1932

Abstract

The development of hepatocellular carcinoma (HCC) involves an intricate interplay among various cell types within the liver. Unraveling the orchestration of these cells, particularly in the context of various etiologies, may hold the key to deciphering the underlying mechanisms of this complex disease. The advancement of single-cell and spatial technologies has revolutionized our ability to determine cellular neighborhoods and understand their crucial roles in disease pathogenesis. In this review, we highlight the current research landscape on cellular neighborhoods in chronic liver disease and HCC, as well as the emerging computational approaches applicable to delineate disease-associated cellular neighborhoods, which may offer insights into the molecular mechanisms underlying HCC pathogenesis and pave the way for effective disease interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023520
2025-01-24
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023520.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023520&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Schurch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, et al. 2020.. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. . Cell 182::134159.e19
    [Crossref] [Google Scholar]
  2. 2.
    Farah EN, Hu RK, Kern C, Zhang Q, Lu TY, et al. 2024.. Spatially organized cellular communities form the developing human heart. . Nature 627:(8005):85464
    [Crossref] [Google Scholar]
  3. 3.
    Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, et al. 2020.. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. . Immunity 52::105774.e7
    [Crossref] [Google Scholar]
  4. 4.
    Armingol E, Officer A, Harismendy O, Lewis NE. 2021.. Deciphering cell-cell interactions and communication from gene expression. . Nat. Rev. Genet. 22::7188
    [Crossref] [Google Scholar]
  5. 5.
    Nair A, Chauhan P, Saha B, Kubatzky KF. 2019.. Conceptual evolution of cell signaling. . Int. J. Mol. Sci. 20::3292
    [Crossref] [Google Scholar]
  6. 6.
    Paris J, Henderson NC. 2022.. Liver zonation, revisited. . Hepatology 76::121930
    [Crossref] [Google Scholar]
  7. 7.
    Stamataki Z, Swadling L. 2020.. The liver as an immunological barrier redefined by single-cell analysis. . Immunology 160::15770
    [Crossref] [Google Scholar]
  8. 8.
    Droin C, El Kholtei J, Halpern KB, Hurni C, Rozenberg M, et al. 2021.. Space-time logic of liver gene expression at sub-lobular scale. . Nat. Metab. 3::4358
    [Crossref] [Google Scholar]
  9. 9.
    Racanelli V, Rehermann B. 2006.. The liver as an immunological organ. . Hepatology 43::S5462
    [Crossref] [Google Scholar]
  10. 10.
    Halpern KB, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, et al. 2017.. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. . Nature 542::35256
    [Crossref] [Google Scholar]
  11. 11.
    Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, et al. 2021.. Hepatocellular carcinoma. . Nat. Rev. Dis. Primers 7::6
    [Crossref] [Google Scholar]
  12. 12.
    Ma L, Khatib S, Craig AJ, Wang XW. 2021.. Toward a liver cell atlas: understanding liver biology in health and disease at single-cell resolution. . Semin. Liver Dis. 41::32130
    [Crossref] [Google Scholar]
  13. 13.
    Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. 2018.. The immunology of hepatocellular carcinoma. . Nat. Immunol. 19::22232
    [Crossref] [Google Scholar]
  14. 14.
    Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. 2021.. The immunological and metabolic landscape in primary and metastatic liver cancer. . Nat. Rev. Cancer 21::54157
    [Crossref] [Google Scholar]
  15. 15.
    Zhang M, Yang H, Wan LF, Wang ZH, Wang HY, et al. 2020.. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. . J. Hepatol. 73::111830
    [Crossref] [Google Scholar]
  16. 16.
    Ruf B, Bruhns M, Babaei S, Kedei N, Ma L, et al. 2023.. Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. . Cell 186::3686705.e32
    [Crossref] [Google Scholar]
  17. 17.
    Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, et al. 2019.. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. . Nature 575::51218
    [Crossref] [Google Scholar]
  18. 18.
    Ruf B, Heinrich B, Greten TF. 2021.. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. . Cell. Mol. Immunol. 18::11227
    [Crossref] [Google Scholar]
  19. 19.
    Sutti S, Albano E. 2020.. Adaptive immunity: an emerging player in the progression of NAFLD. . Nat. Rev. Gastroenterol. Hepatol. 17::8192
    [Crossref] [Google Scholar]
  20. 20.
    Cogliati B, Yashaswini CN, Wang S, Sia D, Friedman SL. 2023.. Friend or foe? The elusive role of hepatic stellate cells in liver cancer. . Nat. Rev. Gastroenterol. Hepatol. 20::64761
    [Crossref] [Google Scholar]
  21. 21.
    Hammoutene A, Rautou PE. 2019.. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. . J. Hepatol. 70::127891
    [Crossref] [Google Scholar]
  22. 22.
    Ye Z, Zhang N, Lei H, Yao H, Fu J, et al. 2023.. Immunogenic necroptosis in liver diseases: mechanisms and therapeutic potential. . J. Mol. Med. 101::135563
    [Crossref] [Google Scholar]
  23. 23.
    Levrero M, Zucman-Rossi J. 2016.. Mechanisms of HBV-induced hepatocellular carcinoma. . J. Hepatol. 64::S84101
    [Crossref] [Google Scholar]
  24. 24.
    Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. 2021. CD8+ T cell exhaustion in cancer. . Front. Immunol. 12::715234
    [Crossref] [Google Scholar]
  25. 25.
    Lim CJ, Lee YH, Pan L, Lai L, Chua C, et al. 2019.. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. . Gut 68::91627
    [Crossref] [Google Scholar]
  26. 26.
    Wherry EJ. 2011.. T cell exhaustion. . Nat. Immunol. 12::49299
    [Crossref] [Google Scholar]
  27. 27.
    Ho DW, Tsui YM, Chan LK, Sze KM, Zhang X, et al. 2021.. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. . Nat. Commun. 12::3684
    [Crossref] [Google Scholar]
  28. 28.
    Zheng Q, Sun Q, Yao H, Shi R, Wang C, et al. 2024.. Single-cell landscape identifies the immunophenotypes and microenvironments of HBV-positive and HBV-negative liver cancer. . Hepatol. Commun. 8::e0364
    [Crossref] [Google Scholar]
  29. 29.
    Traum D, Wang YJ, Schwarz KB, Schug J, Wong DK, et al. 2021.. Highly multiplexed 2-dimensional imaging mass cytometry analysis of HBV-infected liver. . JCI Insight 6::e146883
    [Crossref] [Google Scholar]
  30. 30.
    Goto K, Roca Suarez AA, Wrensch F, Baumert TF, Lupberger J. 2020.. Hepatitis C virus and hepatocellular carcinoma: when the host loses its grip. . Int. J. Mol. Sci. 21::3057
    [Crossref] [Google Scholar]
  31. 31.
    Farazi PA, DePinho RA. 2006.. The genetic and environmental basis of hepatocellular carcinoma. . Discov. Med. 6::18286
    [Google Scholar]
  32. 32.
    Rosen HR. 2013.. Emerging concepts in immunity to hepatitis C virus infection. . J. Clin. Investig. 123::412130
    [Crossref] [Google Scholar]
  33. 33.
    Cui A, Li B, Wallace MS, Gonye ALK, Oetheimer C, et al. 2024.. Single-cell atlas of the liver myeloid compartment before and after cure of chronic viral hepatitis. . J. Hepatol. 80::25167
    [Crossref] [Google Scholar]
  34. 34.
    Mackowiak B, Fu Y, Maccioni L, Gao B. 2024.. Alcohol-associated liver disease. . J. Clin. Investig. 134::e176345
    [Crossref] [Google Scholar]
  35. 35.
    Lackner C, Tiniakos D. 2019.. Fibrosis and alcohol-related liver disease. . J. Hepatol. 70::294304
    [Crossref] [Google Scholar]
  36. 36.
    Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, et al. 2023.. Recent advances in understanding of pathogenesis of alcohol-associated liver disease. . Annu. Rev. Pathol. Mech. Dis. 18::41138
    [Crossref] [Google Scholar]
  37. 37.
    Cho Y, Bukong TN, Tornai D, Babuta M, Vlachos IS, et al. 2023.. Neutrophil extracellular traps contribute to liver damage and increase defective low-density neutrophils in alcohol-associated hepatitis. . J. Hepatol. 78::2844
    [Crossref] [Google Scholar]
  38. 38.
    Liu X, Liu ZX, Morgan TR, Norden-Krichmar TM. 2024.. Single-cell transcriptomics of peripheral blood mononuclear cells indicates impaired immune and inflammatory responses in alcohol-associated hepatitis. . Hum. Immunol. 85::110735
    [Crossref] [Google Scholar]
  39. 39.
    Llovet JM, Willoughby CE, Singal AG, Greten TF, Heikenwalder M, et al. 2023.. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. . Nat. Rev. Gastroenterol. Hepatol. 20::487503
    [Crossref] [Google Scholar]
  40. 40.
    Parthasarathy G, Revelo X, Malhi H. 2020.. Pathogenesis of nonalcoholic steatohepatitis: an overview. . Hepatol. Commun. 4::47892
    [Crossref] [Google Scholar]
  41. 41.
    Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, et al. 2020.. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. . Immunity 52::105774.e7
    [Crossref] [Google Scholar]
  42. 42.
    Remmerie A, Martens L, Thone T, Castoldi A, Seurinck R, et al. 2020.. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. . Immunity 53::64157.e14
    [Crossref] [Google Scholar]
  43. 43.
    Guilliams M, Bonnardel J, Haest B, Vanderborght B, Wagner C, et al. 2022.. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. . Cell 185::37996.e38
    [Crossref] [Google Scholar]
  44. 44.
    Johnson P, Ruffell B. 2009.. CD44 and its role in inflammation and inflammatory diseases. . Inflamm. Allergy Drug Targets 8::20820
    [Crossref] [Google Scholar]
  45. 45.
    Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, et al. 2011.. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. . Nature 475::22225
    [Crossref] [Google Scholar]
  46. 46.
    Hammerich L, Tacke F. 2023.. Hepatic inflammatory responses in liver fibrosis. . Nat. Rev. Gastroenterol. Hepatol. 20::63346
    [Crossref] [Google Scholar]
  47. 47.
    Faggioli F, Palagano E, Di Tommaso L, Donadon M, Marrella V, et al. 2018.. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. . Hepatology 67::197085
    [Crossref] [Google Scholar]
  48. 48.
    Deczkowska A, David E, Ramadori P, Pfister D, Safran M, et al. 2021.. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. . Nat. Med. 27::104354
    [Crossref] [Google Scholar]
  49. 49.
    Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A, et al. 2021.. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. . Nature 592::44449
    [Crossref] [Google Scholar]
  50. 50.
    Wang Y, Shi C, Guo J, Zhang Y, Gong Z. 2023.. Distinct types of cell death and implications in liver diseases: an overview of mechanisms and application. . J. Clin. Transl. Hepatol. 11::141324
    [Crossref] [Google Scholar]
  51. 51.
    Seehawer M, Heinzmann F, D'Artista L, Harbig J, Roux PF, et al. 2018.. Necroptosis microenvironment directs lineage commitment in liver cancer. . Nature 562::6975
    [Crossref] [Google Scholar]
  52. 52.
    Michalopoulos GK, Bhushan B. 2021.. Liver regeneration: biological and pathological mechanisms and implications. . Nat. Rev. Gastroenterol. Hepatol. 18::4055
    [Crossref] [Google Scholar]
  53. 53.
    Ben-Moshe S, Veg T, Manco R, Dan S, Papinutti D, et al. 2022.. The spatiotemporal program of zonal liver regeneration following acute injury. . Cell Stem Cell 29::97389.e10
    [Crossref] [Google Scholar]
  54. 54.
    Kim A, Wu X, Allende DS, Nagy LE. 2021.. Gene deconvolution reveals aberrant liver regeneration and immune cell infiltration in alcohol-associated hepatitis. . Hepatology 74::9871002
    [Crossref] [Google Scholar]
  55. 55.
    Hu S, Liu S, Bian Y, Poddar M, Singh S, et al. 2022.. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. . Cell Rep. Med. 3::100754
    [Crossref] [Google Scholar]
  56. 56.
    Russell JO, Monga SP. 2018.. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. . Annu. Rev. Pathol. Mech. Dis. 13::35178
    [Crossref] [Google Scholar]
  57. 57.
    Dobie R, Wilson-Kanamori JR, Henderson BEP, Smith JR, Matchett KP, et al. 2019.. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. . Cell Rep. 29::183247.e8
    [Crossref] [Google Scholar]
  58. 58.
    Filliol A, Saito Y, Nair A, Dapito DH, Yu LX, et al. 2022.. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. . Nature 610::35665
    [Crossref] [Google Scholar]
  59. 59.
    Chung BK, Ogaard J, Reims HM, Karlsen TH, Melum E. 2022.. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. . Hepatol. Commun. 6::253850
    [Crossref] [Google Scholar]
  60. 60.
    Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, et al. 2019.. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. . Cancer Cell 36::41830.e6
    [Crossref] [Google Scholar]
  61. 61.
    Ma LC, Heinrich S, Wang LM, Keggenhoff FL, Khatib S, et al. 2022.. Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer. . Nat. Commun. 13::7533
    [Crossref] [Google Scholar]
  62. 62.
    Xue RD, Zhang QM, Cao Q, Kong RR, Xiang X, et al. 2022.. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. . Nature 612::14147
    [Crossref] [Google Scholar]
  63. 63.
    Lu Y, Yang A, Quan C, Pan Y, Zhang H, et al. 2022.. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. . Nat. Commun. 13::4594
    [Crossref] [Google Scholar]
  64. 64.
    Khatib S, Pomyen Y, Dang H, Wang XW. 2020.. Understanding the cause and consequence of tumor heterogeneity. . Trends Cancer 6::26771
    [Crossref] [Google Scholar]
  65. 65.
    Barkley D, Moncada R, Pour M, Liberman DA, Dryg I, et al. 2022.. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. . Nat. Genet. 54::1192201
    [Crossref] [Google Scholar]
  66. 66.
    Gavish A, Tyler M, Greenwald AC, Hoefflin R, Simkin D, et al. 2023.. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. . Nature 618::598606
    [Crossref] [Google Scholar]
  67. 67.
    Maestri E, Kedei N, Khatib S, Forgues M, Ylaya K, et al. 2024.. Spatial proximity of tumor-immune interactions predicts patient outcome in hepatocellular carcinoma. . Hepatology 79::76879
    [Crossref] [Google Scholar]
  68. 68.
    Chen Z, Soifer I, Hilton H, Keren L, Jojic V. 2020.. Modeling multiplexed images with spatial-LDA reveals novel tissue microenvironments. . J. Comput. Biol. 27::120418
    [Crossref] [Google Scholar]
  69. 69.
    St Paul M, Ohashi PS. 2020.. The roles of CD8+ T cell subsets in antitumor immunity. . Trends Cell Biol. 30::695704
    [Crossref] [Google Scholar]
  70. 70.
    Sheng JP, Zhang JL, Wang L, Tano V, Tang JH, et al. 2022.. Topological analysis of hepatocellular carcinoma tumour microenvironment based on imaging mass cytometry reveals cellular neighbourhood regulated reversely by macrophages with different ontogeny. . Gut 71::117691
    [Crossref] [Google Scholar]
  71. 71.
    Brunet J-F, Denizot F, Luciani M-F, Roux-Dosseto M, Suzan M, et al. 1987.. A new member of the immunoglobulin superfamily—CTLA-4. . Nature 328::26770
    [Crossref] [Google Scholar]
  72. 72.
    Leach DR, Krummel MF, Allison JP. 1996.. Enhancement of antitumor immunity by CTLA-4 blockade. . Science 271::173436
    [Crossref] [Google Scholar]
  73. 73.
    Pardoll DM. 2012.. The blockade of immune checkpoints in cancer immunotherapy. . Nat. Rev. Cancer 12::25264
    [Crossref] [Google Scholar]
  74. 74.
    Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, et al. 2020.. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. . Cancer Discov. 10::133051
    [Crossref] [Google Scholar]
  75. 75.
    Ma L, Wang L, Khatib SA, Chang CW, Heinrich S, et al. 2021.. Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. . J. Hepatol. 75::1397408
    [Crossref] [Google Scholar]
  76. 76.
    Zheng LT, Qin SS, Si W, Wang AQ, Xing BC, et al. 2021.. Pan-cancer single cell landscape of tumor-infiltrating T cells. . Science 374::abe6474
    [Crossref] [Google Scholar]
  77. 77.
    Magen A, Hamon P, Fiaschi N, Soong BY, Park MD, et al. 2023.. Intratumoral dendritic cell-CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. . Nat. Med. 29::138999
    [Crossref] [Google Scholar]
  78. 78.
    Pfister D, Nunez NG, Pinyol R, Govaere O, Pinter M, et al. 2021.. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. . Nature 592::45056
    [Crossref] [Google Scholar]
  79. 79.
    Li M, Wang L, Cong L, Wong CC, Zhang X, et al. 2023.. Spatial proteomics of immune microenvironment in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. . Hepatology 79::56074
    [Crossref] [Google Scholar]
  80. 80.
    Yuan Y, Wu D, Li J, Huang D, Zhao Y, et al. 2023.. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma. . Front. Pharmacol. 14::1217400
    [Crossref] [Google Scholar]
  81. 81.
    Wang Q, Lin Y, Yu W, Chen X, He Q, Ye Z. 2023.. The core role of macrophages in hepatocellular carcinoma: the definition of molecular subtypes and the prognostic risk system. . Front. Pharmacol. 14::1228052
    [Crossref] [Google Scholar]
  82. 82.
    Liu Y, Xun Z, Ma K, Liang S, Li X, et al. 2023.. Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy. . J. Hepatol. 78::77082
    [Crossref] [Google Scholar]
  83. 83.
    Li Z, Pai R, Gupta S, Currenti J, Guo W, et al. 2024.. Presence of onco-fetal neighborhoods in hepatocellular carcinoma is associated with relapse and response to immunotherapy. . Nat. Cancer 5::16786
    [Crossref] [Google Scholar]
  84. 84.
    Schumacher TN, Thommen DS. 2022.. Tertiary lymphoid structures in cancer. . Science 375::eabf9419
    [Crossref] [Google Scholar]
  85. 85.
    Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. 2019.. Tertiary lymphoid structures in the era of cancer immunotherapy. . Nat. Rev. Cancer 19::30725
    [Crossref] [Google Scholar]
  86. 86.
    Wu R, Guo W, Qiu X, Wang S, Sui C, et al. 2021.. Comprehensive analysis of spatial architecture in primary liver cancer. . Sci. Adv. 7::eabg3750
    [Crossref] [Google Scholar]
  87. 87.
    Calderaro J, Petitprez F, Becht E, Laurent A, Hirsch TZ, et al. 2019.. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. . J. Hepatol. 70::5865
    [Crossref] [Google Scholar]
  88. 88.
    Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, et al. 2015.. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. . Nat. Immunol. 16::123544
    [Crossref] [Google Scholar]
  89. 89.
    Ding G-Y, Ma J-Q, Yun J-P, Chen X, Ling Y, et al. 2022.. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. . J. Hepatol. 76::60818
    [Crossref] [Google Scholar]
  90. 90.
    Hanahan D. 2022.. Hallmarks of cancer: new dimensions. . Cancer Discov. 12::3146
    [Crossref] [Google Scholar]
  91. 91.
    Ciriello G, Magnani L, Aitken SJ, Akkari L, Behjati S, et al. 2024.. Cancer evolution: a multifaceted affair. . Cancer Discov. 14::3648
    [Crossref] [Google Scholar]
  92. 92.
    Khatib SA, Ma L, Dang H, Forgues M, Chung JY, et al. 2022.. Single-cell biology uncovers apoptotic cell death and its spatial organization as a potential modifier of tumor diversity in HCC. . Hepatology 76::599611
    [Crossref] [Google Scholar]
  93. 93.
    Kelly LT, Brotons L. 2017.. Using fire to promote biodiversity. . Science 355::126465
    [Crossref] [Google Scholar]
  94. 94.
    Fischer E. 1894.. Influence of configuration of the action of enzymes. . ChemCatChem 27::298593
    [Google Scholar]
  95. 95.
    Wu L, Yan J, Bai Y, Chen F, Zou X, et al. 2023.. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression. . Cell Res. 33::585603
    [Crossref] [Google Scholar]
  96. 96.
    Chen Z, Han F, Du Y, Shi H, Zhou W. 2023.. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. . Signal Transduct. Target. Ther. 8::70
    [Crossref] [Google Scholar]
  97. 97.
    Nakazawa MS, Keith B, Simon MC. 2016.. Oxygen availability and metabolic adaptations. . Nat. Rev. Cancer 16::66373
    [Crossref] [Google Scholar]
  98. 98.
    Milotti E, Stella S, Chignola R. 2017.. Pulsation-limited oxygen diffusion in the tumour microenvironment. . Sci. Rep. 7::39762
    [Crossref] [Google Scholar]
  99. 99.
    Sun H, Li Y, Zhang Y, Zhao X, Dong X, et al. 2023.. The relevance between hypoxia-dependent spatial transcriptomics and the prognosis and efficacy of immunotherapy in claudin-low breast cancer. . Front. Immunol. 13::1042835
    [Crossref] [Google Scholar]
  100. 100.
    Sattiraju A, Kang S, Giotti B, Chen Z, Marallano VJ, et al. 2023.. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. . Immunity 56::182543.e6
    [Crossref] [Google Scholar]
  101. 101.
    Michael AOA, Ko S, Tao J, Moghe A, Yang H, et al. 2019.. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. . Cell Metab. 29::113550.e6
    [Crossref] [Google Scholar]
  102. 102.
    Llovet JM, Montal R, Sia D, Finn RS. 2018.. Molecular therapies and precision medicine for hepatocellular carcinoma. . Nat. Rev. Clin. Oncol. 15::599616
    [Crossref] [Google Scholar]
  103. 103.
    Spranger S, Bao R, Gajewski TF. 2015.. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. . Nature 523::23135
    [Crossref] [Google Scholar]
  104. 104.
    Lai C-L, Lau JY, Wu P-C, Ngan H, Chung H-T, et al. 1993.. Recombinant interferon-α in inoperable hepatocellular carcinoma: a randomized controlled trial. . Hepatology 17::38994
    [Crossref] [Google Scholar]
  105. 105.
    Hou J, Zhou Y, Zheng Y, Fan J, Zhou W, et al. 2014.. Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. . Cancer Cell 25::4963
    [Crossref] [Google Scholar]
  106. 106.
    Borden EC. 2019.. Interferons α and β in cancer: therapeutic opportunities from new insights. . Nat. Rev. Drug Discov. 18::21934
    [Crossref] [Google Scholar]
  107. 107.
    Zaidi MR, Merlino G. 2011.. The two faces of interferon-γ in cancer. . Clin. Cancer Res. 17::611824
    [Crossref] [Google Scholar]
  108. 108.
    Cheon H, Wang Y, Wightman SM, Jackson MW, Stark GR. 2023.. How cancer cells make and respond to interferon-I. . Trends Cancer 9::8392
    [Crossref] [Google Scholar]
  109. 109.
    Cheon H, Borden EC, Stark GR. 2014.. Interferons and their stimulated genes in the tumor microenvironment. . Semin. Oncol. 41::15673
    [Crossref] [Google Scholar]
  110. 110.
    Apte RS, Chen DS, Ferrara N. 2019.. VEGF in signaling and disease: beyond discovery and development. . Cell 176::124864
    [Crossref] [Google Scholar]
  111. 111.
    Goel HL, Mercurio AM. 2013.. VEGF targets the tumour cell. . Nat. Rev. Cancer 13::87182
    [Crossref] [Google Scholar]
  112. 112.
    Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, et al. 2020.. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. . New England J. Med. 382::1894905
    [Crossref] [Google Scholar]
  113. 113.
    Liu Y, Ye G, Dong B, Huang L, Zhang C, et al. 2022.. A pan-cancer analysis of the oncogenic role of secreted phosphoprotein 1 (SPP1) in human cancers. . Ann. Transl. Med. 10::279
    [Crossref] [Google Scholar]
  114. 114.
    Liu Y, Zhang Q, Xing B, Luo N, Gao R, et al. 2022.. Immune phenotypic linkage between colorectal cancer and liver metastasis. . Cancer Cell 40::42437.e5
    [Crossref] [Google Scholar]
  115. 115.
    Ye Q-H, Qin L-X, Forgues M, He P, Kim JW, et al. 2003.. Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. . Nat. Med. 9::41623
    [Crossref] [Google Scholar]
  116. 116.
    Budhu A, Wang XW. 2006.. The role of cytokines in hepatocellular carcinoma. . J. Leukocyte Biol. 80::1197213
    [Crossref] [Google Scholar]
  117. 117.
    Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020.. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. . Nat. Protocols 15::1484506
    [Crossref] [Google Scholar]
  118. 118.
    Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, et al. 2021.. Inference and analysis of cell-cell communication using CellChat. . Nat. Commun. 12::1088
    [Crossref] [Google Scholar]
  119. 119.
    Jin S, Plikus MV, Nie Q. 2023.. CellChat for systematic analysis of cell-cell communication from single-cell and spatially resolved transcriptomics. . BioRxiv 2023.11.05.565674. https://doi.org/10.1101/2023.11.05.565674
  120. 120.
    Wilk AJ, Shalek AK, Holmes S, Blish CA. 2023.. Comparative analysis of cell–cell communication at single-cell resolution. . Nat. Biotechnol. 42::47083
    [Crossref] [Google Scholar]
  121. 121.
    Raredon MSB, Yang J, Kothapalli N, Lewis W, Kaminski N, et al. 2023.. Comprehensive visualization of cell–cell interactions in single-cell and spatial transcriptomics with NICHES. . Bioinformatics 39::btac775
    [Crossref] [Google Scholar]
  122. 122.
    Subedi S, Park YP. 2023.. Single-cell pair-wise relationships untangled by composite embedding model. . Iscience 26::106025
    [Crossref] [Google Scholar]
  123. 123.
    Elhanani O, Ben-Uri R, Keren L. 2023.. Spatial profiling technologies illuminate the tumor microenvironment. . Cancer Cell 41::40420
    [Crossref] [Google Scholar]
  124. 124.
    Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, et al. 2016.. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. . Science 353::7882
    [Crossref] [Google Scholar]
  125. 125.
    Salmén F, Ståhl PL, Mollbrink A, Navarro JF, Vickovic S, et al. 2018.. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections. . Nat. Protocols 13::250134
    [Crossref] [Google Scholar]
  126. 126.
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, et al. 2019.. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. . Science 363::146367
    [Crossref] [Google Scholar]
  127. 127.
    Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022.. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. . Cell 185::177792.e21
    [Crossref] [Google Scholar]
  128. 128.
    Zhang M, Eichhorn SW, Zingg B, Yao Z, Cotter K, et al. 2021.. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. . Nature 598::13743
    [Crossref] [Google Scholar]
  129. 129.
    He S, Bhatt R, Brown C, Brown EA, Buhr DL, et al. 2022.. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. . Nat. Biotechnol. 40::1794806
    [Crossref] [Google Scholar]
  130. 130.
    Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, et al. 2021.. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. . Nat. Protocols 16::380235
    [Crossref] [Google Scholar]
  131. 131.
    Dries R, Zhu Q, Dong R, Eng C-HL, Li H, et al. 2021.. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. . Genome Biol. 22::78
    [Crossref] [Google Scholar]
  132. 132.
    Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, et al. 2022.. Squidpy: a scalable framework for spatial omics analysis. . Nat. Methods 19::17178
    [Crossref] [Google Scholar]
  133. 133.
    Shao X, Li C, Yang H, Lu X, Liao J, et al. 2022.. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. . Nat. Commun. 13::4429
    [Crossref] [Google Scholar]
  134. 134.
    Cang Z, Nie Q. 2020.. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. . Nat. Commun. 11::2084
    [Crossref] [Google Scholar]
  135. 135.
    Cang Z, Zhao Y, Almet AA, Stabell A, Ramos R, et al. 2023.. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. . Nat. Methods 20::21828
    [Crossref] [Google Scholar]
  136. 136.
    Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VR, et al. 2017.. HistoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. . Nat. Methods 14::87376
    [Crossref] [Google Scholar]
  137. 137.
    Hu Y, Rong J, Xu Y, Xie R, Peng J, et al. 2024.. Unsupervised and supervised discovery of tissue cellular neighborhoods from cell phenotypes. . Nat. Methods 21::26778
    [Crossref] [Google Scholar]
  138. 138.
    Hu J, Li X, Coleman K, Schroeder A, Ma N, et al. 2021.. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. . Nat. Methods 18::134251
    [Crossref] [Google Scholar]
  139. 139.
    Xia C, Fan J, Emanuel G, Hao J, Zhuang X. 2019.. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. . PNAS 116::1949099
    [Crossref] [Google Scholar]
  140. 140.
    Eskaros AR, Egloff SAA, Boyd KL, Richardson JE, Hyndman ME, Zijlstra A. 2017.. Larger core size has superior technical and analytical accuracy in bladder tissue microarray. . Lab. Investig. 97::33542
    [Crossref] [Google Scholar]
  141. 141.
    Lin J-R, Wang S, Coy S, Chen Y-A, Yapp C, et al. 2023.. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. . Cell 186::36381.e19
    [Crossref] [Google Scholar]
  142. 142.
    Zahedi R, Ghamsari R, Argha A, Macphillamy C, Beheshti A, et al. 2024.. Deep learning in spatially resolved transcriptomics: a comprehensive technical view. . Brief. Bioinform. 25::bbae082
    [Crossref] [Google Scholar]
  143. 143.
    Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, et al. 2019.. Fast, sensitive and accurate integration of single-cell data with Harmony. . Nat. Methods 16::128996
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023520
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023520
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error