1932

Abstract

All cells are exposed to chemicals that can damage their nucleic acids. Cells must protect these polymers because they code for key factors or complexes essential for life. Much of the work on nucleic acid damage has naturally focused on DNA, partly due to the connection between mutagenesis and human disease, especially cancer. Recent work has shed light on the importance of RNA damage, which triggers a host of conserved RNA quality control mechanisms. Because many RNA species are transient, and because of their ability to be retranscribed, RNA damage has largely been ignored. Yet, because of the connection between damaged RNA and DNA during transcription, and the association between essential complexes that process or decode RNAs, notably spliceosomes and ribosomes, the appropriate handling of damaged RNAs is critical for maintaining cellular homeostasis. This notion is bolstered by disease states, including neurodevelopmental and neurodegenerative diseases, that may arise upon loss or misregulation of RNA quality control mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023516
2025-01-24
2025-06-22
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023516.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023516&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang Y, Susac L, Feigon J. 2019.. Structural biology of telomerase. . Cold Spring Harb. Perspect. Biol. 11::a032383
    [Crossref] [Google Scholar]
  2. 2.
    Fujinaga K, Huang F, Peterlin BM. 2023.. P-TEFb: the master regulator of transcription elongation. . Mol. Cell 83::393403
    [Crossref] [Google Scholar]
  3. 3.
    Wilkinson ME, Charenton C, Nagai K. 2020.. RNA splicing by the spliceosome. . Annu. Rev. Biochem. 89::35988
    [Crossref] [Google Scholar]
  4. 4.
    Zaher HS, Green R. 2009.. Fidelity at the molecular level: lessons from protein synthesis. . Cell 136::74662
    [Crossref] [Google Scholar]
  5. 5.
    Czech B, Munafo M, Ciabrelli F, Eastwood EL, Fabry MH, et al. 2018.. piRNA-guided genome defense: from biogenesis to silencing. . Annu. Rev. Genet. 52::13157
    [Crossref] [Google Scholar]
  6. 6.
    Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, et al. 2017.. Molecular mechanisms and biological functions of siRNA. . Int. J. Biomed. Sci. 13::4857
    [Crossref] [Google Scholar]
  7. 7.
    Fabian MR, Sonenberg N. 2012.. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. . Nat. Struct. Mol. Biol. 19::58693
    [Crossref] [Google Scholar]
  8. 8.
    Hahm JY, Park J, Jang ES, Chi SW. 2022.. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. . Exp. Mol. Med. 54::162642
    [Crossref] [Google Scholar]
  9. 9.
    Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, et al. 2004.. Alkylation damage in DNA and RNA—repair mechanisms and medical significance. . DNA Repair 3::1389407
    [Crossref] [Google Scholar]
  10. 10.
    Fu D, Calvo JA, Samson LD. 2012.. Balancing repair and tolerance of DNA damage caused by alkylating agents. . Nat. Rev. Cancer 12::10420
    [Crossref] [Google Scholar]
  11. 11.
    Soll JM, Sobol RW, Mosammaparast N. 2017.. Regulation of DNA alkylation damage repair: lessons and therapeutic opportunities. . Trends Biochem. Sci. 42::20618
    [Crossref] [Google Scholar]
  12. 12.
    Hostetter AA, Chapman EG, DeRose VJ. 2009.. Rapid cross-linking of an RNA internal loop by the anticancer drug cisplatin. . J. Am. Chem. Soc. 131::925057
    [Crossref] [Google Scholar]
  13. 13.
    Hostetter AA, Osborn MF, DeRose VJ. 2012.. RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae. . ACS Chem. Biol. 7::21825
    [Crossref] [Google Scholar]
  14. 14.
    Jamieson ER, Lippard SJ. 1999.. Structure, recognition, and processing of cisplatin-DNA adducts. . Chem. Rev. 99::246798
    [Crossref] [Google Scholar]
  15. 15.
    Rosenberg J, Sato P. 1988.. Messenger RNA loses the ability to direct in vitro peptide synthesis following incubation with cisplatin. . Mol. Pharmacol. 33::61116
    [Google Scholar]
  16. 16.
    Krokan HE, Bjoras M. 2013.. Base excision repair. . Cold Spring Harb. Perspect. Biol. 5::a012583
    [Crossref] [Google Scholar]
  17. 17.
    Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. 2018.. DNA repair pathways and cisplatin resistance: an intimate relationship. . Clinics 73::e478s
    [Crossref] [Google Scholar]
  18. 18.
    Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, et al. 2003.. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. . Nature 421::85963
    [Crossref] [Google Scholar]
  19. 19.
    Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. 2002.. Reversal of DNA alkylation damage by two human dioxygenases. . PNAS 99::1666065
    [Crossref] [Google Scholar]
  20. 20.
    Falnes PO, Johansen RF, Seeberg E. 2002.. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. . Nature 419::17882
    [Crossref] [Google Scholar]
  21. 21.
    Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. 2002.. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. . Nature 419::17478
    [Crossref] [Google Scholar]
  22. 22.
    Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, et al. 2004.. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. . Mol. Cell 16::10716
    [Crossref] [Google Scholar]
  23. 23.
    Fischer MG, Allen MJ, Wilson WH, Suttle CA. 2010.. Giant virus with a remarkable complement of genes infects marine zooplankton. . PNAS 107::1950813
    [Crossref] [Google Scholar]
  24. 24.
    Moore C, Meng B. 2019.. Prediction of the molecular boundary and functionality of novel viral AlkB domains using homology modelling and principal component analysis. . J. Gen. Virol. 100::691703
    [Crossref] [Google Scholar]
  25. 25.
    van den Born E, Omelchenko MV, Bekkelund A, Leihne V, Koonin EV, et al. 2008.. Viral AlkB proteins repair RNA damage by oxidative demethylation. . Nucleic Acids Res. 36::545161
    [Crossref] [Google Scholar]
  26. 26.
    Voorhees RM, Ramakrishnan V. 2013.. Structural basis of the translational elongation cycle. . Annu. Rev. Biochem. 82::20336
    [Crossref] [Google Scholar]
  27. 27.
    Edenberg HJ. 1976.. Inhibition of DNA replication by ultraviolet light. . Biophys. J. 16::84960
    [Crossref] [Google Scholar]
  28. 28.
    Warren JJ, Forsberg LJ, Beese LS. 2006.. The structural basis for the mutagenicity of O6-methyl-guanine lesions. . PNAS 103::197016
    [Crossref] [Google Scholar]
  29. 29.
    Shrivastav N, Li D, Essigmann JM. 2010.. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. . Carcinogenesis 31::5970
    [Crossref] [Google Scholar]
  30. 30.
    Yan LL, Zaher HS. 2019.. How do cells cope with RNA damage and its consequences?. J. Biol. Chem. 294::1515871
    [Crossref] [Google Scholar]
  31. 31.
    Nunomura A, Moreira PI, Takeda A, Smith MA, Perry G. 2007.. Oxidative RNA damage and neurodegeneration. . Curr. Med. Chem. 14::296875
    [Crossref] [Google Scholar]
  32. 32.
    Liu Z, Chen X, Li Z, Ye W, Ding H, et al. 2020.. Role of RNA oxidation in neurodegenerative diseases. . Int. J. Mol. Sci. 21::5022
    [Crossref] [Google Scholar]
  33. 33.
    Fimognari C. 2015.. Role of oxidative RNA damage in chronic-degenerative diseases. . Oxid. Med. Cell. Longev. 2015::358713
    [Crossref] [Google Scholar]
  34. 34.
    Shan X, Chang Y, Lin CL. 2007.. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. . FASEB J. 21::275364
    [Crossref] [Google Scholar]
  35. 35.
    Tanaka M, Chock PB, Stadtman ER. 2007.. Oxidized messenger RNA induces translation errors. . PNAS 104::6671
    [Crossref] [Google Scholar]
  36. 36.
    Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS. 2014.. An active role for the ribosome in determining the fate of oxidized mRNA. . Cell Rep. 9::125664
    [Crossref] [Google Scholar]
  37. 37.
    Thomas EN, Simms CL, Keedy HE, Zaher HS. 2019.. Insights into the base-pairing preferences of 8-oxoguanosine on the ribosome. . Nucleic Acids Res. 47::985770
    [Crossref] [Google Scholar]
  38. 38.
    Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, et al. 2016.. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. . Nucleic Acids Res. 44::85262
    [Crossref] [Google Scholar]
  39. 39.
    You C, Dai X, Wang Y. 2017.. Position-dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. . Nucleic Acids Res. 45::905967
    [Crossref] [Google Scholar]
  40. 40.
    Hudson BH, Zaher HS. 2015.. O6-Methylguanosine leads to position-dependent effects on ribosome speed and fidelity. . RNA 21::164859
    [Crossref] [Google Scholar]
  41. 41.
    Thomas EN, Kim KQ, McHugh EP, Marcinkiewicz T, Zaher HS. 2020.. Alkylative damage of mRNA leads to ribosome stalling and rescue by trans translation in bacteria. . eLife 9::e61984
    [Crossref] [Google Scholar]
  42. 42.
    Doma MK, Parker R. 2006.. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. . Nature 440::56164
    [Crossref] [Google Scholar]
  43. 43.
    Simms CL, Yan LL, Zaher HS. 2017.. Ribosome collision is critical for quality control during no-go decay. . Mol. Cell 68::36173.e5
    [Crossref] [Google Scholar]
  44. 44.
    Ikeuchi K, Tesina P, Matsuo Y, Sugiyama T, Cheng J, et al. 2019.. Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways. . EMBO J. 38::e100276
    [Crossref] [Google Scholar]
  45. 45.
    Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, et al. 2012.. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. . Cell 151::104254
    [Crossref] [Google Scholar]
  46. 46.
    Simms CL, Thomas EN, Zaher HS. 2017.. Ribosome-based quality control of mRNA and nascent peptides. . Wiley Interdiscip Rev. RNA 8::e1366
    [Crossref] [Google Scholar]
  47. 47.
    Juszkiewicz S, Chandrasekaran V, Lin Z, Kraatz S, Ramakrishnan V, Hegde RS. 2018.. ZNF598 is a quality control sensor of collided ribosomes. . Mol. Cell 72::46981.e7
    [Crossref] [Google Scholar]
  48. 48.
    Sundaramoorthy E, Leonard M, Mak R, Liao J, Fulzele A, Bennett EJ. 2017.. ZNF598 and RACK1 regulate mammalian ribosome-associated quality control function by mediating regulatory 40S ribosomal ubiquitylation. . Mol. Cell 65::75160.e4
    [Crossref] [Google Scholar]
  49. 49.
    Garzia A, Jafarnejad SM, Meyer C, Chapat C, Gogakos T, et al. 2017.. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs. . Nat. Commun. 8::16056
    [Crossref] [Google Scholar]
  50. 50.
    Letzring DP, Wolf AS, Brule CE, Grayhack EJ. 2013.. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. . RNA 19::120817
    [Crossref] [Google Scholar]
  51. 51.
    Saito K, Horikawa W, Ito K. 2015.. Inhibiting K63 polyubiquitination abolishes no-go type stalled translation surveillance in Saccharomyces cerevisiae. . PLOS Genet. 11::e1005197
    [Crossref] [Google Scholar]
  52. 52.
    Matsuo Y, Ikeuchi K, Saeki Y, Iwasaki S, Schmidt C, et al. 2017.. Ubiquitination of stalled ribosome triggers ribosome-associated quality control. . Nat. Commun. 8::159
    [Crossref] [Google Scholar]
  53. 53.
    Kim KQ, Zaher HS. 2022.. Canary in a coal mine: collided ribosomes as sensors of cellular conditions. . Trends Biochem. Sci. 47::8297
    [Crossref] [Google Scholar]
  54. 54.
    Park J, Lee J, Kim JH, Lee J, Park H, Lim C. 2021.. ZNF598 co-translationally titrates poly(GR) protein implicated in the pathogenesis of C9ORF72-associated ALS/FTD. . Nucleic Acids Res. 49::11294311
    [Crossref] [Google Scholar]
  55. 55.
    Miscicka A, Bulakhov AG, Kuroha K, Zinoviev A, Hellen CUT, Pestova TV. 2024.. Ribosomal collision is not a prerequisite for ZNF598-mediated ribosome ubiquitination and disassembly of ribosomal complexes by ASCC. . Nucleic Acids Res. 52::462743
    [Crossref] [Google Scholar]
  56. 56.
    Gandin V, Senft D, Topisirovic I, Ronai ZA. 2013.. RACK1 function in cell motility and protein synthesis. . Genes Cancer 4::36977
    [Crossref] [Google Scholar]
  57. 57.
    D'Orazio KN, Wu CC, Sinha N, Loll-Krippleber R, Brown GW, Green R. 2019.. The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during no go decay. . eLife 8::e49117
    [Crossref] [Google Scholar]
  58. 58.
    Tomomatsu S, Watanabe A, Tesina P, Hashimoto S, Ikeuchi K, et al. 2023.. Two modes of Cue2-mediated mRNA cleavage with distinct substrate recognition initiate no-go decay. . Nucleic Acids Res. 51::25370
    [Crossref] [Google Scholar]
  59. 59.
    Veltri AJ, D'Orazio KN, Lessen LN, Loll-Krippleber R, Brown GW, Green R. 2022.. Distinct elongation stalls during translation are linked with distinct pathways for mRNA degradation. . eLife 11::e76038
    [Crossref] [Google Scholar]
  60. 60.
    Shoemaker CJ, Eyler DE, Green R. 2010.. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. . Science 330::36972
    [Crossref] [Google Scholar]
  61. 61.
    Pisareva VP, Skabkin MA, Hellen CU, Pestova TV, Pisarev AV. 2011.. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. . EMBO J. 30::180417
    [Crossref] [Google Scholar]
  62. 62.
    Chen L, Muhlrad D, Hauryliuk V, Cheng Z, Lim MK, et al. 2010.. Structure of the Dom34-Hbs1 complex and implications for no-go decay. . Nat. Struct. Mol. Biol. 17::123340
    [Crossref] [Google Scholar]
  63. 63.
    Becker T, Armache JP, Jarasch A, Anger AM, Villa E, et al. 2011.. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. . Nat. Struct. Mol. Biol. 18::71520
    [Crossref] [Google Scholar]
  64. 64.
    Hilal T, Yamamoto H, Loerke J, Burger J, Mielke T, Spahn CM. 2016.. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. . Nat. Commun. 7::13521
    [Crossref] [Google Scholar]
  65. 65.
    Sitron CS, Park JH, Brandman O. 2017.. RNA 23::798810
    [Crossref] [Google Scholar]
  66. 66.
    Juszkiewicz S, Speldewinde SH, Wan L, Svejstrup JQ, Hegde RS. 2020.. Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. . Mol. Cell 79::60314.e8
    [Crossref] [Google Scholar]
  67. 67.
    Matsuo Y, Tesina P, Nakajima S, Mizuno M, Endo A, et al. 2020.. RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1. . Nat. Struct. Mol. Biol. 27::32332
    [Crossref] [Google Scholar]
  68. 68.
    Chi B, O'Connell JD, Iocolano AD, Coady JA, Yu Y, et al. 2018.. The neurodegenerative diseases ALS and SMA are linked at the molecular level via the ASC-1 complex. . Nucleic Acids Res. 46::1193951
    [Crossref] [Google Scholar]
  69. 69.
    Matsuo Y, Uchihashi T, Inada T. 2023.. Decoding of the ubiquitin code for clearance of colliding ribosomes by the RQT complex. . Nat. Commun. 14::79
    [Crossref] [Google Scholar]
  70. 70.
    Absmeier E, Santos KF, Wahl MC. 2016.. Functions and regulation of the Brr2 RNA helicase during splicing. . Cell Cycle 15::336277
    [Crossref] [Google Scholar]
  71. 71.
    Best K, Ikeuchi K, Kater L, Best D, Musial J, et al. 2023.. Structural basis for clearing of ribosome collisions by the RQT complex. . Nat. Commun. 14::921
    [Crossref] [Google Scholar]
  72. 72.
    Yip MCJ, Shao S. 2021.. Detecting and rescuing stalled ribosomes. . Trends Biochem. Sci. 46::73143
    [Crossref] [Google Scholar]
  73. 73.
    Wilson MA, Meaux S, van Hoof A. 2007.. A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. . Genetics 177::77384
    [Crossref] [Google Scholar]
  74. 74.
    Bengtson MH, Joazeiro CA. 2010.. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. . Nature 467::47073
    [Crossref] [Google Scholar]
  75. 75.
    Tsuboi T, Kuroha K, Kudo K, Makino S, Inoue E, et al. 2012.. Dom34:Hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. . Mol. Cell 46::51829
    [Crossref] [Google Scholar]
  76. 76.
    Shao S, Brown A, Santhanam B, Hegde RS. 2015.. Structure and assembly pathway of the ribosome quality control complex. . Mol. Cell 57::43344
    [Crossref] [Google Scholar]
  77. 77.
    Doamekpor SK, Lee JW, Hepowit NL, Wu C, Charenton C, et al. 2016.. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits. . PNAS 113::E415160
    [Crossref] [Google Scholar]
  78. 78.
    Chu J, Hong NA, Masuda CA, Jenkins BV, Nelms KA, et al. 2009.. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. . PNAS 106::2097103
    [Crossref] [Google Scholar]
  79. 79.
    Martin PB, Kigoshi-Tansho Y, Sher RB, Ravenscroft G, Stauffer JE, et al. 2020.. NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. . Nat. Commun. 11::4625
    [Crossref] [Google Scholar]
  80. 80.
    Kostova KK, Hickey KL, Osuna BA, Hussmann JA, Frost A, et al. 2017.. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. . Science 357::41417
    [Crossref] [Google Scholar]
  81. 81.
    Osuna BA, Howard CJ, Kc S, Frost A, Weinberg DE. 2017.. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. . eLife 6::e27949
    [Crossref] [Google Scholar]
  82. 82.
    Choe YJ, Park SH, Hassemer T, Korner R, Vincenz-Donnelly L, et al. 2016.. Failure of RQC machinery causes protein aggregation and proteotoxic stress. . Nature 531::19195
    [Crossref] [Google Scholar]
  83. 83.
    Sitron CS, Brandman O. 2019.. CAT tails drive degradation of stalled polypeptides on and off the ribosome. . Nat. Struct. Mol. Biol. 26::45059
    [Crossref] [Google Scholar]
  84. 84.
    Verma R, Reichermeier KM, Burroughs AM, Oania RS, Reitsma JM, et al. 2018.. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. . Nature 557::44651
    [Crossref] [Google Scholar]
  85. 85.
    Kuroha K, Zinoviev A, Hellen CUT, Pestova TV. 2018.. Release of ubiquitinated and non-ubiquitinated nascent chains from stalled mammalian ribosomal complexes by ANKZF1 and Ptrh1. . Mol. Cell 72::286302.e8
    [Crossref] [Google Scholar]
  86. 86.
    Defenouillere Q, Yao Y, Mouaikel J, Namane A, Galopier A, et al. 2013.. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. . PNAS 110::504651
    [Crossref] [Google Scholar]
  87. 87.
    Verma R, Oania RS, Kolawa NJ, Deshaies RJ. 2013.. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. . eLife 2::e00308
    [Crossref] [Google Scholar]
  88. 88.
    Yip MCJ, Keszei AFA, Feng Q, Chu V, McKenna MJ, Shao S. 2019.. Mechanism for recycling tRNAs on stalled ribosomes. . Nat. Struct. Mol. Biol. 26::34349
    [Crossref] [Google Scholar]
  89. 89.
    Yip MCJ, Savickas S, Gygi SP, Shao S. 2020.. ELAC1 repairs tRNAs cleaved during ribosome-associated quality control. . Cell Rep. 30::210614.e5
    [Crossref] [Google Scholar]
  90. 90.
    Pinto PH, Kroupova A, Schleiffer A, Mechtler K, Jinek M, et al. 2020.. ANGEL2 is a member of the CCR4 family of deadenylases with 2′,3′-cyclic phosphatase activity. . Science 369::52430
    [Crossref] [Google Scholar]
  91. 91.
    Hickey KL, Dickson K, Cogan JZ, Replogle JM, Schoof M, et al. 2020.. GIGYF2 and 4EHP inhibit translation initiation of defective messenger RNAs to assist ribosome-associated quality control. . Mol. Cell 79::95062.e6
    [Crossref] [Google Scholar]
  92. 92.
    Juszkiewicz S, Slodkowicz G, Lin Z, Freire-Pritchett P, Peak-Chew SY, Hegde RS. 2020.. Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. . eLife 9::e60038
    [Crossref] [Google Scholar]
  93. 93.
    Sinha NK, Ordureau A, Best K, Saba JA, Zinshteyn B, et al. 2020.. EDF1 coordinates cellular responses to ribosome collisions. . eLife 9::e58828
    [Crossref] [Google Scholar]
  94. 94.
    Wang J, Zhou J, Yang Q, Grayhack EJ. 2018.. Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting. . eLife 7::e39637
    [Crossref] [Google Scholar]
  95. 95.
    Pochopien AA, Beckert B, Kasvandik S, Berninghausen O, Beckmann R, et al. 2021.. Structure of Gcn1 bound to stalled and colliding 80S ribosomes. . PNAS 118::e2022756118
    [Crossref] [Google Scholar]
  96. 96.
    Weber R, Chung MY, Keskeny C, Zinnall U, Landthaler M, et al. 2020.. 4EHP and GIGYF1/2 mediate translation-coupled messenger RNA decay. . Cell Rep. 33::108262
    [Crossref] [Google Scholar]
  97. 97.
    Lautier C, Goldwurm S, Durr A, Giovannone B, Tsiaras WG, et al. 2008.. Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease. . Am. J. Hum. Genet. 82::82233
    [Crossref] [Google Scholar]
  98. 98.
    Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. 2019.. Oxidation and alkylation stresses activate ribosome-quality control. . Nat. Commun. 10::5611
    [Crossref] [Google Scholar]
  99. 99.
    Meydan S, Guydosh NR. 2020.. Disome and trisome profiling reveal genome-wide targets of ribosome quality control. . Mol. Cell 79::588602.e6
    [Crossref] [Google Scholar]
  100. 100.
    Wollen KL, Hagen L, Vagbo CB, Rabe R, Iveland TS, et al. 2021.. ALKBH3 partner ASCC3 mediates P-body formation and selective clearance of MMS-induced 1-methyladenosine and 3-methylcytosine from mRNA. . J. Transl. Med. 19::287
    [Crossref] [Google Scholar]
  101. 101.
    Jung DJ, Sung HS, Goo YW, Lee HM, Park OK, et al. 2002.. Novel transcription coactivator complex containing activating signal cointegrator 1. . Mol. Cell. Biol. 22::520311
    [Crossref] [Google Scholar]
  102. 102.
    Dango S, Mosammaparast N, Sowa ME, Xiong LJ, Wu F, et al. 2011.. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. . Mol. Cell 44::37384
    [Crossref] [Google Scholar]
  103. 103.
    Brickner JR, Soll JM, Lombardi PM, Vagbo CB, Mudge MC, et al. 2017.. A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. . Nature 551::38993
    [Crossref] [Google Scholar]
  104. 104.
    Lukinovic V, Hausmann S, Roth GS, Oyeniran C, Ahmad T, et al. 2022.. SMYD3 impedes small cell lung cancer sensitivity to alkylation damage through RNF113A methylation-phosphorylation cross-talk. . Cancer Discov. 12::215879
    [Crossref] [Google Scholar]
  105. 105.
    Tsao N, Brickner JR, Rodell R, Ganguly A, Wood M, et al. 2021.. Aberrant RNA methylation triggers recruitment of an alkylation repair complex. . Mol. Cell 81::422842.e8
    [Crossref] [Google Scholar]
  106. 106.
    Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B, et al. 2018.. Structure and conformational dynamics of the human spliceosomal Bact complex. . Cell 172::45464.e11
    [Crossref] [Google Scholar]
  107. 107.
    Malvezzi S, Farnung L, Aloisi CMN, Angelov T, Cramer P, Sturla SJ. 2017.. Mechanism of RNA polymerase II stalling by DNA alkylation. . PNAS 114::1217277
    [Crossref] [Google Scholar]
  108. 108.
    Bottino C, Peserico A, Simone C, Caretti G. 2020.. SMYD3: an oncogenic driver targeting epigenetic regulation and signaling pathways. . Cancers 12::142
    [Crossref] [Google Scholar]
  109. 109.
    Giakountis A, Moulos P, Sarris ME, Hatzis P, Talianidis I. 2017.. Smyd3-associated regulatory pathways in cancer. . Semin. Cancer Biol. 42::7080
    [Crossref] [Google Scholar]
  110. 110.
    Sarris ME, Moulos P, Haroniti A, Giakountis A, Talianidis I. 2016.. smyd3 is a transcriptional potentiator of multiple cancer-promoting genes and required for liver and colon cancer development. . Cancer Cell 29::35466
    [Crossref] [Google Scholar]
  111. 111.
    Jia J, Hilal T, Bohnsack KE, Chernev A, Tsao N, et al. 2023.. Extended DNA threading through a dual-engine motor module of the activating signal co-integrator 1 complex. . Nat. Commun. 14::1886
    [Crossref] [Google Scholar]
  112. 112.
    Williamson L, Saponaro M, Boeing S, East P, Mitter R, et al. 2017.. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. . Cell 168::84355.e13
    [Crossref] [Google Scholar]
  113. 113.
    Tresini M, Warmerdam DO, Kolovos P, Snijder L, Vrouwe MG, et al. 2015.. The core spliceosome as target and effector of non-canonical ATM signalling. . Nature 523::5358
    [Crossref] [Google Scholar]
  114. 114.
    Bowry A, Kelly RDW, Petermann E. 2021.. Hypertranscription and replication stress in cancer. . Trends Cancer 7::86377
    [Crossref] [Google Scholar]
  115. 115.
    Faghri S, Tamura D, Kraemer KH, Digiovanna JJ. 2008.. Trichothiodystrophy: a systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. . J. Med. Genet. 45::60921
    [Crossref] [Google Scholar]
  116. 116.
    Theil AF, Pines A, Kalayci T, Heredia-Genestar JM, Raams A, et al. 2023.. Trichothiodystrophy-associated MPLKIP maintains DBR1 levels for proper lariat debranching and ectodermal differentiation. . EMBO Mol. Med. 15::e17973
    [Crossref] [Google Scholar]
  117. 117.
    Townley BA, Buerer L, Tsao N, Bacolla A, Mansoori F, et al. 2023.. A functional link between lariat debranching enzyme and the intron-binding complex is defective in non-photosensitive trichothiodystrophy. . Mol. Cell 83::225875.e11
    [Crossref] [Google Scholar]
  118. 118.
    Botta E, Theil AF, Raams A, Caligiuri G, Giachetti S, et al. 2021.. Protein instability associated with AARS1 and MARS1 mutations causes trichothiodystrophy. . Hum. Mol. Genet. 30::171120
    [Crossref] [Google Scholar]
  119. 119.
    Nawrot B, Sochacka E, Duchler M. 2011.. tRNA structural and functional changes induced by oxidative stress. . Cell. Mol. Life Sci. 68::402332
    [Crossref] [Google Scholar]
  120. 120.
    Willi J, Kupfer P, Evequoz D, Fernandez G, Katz A, et al. 2018.. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. . Nucleic Acids Res. 46::194557
    [Crossref] [Google Scholar]
  121. 121.
    Melnikov SV, Soll D, Steitz TA, Polikanov YS. 2016.. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. . Nucleic Acids Res. 44::497887
    [Crossref] [Google Scholar]
  122. 122.
    Cole SE, LaRiviere FJ, Merrikh CN, Moore MJ. 2009.. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. . Mol. Cell 34::44050
    [Crossref] [Google Scholar]
  123. 123.
    LaRiviere FJ, Cole SE, Ferullo DJ, Moore MJ. 2006.. A late-acting quality control process for mature eukaryotic rRNAs. . Mol. Cell 24::61926
    [Crossref] [Google Scholar]
  124. 124.
    Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. 2008.. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′-3′ exonucleases Rat1 and Xrn1. . Genes Dev. 22::136980
    [Crossref] [Google Scholar]
  125. 125.
    Whipple JM, Lane EA, Chernyakov I, D'Silva S, Phizicky EM. 2011.. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA. . Genes Dev. 25::117384
    [Crossref] [Google Scholar]
  126. 126.
    Yan LL, Zaher HS. 2021.. Ribosome quality control antagonizes the activation of the integrated stress response on colliding ribosomes. . Mol. Cell 81::61428.e4
    [Crossref] [Google Scholar]
  127. 127.
    Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. 2016.. The integrated stress response. . EMBO Rep. 17::137495
    [Crossref] [Google Scholar]
  128. 128.
    Costa-Mattioli M, Walter P. 2020.. The integrated stress response: from mechanism to disease. . Science 368:(6489):eaat5314
    [Crossref] [Google Scholar]
  129. 129.
    Hinnebusch AG. 2005.. Translational regulation of GCN4 and the general amino acid control of yeast. . Annu. Rev. Microbiol. 59::40750
    [Crossref] [Google Scholar]
  130. 130.
    Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. 2000.. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. . Mol. Cell 6::26979
    [Crossref] [Google Scholar]
  131. 131.
    Sattlegger E, Hinnebusch AG. 2000.. Separate domains in GCN1 for binding protein kinase GCN2 and ribosomes are required for GCN2 activation in amino acid-starved cells. . EMBO J. 19::662233
    [Crossref] [Google Scholar]
  132. 132.
    Sattlegger E, Hinnebusch AG. 2005.. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2α kinase GCN2 during amino acid starvation. . J. Biol. Chem. 280::1651421
    [Crossref] [Google Scholar]
  133. 133.
    Berlanga JJ, Rivero D, Martin R, Herrero S, Moreno S, de Haro C. 2010.. Role of mitogen-activated protein kinase Sty1 in regulation of eukaryotic initiation factor 2alpha kinases in response to environmental stress in Schizosaccharomyces pombe. . Eukaryot. Cell 9::194207
    [Crossref] [Google Scholar]
  134. 134.
    Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, et al. 2001.. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. . Mol. Cell. Biol. 21::434768
    [Crossref] [Google Scholar]
  135. 135.
    Ishimura R, Nagy G, Dotu I, Chuang JH, Ackerman SL. 2016.. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. . eLife 5::e14295
    [Crossref] [Google Scholar]
  136. 136.
    Inglis AJ, Masson GR, Shao S, Perisic O, McLaughlin SH, et al. 2019.. Activation of GCN2 by the ribosomal P-stalk. . PNAS 116::494654
    [Crossref] [Google Scholar]
  137. 137.
    Harding HP, Ordonez A, Allen F, Parts L, Inglis AJ, et al. 2019.. The ribosomal P-stalk couples amino acid starvation to GCN2 activation in mammalian cells. . eLife 8::e50149
    [Crossref] [Google Scholar]
  138. 138.
    Wu CC, Peterson A, Zinshteyn B, Regot S, Green R. 2020.. Ribosome collisions trigger general stress responses to regulate cell fate. . Cell 182::40416.e14
    [Crossref] [Google Scholar]
  139. 139.
    Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Magun BE. 1998.. Ultraviolet radiation triggers the ribotoxic stress response in mammalian cells. . J. Biol. Chem. 273::15794803
    [Crossref] [Google Scholar]
  140. 140.
    Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, et al. 1997.. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the α-sarcin/ricin loop in the 28S rRNA. . Mol. Cell. Biol. 17::337381
    [Crossref] [Google Scholar]
  141. 141.
    Darling NJ, Cook SJ. 2014.. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. . Biochim. Biophys. Acta Mol. Cell Res. 1843::215063
    [Crossref] [Google Scholar]
  142. 142.
    Duch A, de Nadal E, Posas F. 2012.. The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses. . FEBS Lett. 586::292531
    [Crossref] [Google Scholar]
  143. 143.
    Jandhyala DM, Ahluwalia A, Obrig T, Thorpe CM. 2008.. ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. . Cell. Microbiol. 10::146877
    [Crossref] [Google Scholar]
  144. 144.
    Wang X, Mader MM, Toth JE, Yu X, Jin N, et al. 2005.. Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. . J. Biol. Chem. 280::19298305
    [Crossref] [Google Scholar]
  145. 145.
    Vind AC, Genzor AV, Bekker-Jensen S. 2020.. Ribosomal stress-surveillance: three pathways is a magic number. . Nucleic Acids Res. 48::1064861
    [Crossref] [Google Scholar]
  146. 146.
    Stoneley M, Harvey RF, Mulroney TE, Mordue R, Jukes-Jones R, et al. 2022.. Unresolved stalled ribosome complexes restrict cell-cycle progression after genotoxic stress. . Mol. Cell 82::155772.e7
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023516
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023516
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error