1932

Abstract

The liver has a critical role in regulating host metabolism, immunity, detoxification, and homeostasis. Proper liver function is essential for host health, and dysregulation of hepatic signaling pathways can lead to the onset of disease. The Wnt/β-catenin signaling pathway is an important regulator of liver homeostasis and function. Throughout life, hepatic Wnt/β-catenin signaling contributes to liver development and growth, metabolic zonation, and regeneration. Extensive research has demonstrated that aberrant Wnt/β-catenin signaling drives liver pathologies, including cancers, steatohepatitis, and cholestasis. In this review, we discuss the Wnt/β-catenin pathway as it pertains to liver function and how disruptions in this pathway contribute to the onset and progression of liver diseases. Further, we discuss ongoing research that targets the Wnt/β-catenin pathway for the treatment of liver pathologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-111523-023535
2025-01-24
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathmechdis-111523-023535.html?itemId=/content/journals/10.1146/annurev-pathmechdis-111523-023535&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Russell JO, Monga SP. 2018.. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. . Annu. Rev. Pathol. Mech. Dis. 13::35178
    [Crossref] [Google Scholar]
  2. 2.
    Nejak-Bowen K, Monga SP. 2023.. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. . Hepatology 78::190721
    [Crossref] [Google Scholar]
  3. 3.
    Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, et al. 2019.. Wnt-β-catenin signalling in liver development, health and disease. . Nat. Rev. Gastroenterol. Hepatol. 16::12136
    [Crossref] [Google Scholar]
  4. 4.
    Pradhan-Sundd T, Monga SP. 2019.. Blood-bile barrier: morphology, regulation, and pathophysiology. . Gene Expr. 19::6987
    [Crossref] [Google Scholar]
  5. 5.
    Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. 2006.. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. . Gastroenterology 131::156172
    [Crossref] [Google Scholar]
  6. 6.
    Wickline ED, Awuah PK, Behari J, Ross M, Stolz DB, Monga SP. 2011.. Hepatocyte γ-catenin compensates for conditionally deleted β-catenin at adherens junctions. . J. Hepatol. 55::125662
    [Crossref] [Google Scholar]
  7. 7.
    Wickline ED, Du Y, Stolz DB, Kahn M, Monga SP. 2013.. γ-Catenin at adherens junctions: mechanism and biologic implications in hepatocellular cancer after β-catenin knockdown. . Neoplasia 15::42134
    [Crossref] [Google Scholar]
  8. 8.
    Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. 2020.. The canonical Wnt pathway as a key regulator in liver development, differentiation and homeostatic renewal. . Genes 11::1163
    [Crossref] [Google Scholar]
  9. 9.
    Zorn AM, Wells JM. 2009.. Vertebrate endoderm development and organ formation. . Annu. Rev. Cell Dev. Biol. 25::22151
    [Crossref] [Google Scholar]
  10. 10.
    Poulain M, Ober EA. 2011.. Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development. . Development 138::355768
    [Crossref] [Google Scholar]
  11. 11.
    Rossi JM, Dunn NR, Hogan BL, Zaret KS. 2001.. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. . Genes Dev. 15::19982009
    [Crossref] [Google Scholar]
  12. 12.
    Ober EA, Verkade H, Field HA, Stainier DY. 2006.. Mesodermal Wnt2b signalling positively regulates liver specification. . Nature 442::68891
    [Crossref] [Google Scholar]
  13. 13.
    Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, et al. 2007.. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. . Dev. Biol. 308::35567
    [Crossref] [Google Scholar]
  14. 14.
    Monga SP, Mars WM, Pediaditakis P, Bell A, Mulé K, et al. 2002.. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. . Cancer Res. 62::206471
    [Google Scholar]
  15. 15.
    Berg T, Rountree CB, Lee L, Estrada J, Sala FG, et al. 2007.. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via β-catenin activation. . Hepatology 46::118797
    [Crossref] [Google Scholar]
  16. 16.
    Tan X, Yuan Y, Zeng G, Apte U, Thompson MD, et al. 2008.. β-Catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. . Hepatology 47::166779
    [Crossref] [Google Scholar]
  17. 17.
    Burke ZD, Reed KR, Yeh S-W, Meniel V, Sansom OJ, et al. 2018.. Spatiotemporal regulation of liver development by the Wnt/β-catenin pathway. . Sci. Rep. 8::2735
    [Crossref] [Google Scholar]
  18. 18.
    Monga SP, Micsenyi A, Germinaro M, Apte U, Bell A. 2006.. β-Catenin regulation during matrigel-induced rat hepatocyte differentiation. . Cell Tissue Res. 323::7179
    [Crossref] [Google Scholar]
  19. 19.
    Decaens T, Godard C, de Reyniès A, Rickman DS, Tronche F, et al. 2008.. Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. . Hepatology 47::24758
    [Crossref] [Google Scholar]
  20. 20.
    Cordi S, Godard C, Saandi T, Jacquemin P, Monga SP, et al. 2016.. Role of β-catenin in development of bile ducts. . Differentiation 91::4249
    [Crossref] [Google Scholar]
  21. 21.
    Martini T, Naef F, Tchorz JS. 2023.. Spatiotemporal metabolic liver zonation and consequences on pathophysiology. . Annu. Rev. Pathol. Mech. Dis. 18::43966
    [Crossref] [Google Scholar]
  22. 22.
    Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. 2018.. Endothelial Wnts regulate β-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt-Wnt situation. . Hepatol. Commun. 2::84560
    [Crossref] [Google Scholar]
  23. 23.
    Gayden J, Hu S, Joseph PN, Delgado E, Liu S, et al. 2023.. A spatial atlas of Wnt receptors in adult mouse liver. . Am. J. Pathol. 193::55866
    [Crossref] [Google Scholar]
  24. 24.
    Goel C, Monga SP, Nejak-Bowen K. 2022.. Role and regulation of Wnt/β-catenin in hepatic perivenous zonation and physiological homeostasis. . Am. J. Pathol. 192::417
    [Crossref] [Google Scholar]
  25. 25.
    Ma R, Martínez-Ramírez AS, Borders TL, Gao F, Sosa-Pineda B. 2020.. Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal Wnts. . eLife 9::e46206
    [Crossref] [Google Scholar]
  26. 26.
    Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, et al. 2006.. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. . Dev. Cell 10::75970
    [Crossref] [Google Scholar]
  27. 27.
    Gougelet A, Torre C, Veber P, Sartor C, Bachelot L, et al. 2014.. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. . Hepatology 59::234457
    [Crossref] [Google Scholar]
  28. 28.
    Yang J, Mowry LE, Nejak-Bowen KN, Okabe H, Diegel CR, et al. 2014.. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation. ! Hepatology 60::96476
    [Crossref] [Google Scholar]
  29. 29.
    Birchmeier W. 2016.. Orchestrating Wnt signalling for metabolic liver zonation. . Nat. Cell Biol. 18::46365
    [Crossref] [Google Scholar]
  30. 30.
    Sun T, Annunziato S, Bergling S, Sheng C, Orsini V, et al. 2021.. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. . Cell Stem Cell 28::182237.e10
    [Crossref] [Google Scholar]
  31. 31.
    Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M, et al. 2016.. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. . Nat. Cell Biol. 18::46779
    [Crossref] [Google Scholar]
  32. 32.
    Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK. 2001.. Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. . Hepatology 33::1098109
    [Crossref] [Google Scholar]
  33. 33.
    Nejak-Bowen K, Moghe A, Cornuet P, Preziosi M, Nagarajan S, Monga SP. 2017.. Role and regulation of p65/β-catenin association during liver injury and regeneration: a “complex” relationship. . Gene Expr. 17::21935
    [Crossref] [Google Scholar]
  34. 34.
    Goessling W, North TE, Lord AM, Ceol C, Lee S, et al. 2008.. APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. . Dev. Biol. 320::16174
    [Crossref] [Google Scholar]
  35. 35.
    Nejak-Bowen KN, Thompson MD, Singh S, Bowen WC Jr., Dar MJ, et al. 2010.. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. . Hepatology 51::160313
    [Crossref] [Google Scholar]
  36. 36.
    Hu S, Liu S, Bian Y, Poddar M, Singh S, et al. 2022.. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. . Cell Rep. Med. 3::100754
    [Crossref] [Google Scholar]
  37. 37.
    Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, et al. 2002.. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. . Ann. Intern. Med. 137::94754
    [Crossref] [Google Scholar]
  38. 38.
    Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. 2006.. Liver-specific loss of β-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. . Hepatology 43::81725
    [Crossref] [Google Scholar]
  39. 39.
    Apte U, Singh S, Zeng G, Cieply B, Virji MA, et al. 2009.. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. . Am. J. Pathol. 175::105665
    [Crossref] [Google Scholar]
  40. 40.
    Bhushan B, Walesky C, Manley M, Gallagher T, Borude P, et al. 2014.. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. . Am. J. Pathol. 184::301325
    [Crossref] [Google Scholar]
  41. 41.
    Bhushan B, Poudel S, Manley MW Jr., Roy N, Apte U. 2017.. Inhibition of glycogen synthase kinase 3 accelerated liver regeneration after acetaminophen-induced hepatotoxicity in mice. . Am. J. Pathol. 187::54352
    [Crossref] [Google Scholar]
  42. 42.
    Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. 2019.. Understanding the marvels behind liver regeneration. . Wiley Interdiscip Rev. Dev. Biol. 8::e340
    [Crossref] [Google Scholar]
  43. 43.
    Zhao L, Jin Y, Donahue K, Tsui M, Fish M, et al. 2019.. Tissue repair in the mouse liver following acute carbon tetrachloride depends on injury-induced Wnt/β-catenin signaling. . Hepatology 69::262335
    [Crossref] [Google Scholar]
  44. 44.
    Koblihová E, Mrázová I, Vaňourková Z, Maxová H, Kikerlová S, et al. 2020.. Pharmacological stimulation of Wnt/β-catenin signaling pathway attenuates the course of thioacetamide-induced acute liver failure. . Physiol. Res. 69::11326
    [Crossref] [Google Scholar]
  45. 45.
    Zhang Z, Broderick C, Nishimoto M, Yamaguchi T, Lee S-J, et al. 2020.. Tissue-targeted R-spondin mimetics for liver regeneration. . Sci. Rep. 10::13951
    [Crossref] [Google Scholar]
  46. 46.
    Planas-Paz L, Sun T, Pikiolek M, Cochran NR, Bergling S, et al. 2019.. YAP, but not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. . Cell Stem Cell 25::3953.e10
    [Crossref] [Google Scholar]
  47. 47.
    Poudel S, Cabrera DP, Bhushan B, Manley MW, Gunewardena S, et al. 2021.. Hepatocyte-specific deletion of Yes-associated protein improves recovery from acetaminophen-induced acute liver injury. . Toxicol. Sci. 184::27685
    [Crossref] [Google Scholar]
  48. 48.
    Li N, Kong M, Zeng S, Hao C, Li M, et al. 2019.. Brahma related gene 1 (Brg1) contributes to liver regeneration by epigenetically activating the Wnt/β-catenin pathway in mice. . FASEB J. 33::32738
    [Crossref] [Google Scholar]
  49. 49.
    Xu D, Yang F, Yuan JH, Zhang L, Bi HS, et al. 2013.. Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/β-catenin signaling. . Hepatology 58::73951
    [Crossref] [Google Scholar]
  50. 50.
    Xiong WJ, Hu LJ, Jian YC, Wang LJ, Jiang M, et al. 2012.. Wnt5a participates in hepatic stellate cell activation observed by gene expression profile and functional assays. . World J. Gastroenterol. 18::174552
    [Crossref] [Google Scholar]
  51. 51.
    Cheng JH, She H, Han YP, Wang J, Xiong S, et al. 2008.. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. . Am. J. Physiol. Gastrointest. Liver Physiol. 294::G3949
    [Crossref] [Google Scholar]
  52. 52.
    Kweon SM, Chi F, Higashiyama R, Lai K, Tsukamoto H. 2016.. Wnt pathway stabilizes MeCP2 protein to repress PPAR-γ in activation of hepatic stellate cells. . PLOS ONE 11::e0156111
    [Crossref] [Google Scholar]
  53. 53.
    Monga SP, Nejak-Bowen K. 2023.. Ductular reaction and liver regeneration: fulfilling the prophecy of Prometheus! Cell. . Mol. Gastroenterol. Hepatol. 15::8068
    [Crossref] [Google Scholar]
  54. 54.
    Hu S, Russell JO, Liu S, Cao C, McGaughey J, et al. 2021.. β-Catenin-NF-κB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction. . eLife 10::e71310
    [Crossref] [Google Scholar]
  55. 55.
    Russell JO, Lu WY, Okabe H, Abrams M, Oertel M, et al. 2019.. Hepatocyte-specific β-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. . Hepatology 69::74259
    [Crossref] [Google Scholar]
  56. 56.
    Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, et al. 2023.. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. . Hepatology 79::E9394
    [Crossref] [Google Scholar]
  57. 57.
    Behari J, Yeh TH, Krauland L, Otruba W, Cieply B, et al. 2010.. Liver-specific β-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis. . Am. J. Pathol. 176::74453
    [Crossref] [Google Scholar]
  58. 58.
    Behari J, Li H, Liu S, Stefanovic-Racic M, Alonso L, et al. 2014.. β-catenin links hepatic metabolic zonation with lipid metabolism and diet-induced obesity in mice. . Am. J. Pathol. 184::328498
    [Crossref] [Google Scholar]
  59. 59.
    Saponara E, Penno C, Orsini V, Wang ZY, Fischer A, et al. 2023.. Loss of hepatic leucine-rich repeat-containing G-protein coupled receptors 4 and 5 promotes nonalcoholic fatty liver disease. . Am. J. Pathol. 193::16181
    [Crossref] [Google Scholar]
  60. 60.
    Go GW, Srivastava R, Hernandez-Ono A, Gang G, Smith SB, et al. 2014.. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. . Cell Metab. 19::20920
    [Crossref] [Google Scholar]
  61. 61.
    Wang S, Song K, Srivastava R, Dong C, Go GW, et al. 2015.. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. . FASEB J. 29::343645
    [Crossref] [Google Scholar]
  62. 62.
    Belenguer G, Mastrogiovanni G, Pacini C, Hall Z, Dowbaj AM, et al. 2022.. RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state. . Nat. Commun. 13::334
    [Crossref] [Google Scholar]
  63. 63.
    Yeh TH, Krauland L, Singh V, Zou B, Devaraj P, et al. 2010.. Liver-specific β-catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis. . Hepatology 52::141019
    [Crossref] [Google Scholar]
  64. 64.
    Lemberger UJ, Fuchs CD, Karer M, Haas S, Stojakovic T, et al. 2016.. Hepatocyte specific expression of an oncogenic variant of β-catenin results in cholestatic liver disease. . Oncotarget 7::8698598
    [Crossref] [Google Scholar]
  65. 65.
    Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW. 2001.. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression. . Gut 49::56576
    [Crossref] [Google Scholar]
  66. 66.
    Ayers M, Liu S, Singhi AD, Kosar K, Cornuet P, Nejak-Bowen K. 2022.. Changes in beta-catenin expression and activation during progression of primary sclerosing cholangitis predict disease recurrence. . Sci. Rep. 12::206
    [Crossref] [Google Scholar]
  67. 67.
    Thompson MD, Moghe A, Cornuet P, Marino R, Tian J, et al. 2018.. β-Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis. . Hepatology 67::95571
    [Crossref] [Google Scholar]
  68. 68.
    Zhang R, Nakao T, Luo J, Xue Y, Cornuet P, et al. 2019.. Activation of WNT/beta-catenin signaling and regulation of the farnesoid X receptor/beta-catenin complex after murine bile duct ligation. . Hepatol. Commun. 3::164255
    [Crossref] [Google Scholar]
  69. 69.
    Pradhan-Sundd T, Kosar K, Saggi H, Zhang R, Vats R, et al. 2020.. Wnt/β-catenin signaling plays a protective role in the Mdr2 knockout murine model of cholestatic liver disease. . Hepatology 71::173249
    [Crossref] [Google Scholar]
  70. 70.
    Ayers M, Kosar K, Xue Y, Goel C, Carson M, et al. 2023.. Inhibiting Wnt signaling reduces cholestatic injury by disrupting the inflammatory axis. . Cell. Mol. Gastroenterol. Hepatol. 16::895921
    [Crossref] [Google Scholar]
  71. 71.
    Okabe H, Yang J, Sylakowski K, Yovchev M, Miyagawa Y, et al. 2016.. Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. . Hepatology 64::165266
    [Crossref] [Google Scholar]
  72. 72.
    Kosar K, Cornuet P, Singh S, Lee E, Liu S, et al. 2021.. Wnt7b regulates cholangiocyte proliferation and function during murine cholestasis. . Hepatol. Commun. 5::201934
    [Crossref] [Google Scholar]
  73. 73.
    Zhou L, Pradhan-Sundd T, Poddar M, Singh S, Kikuchi A, et al. 2015.. Mice with hepatic loss of the desmosomal protein γ-catenin are prone to cholestatic injury and chemical carcinogenesis. . Am. J. Pathol. 185::327489
    [Crossref] [Google Scholar]
  74. 74.
    Pradhan-Sundd T, Liu S, Singh S, Poddar M, Ko S, et al. 2021.. Dual β-catenin and γ-catenin loss in hepatocytes impacts their polarity through altered transforming growth factor-β and hepatocyte nuclear factor 4α signaling. . Am. J. Pathol. 191::885901
    [Crossref] [Google Scholar]
  75. 75.
    Pradhan-Sundd T, Zhou L, Vats R, Jiang A, Molina L, et al. 2018.. Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. . Hepatology 67::232037
    [Crossref] [Google Scholar]
  76. 76.
    Purcell R, Childs M, Maibach R, Miles C, Turner C, et al. 2011.. HGF/c-Met related activation of β-catenin in hepatoblastoma. . J. Exp. Clin. Cancer Res. 30::96
    [Crossref] [Google Scholar]
  77. 77.
    Guo L, Zhong D, Lau S, Liu X, Dong XY, et al. 2008.. Sox7 is an independent checkpoint for β-catenin function in prostate and colon epithelial cells. . Mol. Cancer Res. 6::142130
    [Crossref] [Google Scholar]
  78. 78.
    Ge J, Zheng Q, Qu H, Zhao Z, Xu Y, et al. 2022.. SOX7 modulates the progression of hepatoblastoma through the regulation of Wnt/β-catenin signaling pathway. . J. Cancer Res. Ther. 18::37077
    [Crossref] [Google Scholar]
  79. 79.
    Ji C, Chen L, Yuan M, Xie W, Sheng X, Yin Q. 2023.. KDM1A drives hepatoblastoma progression by activating the Wnt/β-catenin pathway through inhibition of DKK3 transcription. . Tissue Cell 81::101989
    [Crossref] [Google Scholar]
  80. 80.
    Koch A, Waha A, Hartmann W, Hrychyk A, Schüller U, et al. 2005.. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. . Clin. Cancer Res. 11::4295304
    [Crossref] [Google Scholar]
  81. 81.
    Sun CS, Wu KT, Lee HH, Uen YH, Tian YF, et al. 2008.. Anti-sense morpholino oligonucleotide assay shows critical involvement for NF-κB activation in the production of Wnt-1 protein by HepG2 cells: oncology implications. . J. Biomed. Sci. 15::63343
    [Crossref] [Google Scholar]
  82. 82.
    Zucchini-Pascal N, Peyre L, Rahmani R. 2013.. Crosstalk between beta-catenin and Snail in the induction of epithelial to mesenchymal transition in hepatocarcinoma: role of the ERK1/2 pathway. . Int. J. Mol. Sci. 14::2076892
    [Crossref] [Google Scholar]
  83. 83.
    Tao J, Calvisi DF, Ranganathan S, Cigliano A, Zhou L, et al. 2014.. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. . Gastroenterology 147::690701
    [Crossref] [Google Scholar]
  84. 84.
    Min Q, Molina L, Li J, Adebayo Michael AO, Russell JO, et al. 2019.. β-Catenin and Yes-associated protein 1 cooperate in hepatoblastoma pathogenesis. . Am. J. Pathol. 189::1091104
    [Crossref] [Google Scholar]
  85. 85.
    Molina L, Yang H, Adebayo Michael AO, Oertel M, Bell A, et al. 2019.. mTOR inhibition affects Yap1-β-catenin-induced hepatoblastoma growth and development. . Oncotarget 10::147590
    [Crossref] [Google Scholar]
  86. 86.
    Smith JL, Rodríguez TC, Mou H, Kwan SY, Pratt H, et al. 2021.. YAP1 withdrawal in hepatoblastoma drives therapeutic differentiation of tumor cells to functional hepatocyte-like cells. . Hepatology 73::101127
    [Crossref] [Google Scholar]
  87. 87.
    Liu P, Calvisi DF, Kiss A, Cigliano A, Schaff Z, et al. 2017.. Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. . Oncotarget 8::7343347
    [Crossref] [Google Scholar]
  88. 88.
    Molina L, Bell D, Tao J, Preziosi M, Pradhan-Sundd T, et al. 2018.. Hepatocyte-derived lipocalin 2 is a potential serum biomarker reflecting tumor burden in hepatoblastoma. . Am. J. Pathol. 188::1895909
    [Crossref] [Google Scholar]
  89. 89.
    Sangkhathat S, Kusafuka T, Miao J, Yoneda A, Nara K, et al. 2006.. In vitro RNA interference against β-catenin inhibits the proliferation of pediatric hepatic tumors. . Int. J. Oncol. 28::71522
    [Google Scholar]
  90. 90.
    Fujimoto T, Tomizawa M, Yokosuka O. 2009.. SiRNA of Frizzled-9 suppresses proliferation and motility of hepatoma cells. . Int. J. Oncol. 35::86166
    [Google Scholar]
  91. 91.
    Ellerkamp V, Lieber J, Nagel C, Wenz J, Warmann SW, et al. 2013.. Pharmacological inhibition of beta-catenin in hepatoblastoma cells. . Pediatr. Surg. Int. 29::14149
    [Crossref] [Google Scholar]
  92. 92.
    Delgado ER, Yang J, So J, Leimgruber S, Kahn M, et al. 2014.. Identification and characterization of a novel small-molecule inhibitor of β-catenin signaling. . Am. J. Pathol. 184::211122
    [Crossref] [Google Scholar]
  93. 93.
    Tan X, Apte U, Micsenyi A, Kotsagrelos E, Luo JH, et al. 2005.. Epidermal growth factor receptor: a novel target of the Wnt/β-catenin pathway in liver. . Gastroenterology 129::285302
    [Crossref] [Google Scholar]
  94. 94.
    Hurley EH, Tao J, Liu S, Krutsenko Y, Singh S, Monga SP. 2023.. Inhibition of heat shock factor 1 signaling decreases hepatoblastoma growth via induction of apoptosis. . Am. J. Pathol. 193::14860
    [Crossref] [Google Scholar]
  95. 95.
    Indersie E, Lesjean S, Hooks KB, Sagliocco F, Ernault T, et al. 2017.. MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting β-catenin and Wnt signaling. . Hepatol. Commun. 1::16883
    [Crossref] [Google Scholar]
  96. 96.
    Lozano E, Sanchon-Sanchez P, Morente-Carrasco A, Chinchilla-Tábora LM, Mauriz JL, et al. 2023.. Impact of aberrant β-catenin pathway on cholangiocarcinoma heterogeneity. . Cells 12::1141
    [Crossref] [Google Scholar]
  97. 97.
    Huang XY, Zhang C, Cai JB, Shi GM, Ke AW, et al. 2014.. Comprehensive multiple molecular profile of epithelial mesenchymal transition in intrahepatic cholangiocarcinoma patients. . PLOS ONE 9::e96860
    [Crossref] [Google Scholar]
  98. 98.
    Clapéron A, Mergey M, Nguyen Ho-Bouldoires TH, Vignjevic D, Wendum D, et al. 2014.. EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition. . J. Hepatol. 61::32532
    [Crossref] [Google Scholar]
  99. 99.
    Loilome W, Bungkanjana P, Techasen A, Namwat N, Yongvanit P, et al. 2014.. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. . Tumour Biol. 35::535767
    [Crossref] [Google Scholar]
  100. 100.
    Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, et al. 2015.. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. . J. Clin. Investig. 125::126985
    [Crossref] [Google Scholar]
  101. 101.
    Chen W, Liang J, Huang L, Cai J, Lei Y, et al. 2016.. Characterizing the activation of the Wnt signaling pathway in hilar cholangiocarcinoma using a tissue microarray approach. . Eur. J. Histochem. 60::2536
    [Crossref] [Google Scholar]
  102. 102.
    Shi Y, Bai J, Guo S, Wang J. 2018.. Wntless is highly expressed in advanced-stage intrahepatic cholangiocarcinoma. . Tohoku J. Exp. Med. 244::19599
    [Crossref] [Google Scholar]
  103. 103.
    Zhou Y, Chen Y, Zhang X, Xu Q, Wu Z, et al. 2021.. Brahma-related gene 1 inhibition prevents liver fibrosis and cholangiocarcinoma by attenuating progenitor expansion. . Hepatology 74::797815
    [Crossref] [Google Scholar]
  104. 104.
    Zhang Y, Xu H, Cui G, Liang B, Chen X, et al. 2022.. β-Catenin sustains and is required for YES-associated protein oncogenic activity in cholangiocarcinoma. . Gastroenterology 163::48194
    [Crossref] [Google Scholar]
  105. 105.
    Shi XD, Yu XH, Wu WR, Xu XL, Wang JY, et al. 2016.. Dickkopf-1 expression is associated with tumorigenity and lymphatic metastasis in human hilar cholangiocarcinoma. . Oncotarget 7::7037887
    [Crossref] [Google Scholar]
  106. 106.
    Yang B, House MG, Guo M, Herman JG, Clark DP. 2005.. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. . Mod. Pathol. 18::41220
    [Crossref] [Google Scholar]
  107. 107.
    Goeppert B, Konermann C, Schmidt CR, Bogatyrova O, Geiselhart L, et al. 2014.. Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway. . Hepatology 59::54454
    [Crossref] [Google Scholar]
  108. 108.
    Merino-Azpitarte M, Lozano E, Perugorria MJ, Esparza-Baquer A, Erice O, et al. 2017.. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. . J. Hepatol. 67::7283
    [Crossref] [Google Scholar]
  109. 109.
    Zhang J, Han C, Wu T. 2012.. MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. . Gastroenterology 143::24656.e8
    [Crossref] [Google Scholar]
  110. 110.
    Li J, Yao L, Li G, Ma D, Sun C, et al. 2015.. miR-221 promotes epithelial-mesenchymal transition through targeting PTEN and forms a positive feedback loop with β-catenin/c-Jun signaling pathway in extra-hepatic cholangiocarcinoma. . PLOS ONE 10::e0141168
    [Crossref] [Google Scholar]
  111. 111.
    Goeppert B, Ernst C, Baer C, Roessler S, Renner M, et al. 2016.. Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. . Epigenetics 11::78090
    [Crossref] [Google Scholar]
  112. 112.
    Tang Z, Yang Y, Chen W, Liang T. 2023.. Epigenetic deregulation of MLF1 drives intrahepatic cholangiocarcinoma progression through EGFR/AKT and Wnt/β-catenin signaling. . Hepatol. Commun. 7::e0204
    [Google Scholar]
  113. 113.
    Carotenuto P, Fassan M, Pandolfo R, Lampis A, Vicentini C, et al. 2017.. Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. . Gut 66::126877
    [Crossref] [Google Scholar]
  114. 114.
    Zhang F, Wan M, Xu Y, Li Z, Leng K, et al. 2017.. Long noncoding RNA PCAT1 regulates extrahepatic cholangiocarcinoma progression via the Wnt/β-catenin-signaling pathway. . Biomed. Pharmacother. 94::5562
    [Crossref] [Google Scholar]
  115. 115.
    Liu J, Pan S, Hsieh MH, Ng N, Sun F, et al. 2013.. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. . PNAS 110::2022429
    [Crossref] [Google Scholar]
  116. 116.
    Lim K, Han C, Xu L, Isse K, Demetris AJ, Wu T. 2008.. Cyclooxygenase-2-derived prostaglandin E2 activates β-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. . Cancer Res. 68::55360
    [Crossref] [Google Scholar]
  117. 117.
    Huang GL, Shen DY, Cai CF, Zhang QY, Ren HY, Chen QX. 2015.. β-Escin reverses multidrug resistance through inhibition of the GSK3β/β-catenin pathway in cholangiocarcinoma. . World J. Gastroenterol. 21::114857
    [Crossref] [Google Scholar]
  118. 118.
    Cheng H, Li Q. 2023.. Sevoflurane inhibits cholangiocarcinoma via Wnt/β-catenin signaling pathway. . BMC Gastroenterol. 23::279
    [Crossref] [Google Scholar]
  119. 119.
    Goswami VG, Patel BD. 2021.. Recent updates on Wnt signaling modulators: a patent review (2014–2020). . Expert Opin. Ther. Pat. 31::100943
    [Crossref] [Google Scholar]
  120. 120.
    Bugter JM, Fenderico N, Maurice MM. 2021.. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. . Nat. Rev. Cancer 21::521
    [Crossref] [Google Scholar]
  121. 121.
    Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. 2022.. β-Catenin signaling in hepatocellular carcinoma. . J. Clin. Investig. 132::e154515
    [Crossref] [Google Scholar]
  122. 122.
    Audard V, Grimber G, Elie C, Radenen B, Audebourg A, et al. 2007.. Cholestasis is a marker for hepatocellular carcinomas displaying β-catenin mutations. . J. Pathol. 212::34552
    [Crossref] [Google Scholar]
  123. 123.
    Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y, et al. 2002.. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of β-catenin. . Cancer Res. 62::197177
    [Google Scholar]
  124. 124.
    Wang W, Lei Y, Zhang G, Li X, Yuan J, et al. 2023.. USP39 stabilizes β-catenin by deubiquitination and suppressing E3 ligase TRIM26 pre-mRNA maturation to promote HCC progression. . Cell Death Dis. 14::63
    [Crossref] [Google Scholar]
  125. 125.
    Choi HK, Choi KC, Yoo JY, Song M, Ko SJ, et al. 2011.. Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. . Mol. Cell 43::20316
    [Crossref] [Google Scholar]
  126. 126.
    Li W, Han Q, Zhu Y, Zhou Y, Zhang J, et al. 2023.. SUMOylation of RNF146 results in Axin degradation and activation of Wnt/β-catenin signaling to promote the progression of hepatocellular carcinoma. . Oncogene 42::172840
    [Crossref] [Google Scholar]
  127. 127.
    Kaur P, Mani S, Cros MP, Scoazec JY, Chemin I, et al. 2012.. Epigenetic silencing of sFRP1 activates the canonical Wnt pathway and contributes to increased cell growth and proliferation in hepatocellular carcinoma. . Tumour Biol. 33::32536
    [Crossref] [Google Scholar]
  128. 128.
    Delgado E, Bahal R, Yang J, Lee JM, Ly DH, Monga SP. 2013.. β-Catenin knockdown in liver tumor cells by a cell permeable gamma guanidine-based peptide nucleic acid. . Curr. Cancer Drug Targets 13::86778
    [Crossref] [Google Scholar]
  129. 129.
    Patil MA, Lee SA, Macias E, Lam ET, Xu C, et al. 2009.. Role of cyclin D1 as a mediator of c-Met- and β-catenin-induced hepatocarcinogenesis. . Cancer Res. 69::25361
    [Crossref] [Google Scholar]
  130. 130.
    Tang B, Tang F, Wang Z, Qi G, Liang X, et al. 2016.. Overexpression of CTNND1 in hepatocellular carcinoma promotes carcinous characters through activation of Wnt/β-catenin signaling. . J. Exp. Clin. Cancer Res. 35::82
    [Crossref] [Google Scholar]
  131. 131.
    Lee JM, Yang J, Newell P, Singh S, Parwani A, et al. 2014.. β-Catenin signaling in hepatocellular cancer: implications in inflammation, fibrosis, and proliferation. . Cancer Lett. 343::9097
    [Crossref] [Google Scholar]
  132. 132.
    Audard V, Grimber G, Elie C, Radenen B, Audebourg A, et al. 2007.. Cholestasis is a marker for hepatocellular carcinomas displaying β-catenin mutations. . J. Pathol. 212::34552
    [Crossref] [Google Scholar]
  133. 133.
    Chiu M, Tardito S, Pillozzi S, Arcangeli A, Armento A, et al. 2014.. Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. . Br. J. Cancer 111::115967
    [Crossref] [Google Scholar]
  134. 134.
    Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, et al. 2019.. β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. . Cancer Discov. 9::112441
    [Crossref] [Google Scholar]
  135. 135.
    Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, et al. 2019.. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. . Clin. Cancer Res. 25::211626
    [Crossref] [Google Scholar]
  136. 136.
    Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, et al. 2017.. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. . Gastroenterology 153::81226
    [Crossref] [Google Scholar]
  137. 137.
    Wei W, Chua MS, Grepper S, So S. 2010.. Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo. . Int. J. Cancer 126::242636
    [Crossref] [Google Scholar]
  138. 138.
    Yamashita T, Budhu A, Forgues M, Wang XW. 2007.. Activation of hepatic stem cell marker EpCAM by Wnt-β-catenin signaling in hepatocellular carcinoma. . Cancer Res. 67::1083139
    [Crossref] [Google Scholar]
  139. 139.
    Ma L, Wang X, Jia T, Wei W, Chua MS, So S. 2015.. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. . Oncotarget 6::25390401
    [Crossref] [Google Scholar]
  140. 140.
    Yang XG, Zhu LC, Wang YJ, Li YY, Wang D. 2019.. Current advance of therapeutic agents in clinical trials potentially targeting tumor plasticity. . Front. Oncol. 9::887
    [Crossref] [Google Scholar]
  141. 141.
    Delgado E, Okabe H, Preziosi M, Russell JO, Alvarado TF, et al. 2015.. Complete response of Ctnnb1-mutated tumours to β-catenin suppression by locked nucleic acid antisense in a mouse hepatocarcinogenesis model. . J. Hepatol. 62::38087
    [Crossref] [Google Scholar]
  142. 142.
    Nagel C, Armeanu-Ebinger S, Dewerth A, Warmann SW, Fuchs J. 2015.. Anti-tumor activity of sorafenib in a model of a pediatric hepatocellular carcinoma. . Exp. Cell Res. 331::97104
    [Crossref] [Google Scholar]
  143. 143.
    Adebayo Michael AO, Ko S, Tao J, Moghe A, Yang H, et al. 2019.. Inhibiting glutamine-dependent mTORC1 activation ameliorates liver cancers driven by β-catenin mutations. . Cell Metab. 29::113550.e6
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-111523-023535
Loading
/content/journals/10.1146/annurev-pathmechdis-111523-023535
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error