Different mechanisms contribute to intratumor heterogeneity, including genetic mutations, the microenvironment, and the existence of subpopulations of cancer cells with increased renewal capacity and the ability to recapitulate the heterogeneity found in primary tumors, which are referred to as cancer stem cells (CSCs). In this review, we discuss how the concept of CSCs has been defined, what assays are currently used to define the functional properties of CSCs, what intrinsic and extrinsic mechanisms regulate CSC functions, how plastic CSCs are, and the importance of epithelial-to-mesenchymal transition in conferring CSC properties. Finally, we discuss the mechanisms by which CSCs may resist medical therapy and contribute to tumor relapse.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hanahan D, Weinberg RA. 1.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  2. Almendro V, Marusyk A, Polyak K. 2.  2013. Cellular heterogeneity and molecular evolution in cancer. Annu. Rev. Pathol. Mech. Dis. 8:277–302 [Google Scholar]
  3. De Sousa EMF, Vermeulen L, Fessler E, Medema JP. 3.  2013. Cancer heterogeneity—a multifaceted view. EMBO Rep. 14:686–95 [Google Scholar]
  4. Heppner GH. 4.  1984. Tumor heterogeneity. Cancer Res. 44:2259–65 [Google Scholar]
  5. Kreso A, Dick JE. 5.  2014. Evolution of the cancer stem cell model. Cell Stem Cell 14:275–91 [Google Scholar]
  6. Yates LR, Campbell PJ. 6.  2012. Evolution of the cancer genome. Nat. Rev. Genet. 13:795–806 [Google Scholar]
  7. Meacham CE, Morrison SJ. 7.  2013. Tumour heterogeneity and cancer cell plasticity. Nature 501:328–37 [Google Scholar]
  8. Nowell PC. 8.  1976. The clonal evolution of tumor cell populations. Science 194:23–28 [Google Scholar]
  9. Stratton MR, Campbell PJ, Futreal PA. 9.  2009. The cancer genome. Nature 458:719–24 [Google Scholar]
  10. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. 10.  2013. Cancer genome landscapes. Science 339:1546–58 [Google Scholar]
  11. Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C. 11.  2014. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48:215–36 [Google Scholar]
  12. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ. 12.  et al. 2010. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–96 [Google Scholar]
  13. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B. 13.  et al. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502:333–39 [Google Scholar]
  14. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D. 14.  et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–92 [Google Scholar]
  15. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP. 15.  et al. 2014. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46:225–33 [Google Scholar]
  16. de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC. 16.  et al. 2014. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346:251–56 [Google Scholar]
  17. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X. 17.  et al. 2014. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:256–59 [Google Scholar]
  18. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD. 18.  et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93 [Google Scholar]
  19. Greaves M, Maley CC. 19.  2012. Clonal evolution in cancer. Nature 481:306–13 [Google Scholar]
  20. Navin N, Kendall J, Troge J, Andrews P, Rodgers L. 20.  et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94 [Google Scholar]
  21. Eirew P, Steif A, Khattra J, Ha G, Yap D. 21.  et al. 2015. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518:422–26 [Google Scholar]
  22. Hou Y, Song L, Zhu P, Zhang B, Tao Y. 22.  et al. 2012. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–85 [Google Scholar]
  23. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. 23.  2014. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514:54–58 [Google Scholar]
  24. Cleary AS, Leonard TL, Gestl SA, Gunther EJ. 24.  2014. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508:113–17 [Google Scholar]
  25. Blanpain C, Fuchs E. 25.  2014. Plasticity of epithelial stem cells in tissue regeneration. Science 344:1242281 [Google Scholar]
  26. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T. 26.  et al. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–48 [Google Scholar]
  27. Bonnet D, Dick JE. 27.  1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3:730–37 [Google Scholar]
  28. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B. 28.  et al. 2011. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17:1086–93 [Google Scholar]
  29. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. 29.  2003. Prospective identification of tumorigenic breast cancer cells. PNAS 100:3983–88 [Google Scholar]
  30. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J. 30.  et al. 2007. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–67 [Google Scholar]
  31. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M. 31.  et al. 2010. Aldehyde dehydrogenase 1–positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin. Cancer Res. 16:45–55 [Google Scholar]
  32. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J. 32.  et al. 2004. Identification of human brain tumour initiating cells. Nature 432:396–401 [Google Scholar]
  33. O'Brien CA, Pollett A, Gallinger S, Dick JE. 33.  2007. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–10 [Google Scholar]
  34. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M. 34.  et al. 2007. Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–15 [Google Scholar]
  35. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L. 35.  et al. 2007. Identification of pancreatic cancer stem cells. Cancer Res. 67:1030–37 [Google Scholar]
  36. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW. 36.  et al. 2007. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–23 [Google Scholar]
  37. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ. 37.  et al. 2007. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. PNAS 104:973–78 [Google Scholar]
  38. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K. 38.  et al. 2008. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. PNAS 105:13427–32 [Google Scholar]
  39. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM. 39.  et al. 2008. Identification of cells initiating human melanomas. Nature 451:345–49 [Google Scholar]
  40. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL. 40.  et al. 2010. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–37 [Google Scholar]
  41. Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M. 41.  et al. 2011. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 71:3098–109 [Google Scholar]
  42. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J. 42.  et al. 2010. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7:279–82 [Google Scholar]
  43. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. 43.  2008. Efficient tumour formation by single human melanoma cells. Nature 456:593–98 [Google Scholar]
  44. Lapouge G, Beck B, Nassar D, Dubois C, Dekoninck S, Blanpain C. 44.  2012. Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness. EMBO J. 31:4563–75 [Google Scholar]
  45. Buchstaller J, McKeever PE, Morrison SJ. 45.  2012. Tumorigenic cells are common in mouse MPNSTs but their frequency depends upon tumor genotype and assay conditions. Cancer Cell 21:240–52 [Google Scholar]
  46. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S. 46.  et al. 2008. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14:47–58 [Google Scholar]
  47. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF. 47.  et al. 2010. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–75 [Google Scholar]
  48. Clappier E, Gerby B, Sigaux F, Delord M, Touzri F. 48.  et al. 2011. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J. Exp. Med. 208:653–61 [Google Scholar]
  49. Nowak D, Liem NL, Mossner M, Klaumunzer M, Papa RA. 49.  et al. 2015. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance. Exp. Hematol. 43:32–43.e35 [Google Scholar]
  50. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. 50.  2004. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–48 [Google Scholar]
  51. Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D. 51.  et al. 2008. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452:650–53 [Google Scholar]
  52. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A. 52.  et al. 2011. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478:399–403 [Google Scholar]
  53. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D. 53.  et al. 2014. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511:246–50 [Google Scholar]
  54. Curtis SJ, Sinkevicius KW, Li D, Lau AN, Roach RR. 54.  et al. 2010. Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 7:127–33 [Google Scholar]
  55. Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z. 55.  et al. 2009. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15:135–47 [Google Scholar]
  56. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE. 56.  2008. The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res. 68:7711–17 [Google Scholar]
  57. Blanpain C, Simons BD. 57.  2013. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14:489–502 [Google Scholar]
  58. Morris RJ, Liu Y, Marles L, Yang Z, Trempus C. 58.  et al. 2004. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22:411–17 [Google Scholar]
  59. Ito M, Liu Y, Yang Z, Nguyen J, Liang F. 59.  et al. 2005. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11:1351–54 [Google Scholar]
  60. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F. 60.  et al. 2006. Purification and unique properties of mammary epithelial stem cells. Nature 439:993–97 [Google Scholar]
  61. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G. 61.  et al. 2011. Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189–93 [Google Scholar]
  62. Prater MD, Petit V, Russell IA, Giraddi RR, Shehata M. 62.  et al. 2014. Mammary stem cells have myoepithelial cell properties. Nat. Cell Biol. 16:942–50 [Google Scholar]
  63. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. 63.  2012. Defining the mode of tumour growth by clonal analysis. Nature 488:527–30 [Google Scholar]
  64. Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH. 64.  2007. A single type of progenitor cell maintains normal epidermis. Nature 446:185–89 [Google Scholar]
  65. Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S. 65.  et al. 2012. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489:257–62 [Google Scholar]
  66. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH. 66.  et al. 2012. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–35 [Google Scholar]
  67. Kozar S, Morrissey E, Nicholson AM, van der Heijden M, Zecchini HI. 67.  et al. 2013. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13:626–33 [Google Scholar]
  68. Zomer A, Ellenbroek SI, Ritsma L, Beerling E, Vrisekoop N, Van Rheenen J. 68.  2013. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31:602–6 [Google Scholar]
  69. Baker AM, Cereser B, Melton S, Fletcher AG, Rodriguez-Justo M. 69.  et al. 2014. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 8:940–47 [Google Scholar]
  70. Humphries A, Cereser B, Gay LJ, Miller DS, Das B. 70.  et al. 2013. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. PNAS 110:E2490–99 [Google Scholar]
  71. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F. 71.  et al. 2013. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–48 [Google Scholar]
  72. Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E. 72.  et al. 2010. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115:2610–18 [Google Scholar]
  73. Nguyen LV, Makarem M, Carles A, Moksa M, Kannan N. 73.  et al. 2014. Clonal analysis via barcoding reveals diverse growth and differentiation of transplanted mouse and human mammary stem cells. Cell Stem Cell 14:253–63 [Google Scholar]
  74. Nguyen LV, Cox CL, Eirew P, Knapp DJ, Pellacani D. 74.  et al. 2014. DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nat. Commun. 5:5871 [Google Scholar]
  75. Wagenblast E, Soto M, Gutierrez-Angel S, Hartl CA, Gable AL. 75.  et al. 2015. A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 520:358–62 [Google Scholar]
  76. Chen J, Li Y, Yu TS, McKay RM, Burns DK. 76.  et al. 2012. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–26 [Google Scholar]
  77. Nakanishi Y, Seno H, Fukuoka A, Ueo T, Yamaga Y. 77.  et al. 2013. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat. Genet. 45:98–103 [Google Scholar]
  78. Sarkar A, Hochedlinger K. 78.  2013. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30 [Google Scholar]
  79. Tian H, Biehs B, Warming S, Leong KG, Rangell L. 79.  et al. 2011. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478:255–59 [Google Scholar]
  80. van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN. 80.  et al. 2012. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14:1099–104 [Google Scholar]
  81. Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L. 81.  et al. 2013. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65–69 [Google Scholar]
  82. Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. 82.  2014. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14:149–59 [Google Scholar]
  83. Blanpain C. 83.  2013. Tracing the cellular origin of cancer. Nat. Cell Biol. 15:126–34 [Google Scholar]
  84. Lapouge G, Youssef KK, Vokaer B, Achouri Y, Michaux C. 84.  et al. 2011. Identifying the cellular origin of squamous skin tumors. PNAS 108:7431–36 [Google Scholar]
  85. White AC, Tran K, Khuu J, Dang C, Cui Y. 85.  et al. 2011. Defining the origins of Ras/p53-mediated squamous cell carcinoma. PNAS 108:7425–30 [Google Scholar]
  86. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H. 86.  et al. 2009. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–11 [Google Scholar]
  87. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI. 87.  et al. 2013. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38 [Google Scholar]
  88. Beck B, Blanpain C. 88.  2013. Unravelling cancer stem cell potential. Nat. Rev. Cancer 13:727–38 [Google Scholar]
  89. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K. 89.  et al. 2011. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–44 [Google Scholar]
  90. Quintana E, Shackleton M, Foster HR, Fullen DR, Sabel MS. 90.  et al. 2010. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–23 [Google Scholar]
  91. Schober M, Fuchs E. 91.  2011. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. PNAS 108:10544–49 [Google Scholar]
  92. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA. 92.  et al. 2010. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–94 [Google Scholar]
  93. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG. 93.  et al. 2013. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:61–74 [Google Scholar]
  94. Nieto MA. 94.  2013. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342:1234850 [Google Scholar]
  95. Thiery JP, Acloque H, Huang RY, Nieto MA. 95.  2009. Epithelial-mesenchymal transitions in development and disease. Cell 139:871–90 [Google Scholar]
  96. Chaffer CL, Weinberg RA. 96.  2011. A perspective on cancer cell metastasis. Science 331:1559–64 [Google Scholar]
  97. Polyak K, Weinberg RA. 97.  2009. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9:265–73 [Google Scholar]
  98. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A. 98.  et al. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–15 [Google Scholar]
  99. Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. 99.  2008. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLOS ONE 3:e2888 [Google Scholar]
  100. Puisieux A, Brabletz T, Caramel J. 100.  2014. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16:488–94 [Google Scholar]
  101. Schmidt JM, Panzilius E, Bartsch HS, Irmler M, Beckers J. 101.  et al. 2015. Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep. 10:131–39 [Google Scholar]
  102. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. 102.  2012. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–36 [Google Scholar]
  103. Celià-Terrassa T, Meca-Cortés O, Mateo F, Martínez de Paz A, Rubio N. 103.  et al. 2012. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Investig. 122:1849–68 [Google Scholar]
  104. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP. 104.  et al. 2008. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89 [Google Scholar]
  105. Morel AP, Hinkal GW, Thomas C, Fauvet F, Courtois-Cox S. 105.  et al. 2012. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLOS Genet. 8:e1002723 [Google Scholar]
  106. Beck B, Lapouge G, Rorive S, Drogat B, Desaedelaere K. 106.  et al. 2015. Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16:67–79 [Google Scholar]
  107. Iorio MV, Croce CM. 107.  2012. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4:143–59 [Google Scholar]
  108. Sun X, Jiao X, Pestell TG, Fan C, Qin S. 108.  et al. 2014. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene 33:4967–77 [Google Scholar]
  109. Park SM, Gaur AB, Lengyel E, Peter ME. 109.  2008. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907 [Google Scholar]
  110. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A. 110.  et al. 2008. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10:593–601 [Google Scholar]
  111. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E. 111.  et al. 2008. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9:582–89 [Google Scholar]
  112. Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P. 112.  et al. 2009. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603 [Google Scholar]
  113. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y. 113.  et al. 2011. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13:317–23 [Google Scholar]
  114. Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ. 114.  et al. 2011. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208:875–83 [Google Scholar]
  115. Kim NH, Kim HS, Li XY, Lee I, Choi HS. 115.  et al. 2011. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 195:417–33 [Google Scholar]
  116. Choi YJ, Lin CP, Ho JJ, He X, Okada N. 116.  et al. 2011. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol. 13:1353–60 [Google Scholar]
  117. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C. 117.  et al. 2014. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med. 20:29–36 [Google Scholar]
  118. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY. 118.  et al. 2010. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12:982–92 [Google Scholar]
  119. Thornton JE, Gregory RI. 119.  2012. How does Lin28 let-7 control development and disease?. Trends Cell Biol. 22:474–82 [Google Scholar]
  120. Yu F, Yao H, Zhu P, Zhang X, Pan Q. 120.  et al. 2007. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–23 [Google Scholar]
  121. Viswanathan SR, Daley GQ, Gregory RI. 121.  2008. Selective blockade of microRNA processing by Lin28. Science 320:97–100 [Google Scholar]
  122. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL. 122.  et al. 2009. Lin28 promotes transformation and is associated with advanced human malignancies. Nat. Genet. 41:843–48 [Google Scholar]
  123. Shyh-Chang N, Daley GQ. 123.  2013. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell 12:395–406 [Google Scholar]
  124. Chien CS, Wang ML, Chu PY, Chang YL, Liu WH. 124.  et al. 2015. Lin28b/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell carcinoma cells to a stem-like state. Cancer Res. 75:122553–65 [Google Scholar]
  125. Tam WL, Weinberg RA. 125.  2013. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19:1438–49 [Google Scholar]
  126. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP. 126.  2011. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat. Struct. Mol. Biol. 18:867–74 [Google Scholar]
  127. Ke XS, Qu Y, Cheng Y, Li WC, Rotter V. 127.  et al. 2010. Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells. BMC Genomics 11:669 [Google Scholar]
  128. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR. 128.  et al. 2012. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21:473–87 [Google Scholar]
  129. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS. 129.  et al. 2008. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27:7274–84 [Google Scholar]
  130. Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A. 130.  et al. 2008. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28:4772–81 [Google Scholar]
  131. Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P. 131.  et al. 2009. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 69:9211–18 [Google Scholar]
  132. Kim SH, Joshi K, Ezhilarasan R, Myers TR, Siu J. 132.  et al. 2015. EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem Cell Rep. 4:226–38 [Google Scholar]
  133. Fillmore CM, Xu C, Desai PT, Berry JM, Rowbotham SP. 133.  et al. 2015. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 520:239–42 [Google Scholar]
  134. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. 134.  2010. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 39:761–72 [Google Scholar]
  135. Zhang B, Strauss AC, Chu S, Li M, Ho Y. 135.  et al. 2010. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17:427–42 [Google Scholar]
  136. Frame FM, Pellacani D, Collins AT, Simms MS, Mann VM. 136.  et al. 2013. HDAC inhibitor confers radiosensitivity to prostate stem-like cells. Br. J. Cancer 109:3023–33 [Google Scholar]
  137. Bruzzese F, Leone A, Rocco M, Carbone C, Piro G. 137.  et al. 2011. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J. Cell. Physiol. 226:2378–90 [Google Scholar]
  138. Laugesen A, Helin K. 138.  2014. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14:735–51 [Google Scholar]
  139. Dumont N, Wilson MB, Crawford YG, Reynolds PA, Sigaroudinia M, Tlsty TD. 139.  2008. Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. PNAS 105:14867–72 [Google Scholar]
  140. Carmona FJ, Davalos V, Vidal E, Gomez A, Heyn H. 140.  et al. 2014. A comprehensive DNA methylation profile of epithelial-to-mesenchymal transition. Cancer Res. 74:5608–19 [Google Scholar]
  141. Junttila MR, de Sauvage FJ. 141.  2013. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–54 [Google Scholar]
  142. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C. 142.  et al. 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82 [Google Scholar]
  143. Lichtenberger BM, Tan PK, Niederleithner H, Ferrara N, Petzelbauer P, Sibilia M. 143.  2010. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 140:268–79 [Google Scholar]
  144. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J. 144.  et al. 2012. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med. 209:507–20 [Google Scholar]
  145. Zhang Z, Dong Z, Lauxen IS, Filho MS, Nor JE. 145.  2014. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res. 74:2869–81 [Google Scholar]
  146. Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW. 146.  et al. 2010. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6:141–52 [Google Scholar]
  147. Infanger DW, Cho Y, Lopez BS, Mohanan S, Liu SC. 147.  et al. 2013. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res. 73:7079–89 [Google Scholar]
  148. Krause DS, Lazarides K, Lewis JB, von Andrian UH, Van Etten RA. 148.  2014. Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood 123:1361–71 [Google Scholar]
  149. Cao Z, Ding BS, Guo P, Lee SB, Butler JM. 149.  et al. 2014. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25:350–65 [Google Scholar]
  150. Pietras A, Katz AM, Ekstrom EJ, Wee B, Halliday JJ. 150.  et al. 2014. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:357–69 [Google Scholar]
  151. Keith B, Simon MC. 151.  2007. Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–72 [Google Scholar]
  152. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H. 152.  2008. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26:1818–30 [Google Scholar]
  153. Li Z, Bao S, Wu Q, Wang H, Eyler C. 153.  et al. 2009. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–13 [Google Scholar]
  154. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A. 154.  et al. 2009. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α. Oncogene 28:3949–59 [Google Scholar]
  155. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. 155.  2011. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411 [Google Scholar]
  156. Ng KP, Manjeri A, Lee KL. 156.  2014. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 123:3316–26 [Google Scholar]
  157. Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. 157.  2014. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. PNAS 111:E5429–38 [Google Scholar]
  158. van den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P. 158.  et al. 2014. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat. Commun. 5:5203 [Google Scholar]
  159. Plaks V, Kong N, Werb Z. 159.  2015. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells?. Cell Stem Cell 16:225–38 [Google Scholar]
  160. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM. 160.  et al. 2012. EMT and dissemination precede pancreatic tumor formation. Cell 148:349–61 [Google Scholar]
  161. Lu H, Clauser KR, Tam WL, Frose J, Ye X. 161.  et al. 2014. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16:1105–17 [Google Scholar]
  162. Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L. 162.  et al. 2014. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Investig. 124:1853–67 [Google Scholar]
  163. Iliopoulos D, Hirsch HA, Struhl K. 163.  2009. An epigenetic switch involving NF-κB, Lin28, let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706 [Google Scholar]
  164. Rokavec M, Wu W, Luo JL. 164.  2012. IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol. Cell 45:777–89 [Google Scholar]
  165. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F. 165.  et al. 2009. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11:1487–95 [Google Scholar]
  166. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I. 166.  et al. 2011. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. PNAS 108:12425–30 [Google Scholar]
  167. Wehbe M, Soudja SM, Mas A, Chasson L, Guinamard R. 167.  et al. 2012. Epithelial-mesenchymal-transition-like and TGFβ pathways associated with autochthonous inflammatory melanoma development in mice. PLOS ONE 7:e49419 [Google Scholar]
  168. Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D. 168.  2012. Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 31:2521–34 [Google Scholar]
  169. Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. 169.  2011. TGFβ/TNFα-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 71:4707–19 [Google Scholar]
  170. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F. 170.  et al. 2011. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–40 [Google Scholar]
  171. Fuxe J, Karlsson MC. 171.  2012. TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin. Cancer Biol. 22:455–61 [Google Scholar]
  172. Oshimori N, Oristian D, Fuchs E. 172.  2015. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160:963–76 [Google Scholar]
  173. Ohlund D, Elyada E, Tuveson D. 173.  2014. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 211:1503–23 [Google Scholar]
  174. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC. 174.  et al. 2014. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–34 [Google Scholar]
  175. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E. 175.  et al. 2010. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 70:6945–56 [Google Scholar]
  176. Shimoda M, Principe S, Jackson HW, Luga V, Fang H. 176.  et al. 2014. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat. Cell Biol. 16:889–901 [Google Scholar]
  177. Clevers H, Nusse R. 177.  2012. Wnt/β-catenin signaling and disease. Cell 149:1192–205 [Google Scholar]
  178. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH. 178.  et al. 2010. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12:468–76 [Google Scholar]
  179. Yasuda K, Torigoe T, Mariya T, Asano T, Kuroda T. 179.  et al. 2014. Fibroblasts induce expression of FGF4 in ovarian cancer stem-like cells/cancer-initiating cells and upregulate their tumor initiation capacity. Lab. Investig. 94:1355–69 [Google Scholar]
  180. Tsuyada A, Chow A, Wu J, Somlo G, Chu P. 180.  et al. 2012. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 72:2768–79 [Google Scholar]
  181. Geary LA, Nash KA, Adisetiyo H, Liang M, Liao CP. 181.  et al. 2014. CAF-secreted annexin A1 induces prostate cancer cells to gain stem cell-like features. Mol. Cancer Res. 12:607–21 [Google Scholar]
  182. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA. 182.  et al. 2014. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat. Commun. 5:3472 [Google Scholar]
  183. Li HJ, Reinhardt F, Herschman HR, Weinberg RA. 183.  2012. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2:840–55 [Google Scholar]
  184. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J. 184.  et al. 2013. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J. Exp. Med. 210:2851–72 [Google Scholar]
  185. Oskarsson T, Batlle E, Massagué J. 185.  2014. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14:306–21 [Google Scholar]
  186. Yachida S, Jones S, Bozic I, Antal T, Leary R. 186.  et al. 2010. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–17 [Google Scholar]
  187. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM. 187.  et al. 2015. The evolutionary history of lethal metastatic prostate cancer. Nature 520:353–57 [Google Scholar]
  188. Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F. 188.  et al. 2011. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9:357–65 [Google Scholar]
  189. Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A. 189.  et al. 2013. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat. Med. 19:50–56 [Google Scholar]
  190. Pang R, Law WL, Chu AC, Poon JT, Lam CS. 190.  et al. 2010. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6:603–15 [Google Scholar]
  191. Joosse SA, Gorges TM, Pantel K. 191.  2015. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol. Med. 7:1–11 [Google Scholar]
  192. Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H. 192.  et al. 2012. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–24 [Google Scholar]
  193. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA. 193.  et al. 2012. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89 [Google Scholar]
  194. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ. 194.  et al. 2013. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15:807–17 [Google Scholar]
  195. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q. 195.  et al. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–60 [Google Scholar]
  196. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ. 196.  et al. 2009. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–83 [Google Scholar]
  197. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM. 197.  et al. 2014. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506:328–33 [Google Scholar]
  198. Shien K, Toyooka S, Yamamoto H, Soh J, Jida M. 198.  et al. 2013. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 73:3051–61 [Google Scholar]
  199. Auffinger B, Tobias AL, Han Y, Lee G, Guo D. 199.  et al. 2014. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 21:1119–31 [Google Scholar]
  200. Sotiropoulou PA, Candi A, Mascre G, De Clercq S, Youssef KK. 200.  et al. 2010. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat. Cell Biol. 12:572–82 [Google Scholar]
  201. Cojoc M, Mabert K, Muders MH, Dubrovska A. 201.  2015. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin. Cancer Biol. 31:16–27 [Google Scholar]
  202. Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D. 202.  et al. 2013. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 5:1196–212 [Google Scholar]
  203. Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K. 203.  et al. 2015. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med. 7:6831–47 [Google Scholar]
  204. Zhang P, Wang L, Rodriguez-Aguayo C, Yuan Y, Debeb BG. 204.  et al. 2014. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat. Commun. 5:5671 [Google Scholar]
  205. Zhang P, Wei Y, Wang L, Debeb BG, Yuan Y. 205.  et al. 2014. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1. Nat. Cell Biol. 16:864–75 [Google Scholar]
  206. Zhou JJ, Deng XG, He XY, Zhou Y, Yu M. 206.  et al. 2014. Knockdown of NANOG enhances chemosensitivity of liver cancer cells to doxorubicin by reducing MDR1 expression. Int. J. Oncol. 44:2034–40 [Google Scholar]
  207. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT. 207.  et al. 2009. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–35 [Google Scholar]
  208. Huang CP, Tsai MF, Chang TH, Tang WC, Chen SY. 208.  et al. 2013. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett. 328:144–51 [Google Scholar]
  209. Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R. 209.  et al. 2015. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209–13 [Google Scholar]
  210. Sun Y, Campisi J, Higano C, Beer TM, Porter P. 210.  et al. 2012. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18:1359–68 [Google Scholar]
  211. Luraghi P, Reato G, Cipriano E, Sassi F, Orzan F. 211.  et al. 2014. MET signaling in colon cancer stem-like cells blunts the therapeutic response to EGFR inhibitors. Cancer Res. 74:1857–69 [Google Scholar]
  212. Yamashina T, Baghdadi M, Yoneda A, Kinoshita I, Suzu S. 212.  et al. 2014. Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells. Cancer Res. 74:2698–709 [Google Scholar]
  213. Murakami A, Takahashi F, Nurwidya F, Kobayashi I, Minakata K. 213.  et al. 2014. Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor. PLOS ONE 9:e86459 [Google Scholar]
  214. Rausch V, Liu L, Apel A, Rettig T, Gladkich J. 214.  et al. 2012. Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J. Pathol. 227:325–35 [Google Scholar]
  215. Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J. 215.  et al. 2014. An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat. Cell Biol. 16:457–68 [Google Scholar]
  216. Huang S, Holzel M, Knijnenburg T, Schlicker A, Roepman P. 216.  et al. 2012. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 151:937–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error