14549
    [Crossref] [Google Scholar]
  152. 152.
    Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH. 2013.. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. . J. Allergy Clin. Immunol. 132::20513
    [Crossref] [Google Scholar]
  153. 153.
    von Moltke J, O'Leary CE, Barrett NA, Kanaoka Y, Austen KF, Locksley RM. 2017.. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. . J. Exp. Med. 214::2737
    [Crossref] [Google Scholar]
  154. 154.
    Lund SJ, Portillo A, Cavagnero K, Baum RE, Naji LH, et al. 2017.. Leukotriene C4 potentiates IL-33-induced group 2 innate lymphoid cell activation and lung inflammation. . J. Immunol. 199::1096104
    [Crossref] [Google Scholar]
  155. 155.
    Ualiyeva S, Lemire E, Aviles EC, Wong C, Boyd AA, et al. 2021.. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. . Sci. Immunol. 6::eabj0474
    [Crossref] [Google Scholar]
  156. 156.
    Voisin T, Perner C, Messou MA, Shiers S, Ualiyeva S, et al. 2021.. The CysLT2R receptor mediates leukotriene C4-driven acute and chronic itch. . PNAS 118::e2022087118
    [Crossref] [Google Scholar]
  157. 157.
    Okubo M, Yamanaka H, Kobayashi K, Fukuoka T, Dai Y, Noguchi K. 2010.. Expression of leukotriene receptors in the rat dorsal root ganglion and the effects on pain behaviors. . Mol. Pain 6::57
    [Crossref] [Google Scholar]
  158. 158.
    Solinski HJ, Kriegbaum MC, Tseng PY, Earnest TW, Gu X, et al. 2019.. Nppb neurons are sensors of mast cell-induced itch. . Cell Rep. 26::356173.e4
    [Crossref] [Google Scholar]
  159. 159.
    Florsheim EB, Bachtel ND, Cullen JL, Lima BGC, Godazgar M, et al. 2023.. Immune sensing of food allergens promotes avoidance behaviour. . Nature 620::64350
    [Crossref] [Google Scholar]
  160. 160.
    Wang F, Trier AM, Li F, Kim S, Chen Z, et al. 2021.. A basophil-neuronal axis promotes itch. . Cell 184::42240.e17
    [Crossref] [Google Scholar]
  161. 161.
    Plum T, Binzberger R, Thiele R, Shang F, Postrach D, et al. 2023.. Mast cells link immune sensing to antigen-avoidance behaviour. . Nature 620::63442
    [Crossref] [Google Scholar]
  162. 162.
    Sjöström M, Jakobsson PJ, Juremalm M, Ahmed A, Nilsson G, et al. 2002.. Human mast cells express two leukotriene C4 synthase isoenzymes and the CysLT1 receptor. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1583::5362
    [Crossref] [Google Scholar]
  163. 163.
    Mamedova L, Capra V, Accomazzo MR, Gao ZG, Ferrario S, et al. 2005.. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. . Biochem. Pharmacol. 71::11525
    [Crossref] [Google Scholar]
  164. 164.
    Mellor EA, Austen KF, Boyce JA. 2002.. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. . J. Exp. Med. 195::58392
    [Crossref] [Google Scholar]
  165. 165.
    Gauvreau GM, Parameswaran KN, Watson RM, O'Byrne PM. 2001.. Inhaled leukotriene E4, but not leukotriene D4, increased airway inflammatory cells in subjects with atopic asthma. . Am. J. Respir. Crit Care Med. 164::1495500
    [Crossref] [Google Scholar]
  166. 166.
    Burton OT, Darling AR, Zhou JS, Noval-Rivas M, Jones TG, et al. 2013.. Direct effects of IL-4 on mast cells drive their intestinal expansion and increase susceptibility to anaphylaxis in a murine model of food allergy. . Mucosal Immunol. 6::74050
    [Crossref] [Google Scholar]
  167. 167.
    Jiang Y, Kanaoka Y, Feng C, Nocka K, Rao S, Boyce JA. 2006.. Cutting edge: Interleukin 4-dependent mast cell proliferation requires autocrine/intracrine cysteinyl leukotriene-induced signaling. . J. Immunol. 177::275559
    [Crossref] [Google Scholar]
  168. 168.
    Karta MR, Cavagnero K, Miller M, Badrani J, Naji L, et al. 2019.. Platelets attach to lung type 2 innate lymphoid cells (ILC2s) expressing P-selectin glycoprotein ligand 1 and influence ILC2 function. . J. Allergy Clin. Immunol. 144::111215.e8
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023509
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023509
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error