1932

Abstract

Research efforts over the past decade have defined the genetic landscape of somatic variation in the brain. Neurons accumulate somatic mutations from development through aging with potentially profound functional consequences. Recent studies have revealed the contribution of somatic mosaicism to various brain disorders including focal epilepsy, neuropsychiatric disease, and neurodegeneration. One notable finding is that the effect of somatic mosaicism on clinical outcomes can vary depending on contextual factors, such as the developmental origin of a variant or the number and type of cells affected. In this review, we highlight current knowledge regarding the role of somatic mosaicism in brain disorders and how biological context can mediate phenotypes. First, we identify the origins of brain somatic variation throughout the lifespan of an individual. Second, we explore recent discoveries that suggest somatic mosaicism contributes to various brain disorders. Finally, we discuss neuropathological associations of brain mosaicism in different biological contexts and potential clinical utility.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023528
2025-01-24
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023528.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023528&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Insel TR. 2014.. Brain somatic mutations: the dark matter of psychiatric genetics?. Mol. Psychiatry 19::15658
    [Crossref] [Google Scholar]
  2. 2.
    Lui JH, Hansen DV, Kriegstein AR. 2011.. Development and evolution of the human neocortex. . Cell 146::1836
    [Crossref] [Google Scholar]
  3. 3.
    Dekkers MP, Nikoletopoulou V, Barde YA. 2013.. Death of developing neurons: new insights and implications for connectivity. . J. Cell Biol. 203::38593
    [Crossref] [Google Scholar]
  4. 4.
    Michel N, Young HMR, Atkin ND, Arshad U, Al-Humadi R, et al. 2022.. Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. . Sci. Rep. 12::12156
    [Crossref] [Google Scholar]
  5. 5.
    Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, et al. 2018.. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. . Science 359::55055
    [Crossref] [Google Scholar]
  6. 6.
    Poduri A, Heinzen EL, Chitsazzadeh V, Lasorsa FM, Elhosary PC, et al. 2013.. SLC25A22 is a novel gene for migrating partial seizures in infancy. . Ann. Neurol. 74::87382
    [Crossref] [Google Scholar]
  7. 7.
    Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, et al. 2015.. Somatic mutation in single human neurons tracks developmental and transcriptional history. . Science 350::9498
    [Crossref] [Google Scholar]
  8. 8.
    Alt FW, Schwer B. 2018.. DNA double-strand breaks as drivers of neural genomic change, function, and disease. . DNA Repair 71::15863
    [Crossref] [Google Scholar]
  9. 9.
    Gasior SL, Wakeman TP, Xu B, Deininger PL. 2006.. The human LINE-1 retrotransposon creates DNA double-strand breaks. . J. Mol. Biol. 357::138393
    [Crossref] [Google Scholar]
  10. 10.
    Wang M, Wei PC, Lim CK, Gallina IS, Marshall S, et al. 2020.. Increased neural progenitor proliferation in a hiPSC model of autism induces replication stress-associated genome instability. . Cell Stem Cell 26::22133.e6
    [Crossref] [Google Scholar]
  11. 11.
    Wei PC, Chang AN, Kao J, Du Z, Meyers RM, et al. 2016.. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. . Cell 164::64455
    [Crossref] [Google Scholar]
  12. 12.
    Wei PC, Lee CS, Du Z, Schwer B, Zhang Y, et al. 2018.. Three classes of recurrent DNA break clusters in brain progenitors identified by 3D proximity-based break joining assay. . PNAS 115::191924
    [Crossref] [Google Scholar]
  13. 13.
    Ballarino R, Bouwman BAM, Agostini F, Harbers L, Diekmann C, et al. 2022.. An atlas of endogenous DNA double-strand breaks arising during human neural cell fate determination. . Sci. Data 9::400
    [Crossref] [Google Scholar]
  14. 14.
    Sekar S, Tomasini L, Proukakis C, Bae T, Manlove L, et al. 2020.. Complex mosaic structural variations in human fetal brains. . Genome Res. 30::1695704
    [Crossref] [Google Scholar]
  15. 15.
    Erwin JA, Paquola AC, Singer T, Gallina I, Novotny M, et al. 2016.. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. . Nat. Neurosci. 19::158391
    [Crossref] [Google Scholar]
  16. 16.
    Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM, et al. 2015.. Cell lineage analysis in human brain using endogenous retroelements. . Neuron 85::4959
    [Crossref] [Google Scholar]
  17. 17.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001.. Initial sequencing and analysis of the human genome. . Nature 409::860921
    [Crossref] [Google Scholar]
  18. 18.
    Mouse Genome Seq Consort., Waterston RH, Lindblad-Toh K, Birney E, Rogers J, et al. 2002.. Initial sequencing and comparative analysis of the mouse genome. . Nature 420::52062
    [Crossref] [Google Scholar]
  19. 19.
    Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, et al. 2003.. Hot L1s account for the bulk of retrotransposition in the human population. . PNAS 100::528085
    [Crossref] [Google Scholar]
  20. 20.
    Goodier JL, Ostertag EM, Du K, Kazazian HH Jr. 2001.. A novel active L1 retrotransposon subfamily in the mouse. . Genome Res. 11::167785
    [Crossref] [Google Scholar]
  21. 21.
    Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, et al. 2009.. L1 retrotransposition in human neural progenitor cells. . Nature 460::112731
    [Crossref] [Google Scholar]
  22. 22.
    Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH. 2005.. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. . Nature 435::90310
    [Crossref] [Google Scholar]
  23. 23.
    Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, et al. 2010.. L1 retrotransposition in neurons is modulated by MeCP2. . Nature 468::44346
    [Crossref] [Google Scholar]
  24. 24.
    Yu F, Zingler N, Schumann G, Stratling WH. 2001.. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. . Nucleic Acids Res. 29::4493501
    [Crossref] [Google Scholar]
  25. 25.
    Erwin JA, Marchetto MC, Gage FH. 2014.. Mobile DNA elements in the generation of diversity and complexity in the brain. . Nat. Rev. Neurosci. 15::497506
    [Crossref] [Google Scholar]
  26. 26.
    Garza R, Atacho DAM, Adami A, Gerdes P, Vinod M, et al. 2023.. LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification. . Sci. Adv. 9::eadh9543
    [Crossref] [Google Scholar]
  27. 27.
    Sultana T, van Essen D, Siol O, Bailly-Bechet M, Philippe C, et al. 2019.. The landscape of L1 retrotransposons in the human genome is shaped by pre-insertion sequence biases and post-insertion selection. . Mol. Cell 74::55570.e7
    [Crossref] [Google Scholar]
  28. 28.
    Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, et al. 2015.. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. . Cell 163::58393
    [Crossref] [Google Scholar]
  29. 29.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, et al. 1998.. Neurogenesis in the adult human hippocampus. . Nat. Med. 4::131317
    [Crossref] [Google Scholar]
  30. 30.
    Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, et al. 2013.. Dynamics of hippocampal neurogenesis in adult humans. . Cell 153::121927
    [Crossref] [Google Scholar]
  31. 31.
    Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR, et al. 2018.. Aging and neurodegeneration are associated with increased mutations in single human neurons. . Science 359::55559
    [Crossref] [Google Scholar]
  32. 32.
    Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, et al. 2014.. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. . Cell Rep. 8::128089
    [Crossref] [Google Scholar]
  33. 33.
    Knouse KA, Wu J, Amon A. 2016.. Assessment of megabase-scale somatic copy number variation using single-cell sequencing. . Genome Res. 26::37684
    [Crossref] [Google Scholar]
  34. 34.
    McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, et al. 2013.. Mosaic copy number variation in human neurons. . Science 342::63237
    [Crossref] [Google Scholar]
  35. 35.
    Chronister WD, Burbulis IE, Wierman MB, Wolpert MJ, Haakenson MF, et al. 2019.. Neurons with complex karyotypes are rare in aged human neocortex. . Cell Rep. 26::82535.e7
    [Crossref] [Google Scholar]
  36. 36.
    Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, et al. 2015.. Activity-induced DNA breaks govern the expression of neuronal early-response genes. . Cell 161::1592605
    [Crossref] [Google Scholar]
  37. 37.
    Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, et al. 2013.. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. . Nat. Neurosci. 16::61321
    [Crossref] [Google Scholar]
  38. 38.
    Inoue M, Kajiwara K, Yamaguchi A, Kiyono T, Samura O, et al. 2019.. Autonomous trisomic rescue of Down syndrome cells. . Lab. Investig. 99::88597
    [Crossref] [Google Scholar]
  39. 39.
    Miller KE, Rivaldi AC, Shinagawa N, Sran S, Navarro JB, et al. 2023.. Post-zygotic rescue of meiotic errors causes brain mosaicism and focal epilepsy. . Nat. Genet. 55::192028
    [Crossref] [Google Scholar]
  40. 40.
    Miller MB, Reed HC, Walsh CA. 2021.. Brain somatic mutation in aging and Alzheimer's disease. . Annu. Rev. Genom. Hum. Genet. 22::23956
    [Crossref] [Google Scholar]
  41. 41.
    Puigdevall P, Jerber J, Danecek P, Castellano S, Kilpinen H. 2023.. Somatic mutations alter the differentiation outcomes of iPSC-derived neurons. . Cell Genom. 3::100280
    [Crossref] [Google Scholar]
  42. 42.
    Lam M, Moslem M, Bryois J, Pronk RJ, Uhlin E, et al. 2019.. Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. . Exp. Cell Res. 383::111469
    [Crossref] [Google Scholar]
  43. 43.
    Bedrosian TA, Linker S, Gage FH. 2016.. Environment-driven somatic mosaicism in brain disorders. . Genome Med. 8::58
    [Crossref] [Google Scholar]
  44. 44.
    Bedrosian TA, Quayle C, Novaresi N, Gage FH. 2018.. Early life experience drives structural variation of neural genomes in mice. . Science 359::139599
    [Crossref] [Google Scholar]
  45. 45.
    DeRosa H, Richter T, Wilkinson C, Hunter RG. 2022.. Bridging the gap between environmental adversity and neuropsychiatric disorders: the role of transposable elements. . Front. Genet. 13::813510
    [Crossref] [Google Scholar]
  46. 46.
    Basil P, Li Q, Dempster EL, Mill J, Sham PC, et al. 2014.. Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain. . Transl. Psychiatry 4::e434
    [Crossref] [Google Scholar]
  47. 47.
    Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, et al. 2014.. Increased L1 retrotransposition in the neuronal genome in schizophrenia. . Neuron 81::30613
    [Crossref] [Google Scholar]
  48. 48.
    Guffanti G, Bartlett A, Klengel T, Klengel C, Hunter R, et al. 2018.. Novel bioinformatics approach identifies transcriptional profiles of lineage-specific transposable elements at distinct loci in the human dorsolateral prefrontal cortex. . Mol. Biol. Evol. 35::243553
    [Crossref] [Google Scholar]
  49. 49.
    Guffanti G, Gaudi S, Klengel T, Fallon JH, Mangalam H, et al. 2016.. LINE1 insertions as a genomic risk factor for schizophrenia: preliminary evidence from an affected family. . Am. J. Med. Genet. B Neuropsychiatr. Genet. 171::53445
    [Crossref] [Google Scholar]
  50. 50.
    Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. 2012.. A developmental and genetic classification for malformations of cortical development: update 2012. . Brain 135::134869
    [Crossref] [Google Scholar]
  51. 51.
    Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes-Cendes I, et al. 2022.. The ILAE consensus classification of focal cortical dysplasia: an update proposed by an ad hoc task force of the ILAE diagnostic methods commission. . Epilepsia 63::1899919
    [Crossref] [Google Scholar]
  52. 52.
    Lim JS, Kim WI, Kang HC, Kim SH, Park AH, et al. 2015.. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. . Nat. Med. 21::395400
    [Crossref] [Google Scholar]
  53. 53.
    Saxton RA, Sabatini DM. 2017.. mTOR signaling in growth, metabolism, and disease. . Cell 168::96076
    [Crossref] [Google Scholar]
  54. 54.
    Zhao W, Xie C, Zhang X, Liu J, Xia Z. 2023.. Advances in the mTOR signaling pathway and its inhibitor rapamycin in epilepsy. . Brain Behav. 13::e2995
    [Crossref] [Google Scholar]
  55. 55.
    Crino PB. 2015.. mTOR signaling in epilepsy: insights from malformations of cortical development. . Cold Spring Harb. Perspect. Med. 5::a022442
    [Crossref] [Google Scholar]
  56. 56.
    D'Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, et al. 2017.. Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. . Cell Rep. 21::375466
    [Crossref] [Google Scholar]
  57. 57.
    Baldassari S, Ribierre T, Marsan E, Adle-Biassette H, Ferrand-Sorbets S, et al. 2019.. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. . Acta Neuropathol. 138::885900
    [Crossref] [Google Scholar]
  58. 58.
    Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, et al. 2022.. Detection of brain somatic variation in epilepsy-associated developmental lesions. . Epilepsia 63::198197
    [Crossref] [Google Scholar]
  59. 59.
    Koboldt DC, Miller KE, Miller AR, Bush JM, McGrath S, et al. 2021.. PTEN somatic mutations contribute to spectrum of cerebral overgrowth. . Brain 144::297178
    [Crossref] [Google Scholar]
  60. 60.
    Miller KE, Koboldt DC, Schieffer KM, Bedrosian TA, Crist E, et al. 2020.. Somatic SLC35A2 mosaicism correlates with clinical findings in epilepsy brain tissue. . Neurol. Genet. 6::e460
    [Crossref] [Google Scholar]
  61. 61.
    Jones AC, Shyamsundar MM, Thomas MW, Maynard J, Idziaszczyk S, et al. 1999.. Comprehensive mutation analysis of TSC1 and TSC2—and phenotypic correlations in 150 families with tuberous sclerosis. . Am. J. Hum. Genet. 64::130515
    [Crossref] [Google Scholar]
  62. 62.
    Qin W, Chan JA, Vinters HV, Mathern GW, Franz DN, et al. 2010.. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. . Brain Pathol. 20::1096105
    [Crossref] [Google Scholar]
  63. 63.
    Winden KD, Sundberg M, Yang C, Wafa SMA, Dwyer S, et al. 2019.. Biallelic mutations in TSC2 lead to abnormalities associated with cortical tubers in human iPSC-derived neurons. . J. Neurosci. 39::9294305
    [Crossref] [Google Scholar]
  64. 64.
    López-Rivera JA, Leu C, Macnee M, Khoury J, Hoffmann L, et al. 2023.. The genomic landscape across 474 surgically accessible epileptogenic human brain lesions. . Brain 146::134256
    [Crossref] [Google Scholar]
  65. 65.
    Lai A, Soucy A, El Achkar CM, Barkovich AJ, Cao Y, et al. 2022.. The ClinGen Brain Malformation Variant Curation Expert Panel: rules for somatic variants in AKT3, MTOR, PIK3CA, and PIK3R2. . Genet. Med. 24::224048
    [Crossref] [Google Scholar]
  66. 66.
    Winawer MR, Griffin NG, Samanamud J, Baugh EH, Rathakrishnan D, et al. 2018.. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. . Ann. Neurol. 83::113346
    [Crossref] [Google Scholar]
  67. 67.
    Bonduelle T, Hartlieb T, Baldassari S, Sim NS, Kim SH, et al. 2021.. Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). . Acta Neuropathol. Commun. 9::3
    [Crossref] [Google Scholar]
  68. 68.
    Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. 2014.. Epilepsies associated with hippocampal sclerosis. . Acta Neuropathol. 128::2137
    [Crossref] [Google Scholar]
  69. 69.
    Khoshkhoo S, Wang Y, Chahine Y, Erson-Omay EZ, Robert SM, et al. 2023.. Contribution of somatic Ras/Raf/mitogen-activated protein kinase variants in the hippocampus in drug-resistant mesial temporal lobe epilepsy. . JAMA Neurol. 80::57887
    [Crossref] [Google Scholar]
  70. 70.
    Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, et al. 2018.. Somatic mutant clones colonize the human esophagus with age. . Science 362::91117
    [Crossref] [Google Scholar]
  71. 71.
    Blumcke I, Aronica E, Becker A, Capper D, Coras R, et al. 2016.. Low-grade epilepsy-associated neuroepithelial tumours—the 2016 WHO classification. . Nat. Rev. Neurol. 12::73240
    [Crossref] [Google Scholar]
  72. 72.
    Koh HY, Kim SH, Jang J, Kim H, Han S, et al. 2018.. BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. . Nat. Med. 24::166268
    [Crossref] [Google Scholar]
  73. 73.
    Rivera B, Gayden T, Carrot-Zhang J, Nadaf J, Boshari T, et al. 2016.. Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. . Acta Neuropathol. 131::84763
    [Crossref] [Google Scholar]
  74. 74.
    Kerkhof M, Vecht CJ. 2013.. Seizure characteristics and prognostic factors of gliomas. . Epilepsia 54:(Suppl. 9):1217
    [Crossref] [Google Scholar]
  75. 75.
    Farhat HI. 2011.. Cerebral arteriovenous malformations. . Dis. Mon. 57::62537
    [Crossref] [Google Scholar]
  76. 76.
    Sato T, Sasaki T, Matsumoto M, Suzuki K, Sato M, et al. 2004.. Thalamic arteriovenous malformation with an unusual draining system—case report. . Neurol. Med. Chir. 44::298301
    [Crossref] [Google Scholar]
  77. 77.
    Zhao SZ, Zhao YX, Liao XH, Huo R, Li H, et al. 2023.. Unruptured brain arteriovenous malformations causing seizures localize to one common brain network. . J. Neurosci. Res. 101::24555
    [Crossref] [Google Scholar]
  78. 78.
    Hong T, Yan Y, Li J, Radovanovic I, Ma X, et al. 2019.. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. . Brain 142::2334
    [Crossref] [Google Scholar]
  79. 79.
    Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, et al. 2018.. Somatic activating KRAS mutations in arteriovenous malformations of the brain. . N. Engl. J. Med. 378::25061
    [Crossref] [Google Scholar]
  80. 80.
    Priemer DS, Vortmeyer AO, Zhang S, Chang HY, Curless KL, Cheng L. 2019.. Activating KRAS mutations in arteriovenous malformations of the brain: frequency and clinicopathologic correlation. . Hum. Pathol. 89::3339
    [Crossref] [Google Scholar]
  81. 81.
    Goss JA, Huang AY, Smith E, Konczyk DJ, Smits PJ, et al. 2019.. Somatic mutations in intracranial arteriovenous malformations. . PLOS ONE 14::e0226852
    [Crossref] [Google Scholar]
  82. 82.
    Nakashima M, Miyajima M, Sugano H, Iimura Y, Kato M, et al. 2014.. The somatic GNAQ mutation c.548G>A (p.R183Q) is consistently found in Sturge-Weber syndrome. . J. Hum. Genet. 59::69193
    [Crossref] [Google Scholar]
  83. 83.
    Thorpe J, Frelin LP, McCann M, Pardo CA, Cohen BA, et al. 2021.. Identification of a mosaic activating mutation in GNA11 in atypical Sturge-Weber Syndrome. . J. Investig. Dermatol. 141::68588
    [Crossref] [Google Scholar]
  84. 84.
    Fjær R, Marciniak K, Sundnes O, Hjorthaug H, Sheng Y, et al. 2021.. A novel somatic mutation in GNB2 provides new insights to the pathogenesis of Sturge-Weber syndrome. . Hum. Mol. Genet. 30::191931
    [Crossref] [Google Scholar]
  85. 85.
    Gault J, Sarin H, Awadallah NA, Shenkar R, Awad IA. 2004.. Pathobiology of human cerebrovascular malformations: basic mechanisms and clinical relevance. . Neurosurgery 55::116
    [Crossref] [Google Scholar]
  86. 86.
    Weng J, Yang Y, Song D, Huo R, Li H, et al. 2021.. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. . Am. J. Hum. Genet. 108::94250
    [Crossref] [Google Scholar]
  87. 87.
    Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, et al. 2021.. Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. . N. Engl. J. Med. 385::9961004
    [Crossref] [Google Scholar]
  88. 88.
    Gault J, Awad IA, Recksiek P, Shenkar R, Breeze R, et al. 2009.. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. . Neurosurgery 65::13844
    [Crossref] [Google Scholar]
  89. 89.
    Allen MG. 1976.. Twin studies of affective illness. . Arch. Gen. Psychiatry 33::147678
    [Crossref] [Google Scholar]
  90. 90.
    Maenner MJ, Shaw KA, Baio J, Washington A, Patrick M, et al. 2020.. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. . MMWR Surveill. Summ. 69::112. Erratum . 2020.. MMWR Surveill. Summ. 69::503
    [Google Scholar]
  91. 91.
    Abrahams BS, Geschwind DH. 2008.. Advances in autism genetics: on the threshold of a new neurobiology. . Nat. Rev. Genet. 9::34155
    [Crossref] [Google Scholar]
  92. 92.
    Freed D, Pevsner J. 2016.. The contribution of mosaic variants to autism spectrum disorder. . PLOS Genet. 12::e1006245
    [Crossref] [Google Scholar]
  93. 93.
    Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, et al. 2012.. De novo gene disruptions in children on the autistic spectrum. . Neuron 74::28599
    [Crossref] [Google Scholar]
  94. 94.
    Krupp DR, Barnard RA, Duffourd Y, Evans SA, Mulqueen RM, et al. 2017.. Exonic mosaic mutations contribute risk for autism spectrum disorder. . Am. J. Hum. Genet. 101::36990
    [Crossref] [Google Scholar]
  95. 95.
    Lim ET, Uddin M, De Rubeis S, Chan Y, Kamumbu AS, et al. 2017.. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. . Nat. Neurosci. 20::121724
    [Crossref] [Google Scholar]
  96. 96.
    Sherman MA, Rodin RE, Genovese G, Dias C, Barton AR, et al. 2021.. Large mosaic copy number variations confer autism risk. . Nat. Neurosci. 24::197203
    [Crossref] [Google Scholar]
  97. 97.
    Rodin RE, Dou Y, Kwon M, Sherman MA, D'Gama AM, et al. 2021.. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. . Nat. Neurosci. 24::176185
    [Crossref] [Google Scholar]
  98. 98.
    Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, et al. 2013.. Focal cortical dysplasias in autism spectrum disorders. . Acta Neuropathol. Commun. 1::67
    [Crossref] [Google Scholar]
  99. 99.
    Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, et al. 2014.. Patches of disorganization in the neocortex of children with autism. . N. Engl. J. Med. 370::120919
    [Crossref] [Google Scholar]
  100. 100.
    Sullivan PF, Kendler KS, Neale MC. 2003.. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. . Arch. Gen. Psychiatry 60::118792
    [Crossref] [Google Scholar]
  101. 101.
    Avramopoulos D. 2018.. Neuregulin 3 and its roles in schizophrenia risk and presentation. . Am. J. Med. Genet. B Neuropsychiatr. Genet. 177::25766
    [Crossref] [Google Scholar]
  102. 102.
    Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, et al. 2018.. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. . Nat. Genet. 50::38189
    [Crossref] [Google Scholar]
  103. 103.
    Fullard JF, Charney AW, Voloudakis G, Uzilov AV, Haroutunian V, Roussos P. 2019.. Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia. . Transl. Psychiatry 9::21
    [Crossref] [Google Scholar]
  104. 104.
    Kim MH, Kim IB, Lee J, Cha DH, Park SM, et al. 2021.. Low-level brain somatic mutations are implicated in schizophrenia. . Biol. Psychiatry 90::3546
    [Crossref] [Google Scholar]
  105. 105.
    Jahangir M, Li L, Zhou JS, Lang B, Wang XP. 2022.. L1 retrotransposons: a potential endogenous regulator for schizophrenia. . Front. Genet. 13::878508
    [Crossref] [Google Scholar]
  106. 106.
    Doyle GA, Crist RC, Karatas ET, Hammond MJ, Ewing AD, et al. 2017.. Analysis of LINE-1 elements in DNA from postmortem brains of individuals with schizophrenia. . Neuropsychopharmacology 42::260211
    [Crossref] [Google Scholar]
  107. 107.
    Miller MB, Huang AY, Kim J, Zhou Z, Kirkham SL, et al. 2022.. Somatic genomic changes in single Alzheimer's disease neurons. . Nature 604::71422
    [Crossref] [Google Scholar]
  108. 108.
    Li Z, Min S, Alliey-Rodriguez N, Giase G, Cheng L, et al. 2023.. Single-neuron whole genome sequencing identifies increased somatic mutation burden in Alzheimer's disease related genes. . Neurobiol. Aging 123::22232
    [Crossref] [Google Scholar]
  109. 109.
    Dileep V, Boix CA, Mathys H, Marco A, Welch GM, et al. 2023.. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. . Cell 186::440421.e20
    [Crossref] [Google Scholar]
  110. 110.
    Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR, et al. 2015.. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer's disease brains. . eLife 4::e05116
    [Crossref] [Google Scholar]
  111. 111.
    Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, et al. 2018.. Somatic APP gene recombination in Alzheimer's disease and normal neurons. . Nature 563::63945
    [Crossref] [Google Scholar]
  112. 112.
    Park JS, Lee J, Jung ES, Kim MH, Kim IB, et al. 2019.. Brain somatic mutations observed in Alzheimer's disease associated with aging and dysregulation of tau phosphorylation. . Nat. Commun. 10::3090
    [Crossref] [Google Scholar]
  113. 113.
    Vicario R, Fragkogianni S, Weber L, Lazarov T, Hu Y, et al. 2024.. A microglia clonal inflammatory disorder in Alzheimer's Disease. . bioRxiv 2024.01.25.577216. https://doi.org/10.1101/2024.01.25.577216
  114. 114.
    Mass E, Jacome-Galarza C, Blank T, Lazarov T, Durham BH, et al. 2017.. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. . Nature 549::38993
    [Crossref] [Google Scholar]
  115. 115.
    Lai D, Gade M, Yang E, Koh HY, Lu J, et al. 2022.. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. . Brain 145::270420
    [Crossref] [Google Scholar]
  116. 116.
    Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, et al. 2021.. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. . Neuro Oncol. 23::123151
    [Crossref] [Google Scholar]
  117. 117.
    Chung SH, Shen W. 2015.. Laser capture microdissection: from its principle to applications in research on neurodegeneration. . Neural Regen. Res. 10::89798
    [Crossref] [Google Scholar]
  118. 118.
    D'Gama AM, Walsh CA. 2018.. Somatic mosaicism and neurodevelopmental disease. . Nat. Neurosci. 21::150414
    [Crossref] [Google Scholar]
  119. 119.
    Guerrini R, Cavallin M, Pippucci T, Rosati A, Bisulli F, et al. 2021.. Is focal cortical dysplasia/epilepsy caused by somatic MTOR mutations always a unilateral disorder?. Neurol. Genet. 7::e540
    [Crossref] [Google Scholar]
  120. 120.
    Schick V, Majores M, Engels G, Spitoni S, Koch A, et al. 2006.. Activation of Akt independent of PTEN and CTMP tumor-suppressor gene mutations in epilepsy-associated Taylor-type focal cortical dysplasias. . Acta Neuropathol. 112::71525
    [Crossref] [Google Scholar]
  121. 121.
    Leng K, Cadwell CR, Devine WP, Tihan T, Qi Z, et al. 2024.. Cell-type specificity of mosaic chromosome 1q gain resolved by snRNA-seq in a case of epilepsy with hyaline protoplasmic astrocytopathy. . Neurol. Genet. 10::e200142
    [Crossref] [Google Scholar]
  122. 122.
    Chung C, Yang X, Bae T, Vong KI, Mittal S, et al. 2023.. Comprehensive multi-omic profiling of somatic mutations in malformations of cortical development. . Nat. Genet. 55::20920
    [Crossref] [Google Scholar]
  123. 123.
    D'Gama AM, Poduri A. 2023.. Brain somatic mosaicism in epilepsy: bringing results back to the clinic. . Neurobiol. Dis. 181::106104
    [Crossref] [Google Scholar]
  124. 124.
    Ye Z, Chatterton Z, Pflueger J, Damiano JA, McQuillan L, et al. 2021.. Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain. . Brain Commun. 3::fcaa235
    [Crossref] [Google Scholar]
  125. 125.
    Leitner DF, Kanshin E, Askenazi M, Siu Y, Friedman D, et al. 2022.. Pilot study evaluating everolimus molecular mechanisms in tuberous sclerosis complex and focal cortical dysplasia. . PLOS ONE 17::e0268597
    [Crossref] [Google Scholar]
  126. 126.
    Checri R, Chipaux M, Ferrand-Sorbets S, Raffo E, Bulteau C, et al. 2023.. Detection of brain somatic mutations in focal cortical dysplasia during epilepsy presurgical workup. . Brain Commun. 5::fcad174
    [Crossref] [Google Scholar]
  127. 127.
    Kim S, Baldassari S, Sim NS, Chipaux M, Dorfmuller G, et al. 2021.. Detection of brain somatic mutations in cerebrospinal fluid from refractory epilepsy patients. . Ann. Neurol. 89::124852
    [Crossref] [Google Scholar]
  128. 128.
    Ye Z, Bennett MF, Neal A, Laing JA, Hunn MK, et al. 2022.. Somatic mosaic pathogenic variant gradient detected in trace brain tissue from stereo-EEG depth electrodes. . Neurology 99::103641
    [Crossref] [Google Scholar]
  129. 129.
    Jackson SP, Bartek J. 2009.. The DNA-damage response in human biology and disease. . Nature 461::107178
    [Crossref] [Google Scholar]
  130. 130.
    Madabhushi R, Pan L, Tsai LH. 2014.. DNA damage and its links to neurodegeneration. . Neuron 83::26682
    [Crossref] [Google Scholar]
  131. 131.
    Iyama T, Wilson DM 3rd. 2013.. DNA repair mechanisms in dividing and non-dividing cells. . DNA Repair 12::62036
    [Crossref] [Google Scholar]
  132. 132.
    San Filippo J, Sung P, Klein H. 2008.. Mechanism of eukaryotic homologous recombination. . Annu. Rev. Biochem. 77::22957
    [Crossref] [Google Scholar]
  133. 133.
    Schindler G, Capper D, Meyer J, Janzarik W, Omran H, et al. 2011.. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. . Acta Neuropathol. 121::397405
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023528
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error