1932

Abstract

The pathogenesis of idiopathic pulmonary fibrosis (IPF) involves a complex interplay of cell types and signaling pathways. Recurrent alveolar epithelial cell (AEC) injury may occur in the context of predisposing factors (e.g., genetic, environmental, epigenetic, immunologic, and gerontologic), leading to metabolic dysfunction, senescence, aberrant epithelial cell activation, and dysregulated epithelial repair. The dysregulated epithelial cell interacts with mesenchymal, immune, and endothelial cells via multiple signaling mechanisms to trigger fibroblast and myofibroblast activation. Recent single-cell RNA sequencing studies of IPF lungs support the epithelial injury model. These studies have uncovered a novel type of AEC with characteristics of an aberrant basal cell, which may disrupt normal epithelial repair and propagate a profibrotic phenotype. Here, we review the pathogenesis of IPF in the context of novel bioinformatics tools as strategies to discover pathways of disease, cell-specific mechanisms, and cell-cell interactions that propagate the profibrotic niche.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-030240
2022-01-24
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042320-030240.html?itemId=/content/journals/10.1146/annurev-pathol-042320-030240&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Leslie KO. 2012. Idiopathic pulmonary fibrosis may be a disease of recurrent, tractional injury to the periphery of the aging lung: a unifying hypothesis regarding etiology and pathogenesis. Arch. Pathol. Lab. Med. 136:591–600
    [Google Scholar]
  2. 2. 
    Wu H, Yu Y, Huang H, Hu Y, Fu S et al. 2020. Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180:107–21.e17
    [Google Scholar]
  3. 3. 
    Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J et al. 2011. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183:788–824
    [Google Scholar]
  4. 4. 
    Miller ER, Putman RK, Vivero M, Hung Y, Araki T et al. 2018. Histopathology of interstitial lung abnormalities in the context of lung nodule resections. Am. J. Respir. Crit. Care Med. 197:955–58
    [Google Scholar]
  5. 5. 
    Putman RK, Rosas IO, Hunninghake GM. 2014. Genetics and early detection in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 189:770–78
    [Google Scholar]
  6. 6. 
    Travis WD, Costabel U, Hansell DM, King TE Jr., Lynch DA et al. 2013. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 188:733–48
    [Google Scholar]
  7. 7. 
    Strongman H, Kausar I, Maher TM 2018. Incidence, prevalence, and survival of patients with idiopathic pulmonary fibrosis in the UK. Adv. Ther. 35:724–36
    [Google Scholar]
  8. 8. 
    Ley B, Collard HR, King TE Jr. 2011. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 183:431–40
    [Google Scholar]
  9. 9. 
    Hutchinson J, Fogarty A, Hubbard R, McKeever T. 2015. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur. Respir. J. 46:795–806
    [Google Scholar]
  10. 10. 
    Raghu G, Chen SY, Yeh WS, Maroni B, Li Q et al. 2014. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–11. Lancet Respir. Med. 2:566–72
    [Google Scholar]
  11. 11. 
    King TE Jr., Tooze JA, Schwarz MI, Brown KR, Cherniack RM. 2001. Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. Am. J. Respir. Crit. Care Med. 164:1171–81
    [Google Scholar]
  12. 12. 
    Mannino DM, Etzel RA, Parrish RG. 1996. Pulmonary fibrosis deaths in the United States, 1979–1991. An analysis of multiple-cause mortality data. Am. J. Respir. Crit. Care Med. 153:1548–52
    [Google Scholar]
  13. 13. 
    Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. 2006. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 174:810–16
    [Google Scholar]
  14. 14. 
    Br. Lung Found 2021. Lung disease in the UK. British Lung Foundation. https://statistics.blf.org.uk/
    [Google Scholar]
  15. 15. 
    Jeganathan N, Smith RA, Sathananthan M. 2021. Mortality trends of idiopathic pulmonary fibrosis in the United States from 2004 through 2017. Chest 159:1228–38
    [Google Scholar]
  16. 16. 
    Guenther A, Krauss E, Tello S, Wagner J, Paul B et al. 2018. The European IPF registry (eurIPFreg): baseline characteristics and survival of patients with idiopathic pulmonary fibrosis. Respir. Res. 19:141
    [Google Scholar]
  17. 17. 
    Zurkova M, Kriegova E, Kolek V, Lostakova V, Sterclova M et al. 2019. Effect of pirfenidone on lung function decline and survival: 5-yr experience from a real-life IPF cohort from the Czech EMPIRE registry. Respir. Res. 20:16
    [Google Scholar]
  18. 18. 
    Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L et al. 2017. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 3:17074
    [Google Scholar]
  19. 19. 
    Sgalla G, Kulkarni T, Antin-Ozerkis D, Thannickal VJ, Richeldi L 2019. Update in pulmonary fibrosis 2018. Am. J. Respir. Crit. Care Med. 200:292–300
    [Google Scholar]
  20. 20. 
    Vaz M, Hwang SY, Kagiampakis I, Phallen J, Patil A et al. 2017. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell 32:360–76.e6
    [Google Scholar]
  21. 21. 
    Tzouvelekis A, Kaminski N. 2015. Epigenetics in idiopathic pulmonary fibrosis. Biochem. Cell. Biol. 93:159–70
    [Google Scholar]
  22. 22. 
    Moore BB, Moore TA. 2015. Viruses in idiopathic pulmonary fibrosis: etiology and exacerbation. Ann. Am. Thorac. Soc. 12:Suppl. 2S186–92
    [Google Scholar]
  23. 23. 
    Sheng G, Chen P, Wei Y, Yue H, Chu J et al. 2020. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest 157:1175–87
    [Google Scholar]
  24. 24. 
    Kropski JA, Pritchett JM, Zoz DF, Crossno PF, Markin C et al. 2015. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am. J. Respir. Crit. Care Med. 191:417–26
    [Google Scholar]
  25. 25. 
    Sack C, Raghu G. 2019. Idiopathic pulmonary fibrosis: unmasking cryptogenic environmental factors. Eur. Respir. J. 53:21801699
    [Google Scholar]
  26. 26. 
    Lipinski JH, Moore BB, O'Dwyer DN. 2020. The evolving role of the lung microbiome in pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 319:L675–82
    [Google Scholar]
  27. 27. 
    O'Dwyer DN, Garantziotis S. 2021. The lung microbiome in health, hypersensitivity pneumonitis, and idiopathic pulmonary fibrosis: a heavy bacterial burden to bear. Am. J. Respir. Crit. Care Med. 203:3281–83
    [Google Scholar]
  28. 28. 
    Loyd JE. 2003. Pulmonary fibrosis in families. Am. J. Respir. Cell Mol. Biol. 29:S47–50
    [Google Scholar]
  29. 29. 
    Fernandez BA, Fox G, Bhatia R, Sala E, Noble B et al. 2012. A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features. Respir. Res. 13:64
    [Google Scholar]
  30. 30. 
    Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK et al. 2011. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med. 364:1503–12Identification of the MUC5B polymorphism, the most common genetic variant in IPF.
    [Google Scholar]
  31. 31. 
    Fingerlin TE, Murphy E, Zhang W, Peljto AL, Brown KK et al. 2013. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 45:613–20
    [Google Scholar]
  32. 32. 
    Hao Y, Bates S, Mou H, Yun JH, Pham B et al. 2020. Genome-wide association study: functional variant rs2076295 regulates desmoplakin expression in airway epithelial cells. Am. J. Respir. Crit. Care Med. 202:1225–36
    [Google Scholar]
  33. 33. 
    Leavy OC, Ma SF, Molyneaux PL, Maher TM, Oldham JM et al. 2021. Proportion of idiopathic pulmonary fibrosis risk explained by known common genetic loci in European populations. Am. J. Respir. Crit. Care Med. 203:6775–78
    [Google Scholar]
  34. 34. 
    Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A et al. 2020. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 201:564–74
    [Google Scholar]
  35. 35. 
    Oldham JM, Ma SF, Martinez FJ, Anstrom KJ, Raghu G et al. 2015. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 192:1475–82
    [Google Scholar]
  36. 36. 
    Jenkins PG, Moore BB, Chambers RC, Eickelberg O, Königshoff M et al. 2017. An official American Thoracic Society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 56:5667–79
    [Google Scholar]
  37. 37. 
    Carrington R, Jordan S, Pitchford SC, Page CP 2018. Use of animal models in IPF research. Pulm. Pharmacol. Ther. 51:73–78
    [Google Scholar]
  38. 38. 
    Moore BB, Hogaboam CM. 2008. Murine models of pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:2L152–60
    [Google Scholar]
  39. 39. 
    Baron RM, Choi AJS, Owen CA, Choi AMK. 2012. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am. J. Physiol. Lung Cell Mol. Physiol. 302:6L485–97
    [Google Scholar]
  40. 40. 
    Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ et al. 2017. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front. Med. 4:118
    [Google Scholar]
  41. 41. 
    Redente EF, Black BP, Backos DS, Bahadur AN, Humphries SM et al. 2021. Persistent, progressive pulmonary fibrosis and epithelial remodeling in mice. Am. J. Respir. Cell Mol. Biol. 64:6669–76
    [Google Scholar]
  42. 42. 
    Sueblinvong V, Neujahr DC, Mills ST, Roser-Page S, Ritzenthaler JD et al. 2012. Predisposition for disrepair in the aged lung. Am. J. Med. Sci. 344:141–51
    [Google Scholar]
  43. 43. 
    Yao C, Guan X, Carraro G, Parimon T, Liu X et al. 2021. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 203:6707–17
    [Google Scholar]
  44. 44. 
    Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR et al. 2013. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Investig. 123:3025–36
    [Google Scholar]
  45. 45. 
    Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N et al. 2020. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6:28eaba1983The largest single-cell atlas of IPF, characterizing unique cell populations, including aberrant AECs.
    [Google Scholar]
  46. 46. 
    Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI et al. 2020. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6:28eaba1972
    [Google Scholar]
  47. 47. 
    Chilosi M, Poletti V, Murer B, Lestani M, Cancellieri A et al. 2002. Abnormal re-epithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of ΔN-p63. Lab. Investig. 82:1335–45
    [Google Scholar]
  48. 48. 
    Smirnova NF, Schamberger AC, Nayakanti S, Hatz R, Behr J, Eickelberg O. 2016. Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respir. Res. 17:83
    [Google Scholar]
  49. 49. 
    Schruf E, Schroeder V, Le HQ, Schönberger T, Raedel D et al. 2020. Recapitulating idiopathic pulmonary fibrosis related alveolar epithelial dysfunction in a human iPSC-derived air-liquid interface model. FASEB J. 34:7825–46
    [Google Scholar]
  50. 50. 
    Kobayashi Y, Tata A, Konkimalla A, Katsura H, Lee RF et al. 2020. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat. Cell Biol. 22:934–46
    [Google Scholar]
  51. 51. 
    Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I et al. 2020. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat. Commun. 11:3559
    [Google Scholar]
  52. 52. 
    Choi J, Park JE, Tsagkogeorga G, Yanagita M, Koo BK et al. 2020. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27:366–82.e7
    [Google Scholar]
  53. 53. 
    Carraro G, Mulay A, Yao C, Mizuno T, Konda B et al. 2020. Single cell reconstruction of human basal cell diversity in normal and IPF lung. Am. J. Respir. Crit. Care Med. 202:111540–50
    [Google Scholar]
  54. 54. 
    Danopoulos S, Alonso I, Thornton ME, Grubbs BH, Bellusci S et al. 2018. Human lung branching morphogenesis is orchestrated by the spatiotemporal distribution of ACTA2, SOX2, and SOX9. Am. J. Physiol. Lung Cell. Mol. Physiol. 314:L144–49
    [Google Scholar]
  55. 55. 
    Bharat A, Querrey M, Markov NS, Kim S, Kurihara C et al. 2020. Lung transplantation for patients with severe COVID-19. Sci. Transl. Med. 12:574eabe4282
    [Google Scholar]
  56. 56. 
    Korfei M, MacKenzie B, Meiners S. 2020. The ageing lung under stress. Eur. Respir. Rev. 29:156200126
    [Google Scholar]
  57. 57. 
    Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F et al. 2015. Telomere dysfunction causes alveolar stem cell failure. PNAS 112:5099–104
    [Google Scholar]
  58. 58. 
    Mushiroda T, Wattanapokayakit S, Takahashi A, Nukiwa T, Kudoh S et al. 2008. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J. Med. Genet. 45:654–56
    [Google Scholar]
  59. 59. 
    Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG et al. 2007. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356:1317–26First identification of the role of telomere mutations in fibrotic lung disease pathogenesis.
    [Google Scholar]
  60. 60. 
    Naikawadi RP, Disayabutr S, Mallavia B, Donne ML, Green G et al. 2016. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1:e86704
    [Google Scholar]
  61. 61. 
    Morla M, Busquets X, Pons J, Sauleda J, MacNee W, Agusti AG 2006. Telomere shortening in smokers with and without COPD. Eur. Respir. J. 27:525–28
    [Google Scholar]
  62. 62. 
    Fois AG, Paliogiannis P, Sotgia S, Mangoni AA, Zinellu E et al. 2018. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review. Respir. Res. 19:51
    [Google Scholar]
  63. 63. 
    Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL et al. 2012. NF-κB inhibition delays DNA damage–induced senescence and aging in mice. J. Clin. Investig. 122:2601–12
    [Google Scholar]
  64. 64. 
    Zhao J, Zhang L, Lu A, Han Y, Colangelo D et al. 2020. ATM is a key driver of NF-κB-dependent DNA-damage-induced senescence, stem cell dysfunction and aging. Aging 12:4688–710
    [Google Scholar]
  65. 65. 
    Nicolae CM, O'Connor MJ, Constantin D, Moldovan GL 2018. NFκB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene 37:3647–56
    [Google Scholar]
  66. 66. 
    Tian Y, Li H, Qiu T, Dai J, Zhang Y et al. 2019. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell 18:e12858
    [Google Scholar]
  67. 67. 
    Tsoyi K, Liang X, De Rossi G, Ryter SW, Xiong K et al. 2021. CD148 deficiency in fibroblasts promotes the development of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 204:3312–25
    [Google Scholar]
  68. 68. 
    Lehmann M, Korfei M, Mutze K, Klee S, Skronska-Wasek W et al. 2017. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur. Respir. J. 50:21602367
    [Google Scholar]
  69. 69. 
    Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G et al. 2017. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8:14532
    [Google Scholar]
  70. 70. 
    Hohmann MS, Habiel DM, Coelho AL, Verri WA Jr., Hogaboam CM. 2019. Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo. Am. J. Respir. Cell Mol. Biol. 60:28–40
    [Google Scholar]
  71. 71. 
    Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC et al. 2019. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199:1517–36
    [Google Scholar]
  72. 72. 
    Mora AL, Bueno M, Rojas M. 2017. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Investig. 127:405–14
    [Google Scholar]
  73. 73. 
    Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R et al. 2016. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 35:724–42
    [Google Scholar]
  74. 74. 
    Bueno M, Lai YC, Romero Y, Brands J, St Croix CM et al. 2015. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Investig. 125:521–38Key demonstration of the importance of age-related mitochondrial dysfunction and defective mitophagy in IPF pathogenesis.
    [Google Scholar]
  75. 75. 
    Sahin E, Colla S, Liesa M, Moslehi J, Muller FL et al. 2011. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–65
    [Google Scholar]
  76. 76. 
    Summer R, Shaghaghi H, Schriner D, Roque W, Sales D et al. 2019. Activation of the mTORC1/PGC-1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 316:L1049–60
    [Google Scholar]
  77. 77. 
    Patel AS, Song JW, Chu SG, Mizumura K, Osorio JC et al. 2015. Epithelial cell mitochondrial dysfunction and PINK1 are induced by transforming growth factor-beta1 in pulmonary fibrosis. PLOS ONE 10:e0121246
    [Google Scholar]
  78. 78. 
    Jiang D, Cui H, Xie N, Banerjee S, Liu RM et al. 2020. ATF4 mediates mitochondrial unfolded protein response in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 63:478–89
    [Google Scholar]
  79. 79. 
    Bueno M, Zank D, Buendia-Roldán I, Fiedler K, Mays BG et al. 2019. PINK1 attenuates mtDNA release in alveolar epithelial cells and TLR9 mediated profibrotic responses. PLOS ONE 14:e0218003
    [Google Scholar]
  80. 80. 
    Mazumder S, Barman M, Bandyopadhyay U, Bindu S. 2020. Sirtuins as endogenous regulators of lung fibrosis: a current perspective. Life Sci. 258:118201
    [Google Scholar]
  81. 81. 
    Kim SJ, Cheresh P, Williams D, Cheng Y, Ridge K et al. 2014. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J. Biol. Chem. 289:6165–76
    [Google Scholar]
  82. 82. 
    Kadota T, Yoshioka Y, Fujita Y, Araya J, Minagawa S et al. 2020. Extracellular vesicles from fibroblasts induce epithelial cell senescence in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 63:5623–36
    [Google Scholar]
  83. 83. 
    Patel AS, Lin L, Geyer A, Haspel JA, An CH et al. 2012. Autophagy in idiopathic pulmonary fibrosis. PLOS ONE 7:e41394One of the first studies demonstrating impaired autophagy in IPF.
    [Google Scholar]
  84. 84. 
    Romero Y, Bueno M, Ramirez R, Alvarez D, Sembrat JC et al. 2016. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell 15:1103–12
    [Google Scholar]
  85. 85. 
    Hill C, Li J, Liu D, Conforti F, Brereton CJ et al. 2019. Autophagy inhibition-mediated epithelial–mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis. 10:591
    [Google Scholar]
  86. 86. 
    Nureki SI, Tomer Y, Venosa A, Katzen J, Russo SJ et al. 2018. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J. Clin. Investig. 128:4008–24
    [Google Scholar]
  87. 87. 
    Balch WE, Sznajder JI, Budinger S, Finley D, Laposky AD et al. 2014. Malfolded protein structure and proteostasis in lung diseases. Am. J. Respir. Crit. Care Med. 189:96–103
    [Google Scholar]
  88. 88. 
    Romero F, Summer R. 2017. Protein folding and the challenges of maintaining endoplasmic reticulum proteostasis in idiopathic pulmonary fibrosis. Ann. Am. Thorac. Soc. 14:S410–13
    [Google Scholar]
  89. 89. 
    Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS et al. 2008. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L1119–26
    [Google Scholar]
  90. 90. 
    Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P et al. 2008. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178:838–46
    [Google Scholar]
  91. 91. 
    Korfei M, von der Beck D, Henneke I, Markart P, Ruppert C et al. 2013. Comparative proteome analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF), non-specific interstitial pneumonia (NSIP) and organ donors. J. Proteom. 85:109–28
    [Google Scholar]
  92. 92. 
    Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP 2008. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 8:229
    [Google Scholar]
  93. 93. 
    Kabore AF, Wang WJ, Russo SJ, Beers MF. 2001. Biosynthesis of surfactant protein C: characterization of aggresome formation by EGFP chimeras containing propeptide mutants lacking conserved cysteine residues. J. Cell Sci. 114:293–302
    [Google Scholar]
  94. 94. 
    Thomas AQ, Lane K, Phillips J III, Prince M, Markin C et al. 2002. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am. J. Respir. Crit. Care Med. 165:1322–28
    [Google Scholar]
  95. 95. 
    Borok Z, Horie M, Flodby P, Wang H, Liu Y et al. 2020. Grp78 loss in epithelial progenitors reveals an age-linked role for endoplasmic reticulum stress in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 201:198–211
    [Google Scholar]
  96. 96. 
    Tat V, Ayaub EA, Ayoub A, Vierhout M, Naiel S et al. 2020. FK506-binding protein 13 expression is upregulated in interstitial lung disease and correlated with clinical severity: a potentially protective role. Am. J. Respir. Cell Mol. Biol. 64:2235–46
    [Google Scholar]
  97. 97. 
    Delbrel E, Soumare A, Naguez A, Label R, Bernard O et al. 2018. HIF-1α triggers ER stress and CHOP-mediated apoptosis in alveolar epithelial cells, a key event in pulmonary fibrosis. Sci. Rep. 8:17939
    [Google Scholar]
  98. 98. 
    Tzouvelekis A, Harokopos V, Paparountas T, Oikonomou N, Chatziioannou A et al. 2007. Comparative expression profiling in pulmonary fibrosis suggests a role of hypoxia-inducible factor-1α in disease pathogenesis. Am. J. Respir. Crit. Care Med. 176:1108–19
    [Google Scholar]
  99. 99. 
    Kropski JA, Blackwell TS. 2018. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J. Clin. Investig. 128:64–73
    [Google Scholar]
  100. 100. 
    Chu SG, Villalba JA, Liang X, Xiong K, Tsoyi K et al. 2019. Palmitic acid–rich high-fat diet exacerbates experimental pulmonary fibrosis by modulating endoplasmic reticulum stress. Am. J. Respir. Cell Mol. Biol. 61:737–46
    [Google Scholar]
  101. 101. 
    Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M. 1998. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am. J. Physiol. 275:L1192–99
    [Google Scholar]
  102. 102. 
    Plataki M, Koutsopoulos AV, Darivianaki K, Delides G, Siafakas NM, Bouros D. 2005. Expression of apoptotic and antiapoptotic markers in epithelial cells in idiopathic pulmonary fibrosis. Chest 127:266–74
    [Google Scholar]
  103. 103. 
    Günther A, Korfei M, Mahavadi P, von der Beck D, Ruppert C, Markart P. 2012. Unravelling the progressive pathophysiology of idiopathic pulmonary fibrosis. Eur. Respir. Rev. 21:152–60
    [Google Scholar]
  104. 104. 
    Fernandez IE, Eickelberg O. 2012. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc. Am. Thorac. Soc. 9:111–16
    [Google Scholar]
  105. 105. 
    Lee JM, Yoshida M, Kim MS, Lee JH, Baek AR et al. 2018. Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am. J. Respir. Cell Mol. Biol. 59:215–24
    [Google Scholar]
  106. 106. 
    Maguire JA, Mulugeta S, Beers MF. 2011. Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am. J. Respir. Cell Mol. Biol. 44:404–14
    [Google Scholar]
  107. 107. 
    Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y et al. 2011. Role of endoplasmic reticulum stress in epithelial–mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am. J. Respir. Cell Mol. Biol. 45:498–509
    [Google Scholar]
  108. 108. 
    Tanjore H, Cheng DS, Degryse AL, Zoz DF, Abdolrasulnia R et al. 2011. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J. Biol. Chem. 286:30972–80
    [Google Scholar]
  109. 109. 
    Yao Y, Wang Y, Zhang Z, He L, Zhu J et al. 2016. Chop deficiency protects mice against bleomycin-induced pulmonary fibrosis by attenuating M2 macrophage production. Mol. Ther. 24:915–25
    [Google Scholar]
  110. 110. 
    Chen G, Ribeiro CMP, Sun L, Okuda K, Kato T et al. 2019. XBP1S regulates MUC5B in a promoter variant–dependent pathway in idiopathic pulmonary fibrosis airway epithelia. Am. J. Respir. Crit. Care Med. 200:220–34
    [Google Scholar]
  111. 111. 
    Mucenski ML, Nation JM, Thitoff AR, Besnard V, Xu Y et al. 2005. β-Catenin regulates differentiation of respiratory epithelial cells in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 289:L971–79
    [Google Scholar]
  112. 112. 
    Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. 2018. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359:1118–23
    [Google Scholar]
  113. 113. 
    Königshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I et al. 2008. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLOS ONE 3:e2142
    [Google Scholar]
  114. 114. 
    Königshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV et al. 2009. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Investig. 119:772–87
    [Google Scholar]
  115. 115. 
    Aumiller V, Balsara N, Wilhelm J, Günther A, Königshoff M 2013. WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 49:96–104
    [Google Scholar]
  116. 116. 
    Xu K, Nieuwenhuis E, Cohen BL, Wang W, Canty AJ et al. 2010. Lunatic Fringe-mediated Notch signaling is required for lung alveogenesis. Am. J. Physiol. Lung Cell. Mol. Physiol. 298:L45–56
    [Google Scholar]
  117. 117. 
    Parimon T, Yao C, Stripp BR, Noble PW, Chen P. 2020. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. Int. J. Mol. Sci. 21:72269
    [Google Scholar]
  118. 118. 
    Vaughan AE, Brumwell AN, Xi Y, Gotts JE, Brownfield DG et al. 2015. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517:621–25
    [Google Scholar]
  119. 119. 
    Hu B, Liu J, Wu Z, Liu T, Ullenbruch MR et al. 2015. Reemergence of hedgehog mediates epithelial–mesenchymal crosstalk in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 52:418–28
    [Google Scholar]
  120. 120. 
    Froidure A, Marchal-Duval E, Homps-Legrand MG, Justed A, Crestani B, Mailleux A 2020. Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis. Eur. Respir. Rev. 29:190140
    [Google Scholar]
  121. 121. 
    Frangogiannis N. 2020. Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 217:e20190103
    [Google Scholar]
  122. 122. 
    Zepp JA, Zacharias WJ, Frank DB, Cavanaugh CA, Zhou S et al. 2017. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170:1134–48.e10
    [Google Scholar]
  123. 123. 
    Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA et al. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11:1920
    [Google Scholar]
  124. 124. 
    Liu X, Rowan SC, Liang J, Yao C, Huang G et al. 2020. Definition and signatures of lung fibroblast populations in development and fibrosis in mice and men. bioRxiv 2020.07.15.203141
  125. 125. 
    Beisang DJ, Smith K, Yang L, Benyumov A, Gilbertsen A et al. 2020. Single-cell RNA sequencing reveals that lung mesenchymal progenitor cells in IPF exhibit pathological features early in their differentiation trajectory. Sci. Rep. 10:11162
    [Google Scholar]
  126. 126. 
    Habiel DM, Hogaboam CM. 2017. Heterogeneity of fibroblasts and myofibroblasts in pulmonary fibrosis. Curr. Pathobiol. Rep. 5:101–10
    [Google Scholar]
  127. 127. 
    Wolters PJ, Collard HR, Jones KD. 2014. Pathogenesis of idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 9:157–79
    [Google Scholar]
  128. 128. 
    Byrne AJ, Maher TM, Lloyd CM. 2016. Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease?. Trends Mol. Med. 22:303–16
    [Google Scholar]
  129. 129. 
    Hung C, Linn G, Chow YH, Kobayashi A, Mittelsteadt K et al. 2013. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 188:820–30
    [Google Scholar]
  130. 130. 
    Marriott S, Baskir RS, Gaskill C, Menon S, Carrier EJ et al. 2014. ABCG2pos lung mesenchymal stem cells are a novel pericyte subpopulation that contributes to fibrotic remodeling. Am. J. Physiol. Cell Physiol. 307:C684–98
    [Google Scholar]
  131. 131. 
    Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR et al. 2011. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. PNAS 108:E1475–83
    [Google Scholar]
  132. 132. 
    El Agha E, Moiseenko A, Kheirollahi V, De Langhe S, Crnkovic S et al. 2017. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20:2261–73.e3
    [Google Scholar]
  133. 133. 
    Chilosi M, Caliò A, Rossi A, Gilioli E, Pedica F et al. 2017. Epithelial to mesenchymal transition-related proteins ZEB1, β-catenin, and β-tubulin-III in idiopathic pulmonary fibrosis. Mod. Pathol. 30:26–38
    [Google Scholar]
  134. 134. 
    Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED et al. 2005. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 166:1321–32
    [Google Scholar]
  135. 135. 
    Marmai C, Sutherland RE, Kim KK, Dolganov GM, Fang X et al. 2011. Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 301:L71–78
    [Google Scholar]
  136. 136. 
    Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG et al. 2006. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. PNAS 103:13180–85
    [Google Scholar]
  137. 137. 
    Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B et al. 2009. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 180:657–65
    [Google Scholar]
  138. 138. 
    Fintha A, Gasparics A, Rosivall L, Sebe A. 2019. Therapeutic targeting of fibrotic epithelial-mesenchymal transition–an outstanding challenge. Front. Pharmacol. 10:388
    [Google Scholar]
  139. 139. 
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA 2002. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–63
    [Google Scholar]
  140. 140. 
    Maher TM, Oballa E, Simpson JK, Porte J, Habgood A et al. 2017. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir. Med. 5:946–55
    [Google Scholar]
  141. 141. 
    Haak AJ, Tan Q, Tschumperlin DJ 2018. Matrix biomechanics and dynamics in pulmonary fibrosis. Matrix Biol. 73:64–76
    [Google Scholar]
  142. 142. 
    Huang X, Yang N, Fiore VF, Barker TH, Sun Y et al. 2012. Matrix stiffness–induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am. J. Respir. Cell Mol. Biol. 47:340–48
    [Google Scholar]
  143. 143. 
    Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A et al. 2015. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L344–57
    [Google Scholar]
  144. 144. 
    Wettlaufer SH, Scott JP, McEachin RC, Peters-Golden M, Huang SK. 2016. Reversal of the transcriptome by prostaglandin E2 during myofibroblast dedifferentiation. Am. J. Respir. Cell Mol. Biol. 54:114–27
    [Google Scholar]
  145. 145. 
    Berhan A, Harris T, Jaffar J, Jativa F, Langenbach S et al. 2020. Cellular microenvironment stiffness regulates eicosanoid production and signaling pathways. Am. J. Respir. Cell Mol. Biol. 63:6819–30
    [Google Scholar]
  146. 146. 
    Froese AR, Shimbori C, Bellaye PS, Inman M, Obex S et al. 2016. Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 194:84–96
    [Google Scholar]
  147. 147. 
    Knipe RS, Tager AM, Liao JK. 2015. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol. Rev. 67:103–17
    [Google Scholar]
  148. 148. 
    Alvarez D, Cardenes N, Sellares J, Bueno M, Corey C et al. 2017. IPF lung fibroblasts have a senescent phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol. 313:L1164–73
    [Google Scholar]
  149. 149. 
    Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J et al. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–67
    [Google Scholar]
  150. 150. 
    Redente EF, Chakraborty S, Sajuthi S, Black BP, Edelman BL et al. 2020. Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight 6:1e141618
    [Google Scholar]
  151. 151. 
    O'Leary EM, Tian Y, Nigdelioglu R, Witt LJ, Cetin-Atalay R et al. 2020. TGF-β promotes metabolic reprogramming in lung fibroblasts via mTORC1-dependent ATF4 activation. Am. J. Respir. Cell Mol. Biol. 63:5601–12
    [Google Scholar]
  152. 152. 
    Cui H, Xie N, Banerjee S, Ge J, Jiang D et al. 2021. Lung myofibroblast promote macrophage pro-fibrotic activity through lactate-induced histone lactylation. Am. J. Respir. Cell Mol. Biol. 64:1115–25
    [Google Scholar]
  153. 153. 
    Atabai K, Yang CD, Podolsky MJ 2020. You say you want a resolution (of fibrosis). Am. J. Respir. Cell Mol. Biol. 63:4424–35
    [Google Scholar]
  154. 154. 
    Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW et al. 2018. Metformin reverses established lung fibrosis in a bleomycin model. Nat. Med. 24:1121–27
    [Google Scholar]
  155. 155. 
    Kheirollahi V, Wasnick RM, Biasin V, Vazquez-Armendariz AI, Chu X et al. 2019. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat. Commun. 10:2987
    [Google Scholar]
  156. 156. 
    Spagnolo P, Kreuter M, Maher TM, Wuyts W, Bonella F et al. 2018. Metformin does not affect clinically relevant outcomes in patients with idiopathic pulmonary fibrosis. Respiration 96:314–22
    [Google Scholar]
  157. 157. 
    Artaud-Macari E, Goven D, Brayer S, Hamimi A, Besnard V et al. 2013. Nuclear factor erythroid 2-related factor 2 nuclear translocation induces myofibroblastic dedifferentiation in idiopathic pulmonary fibrosis. Antioxid. Redox Signal. 18:66–79
    [Google Scholar]
  158. 158. 
    Turner-Warwick M. 1963. Precapillary systemic-pulmonary anastomoses. Thorax 18:225–37
    [Google Scholar]
  159. 159. 
    Gracey DR, Divertie MB, Brown AL Jr. 1968. Alveolar-capillary membrane in idiopathic interstitial pulmonary fibrosis: electron microscopic study of 14 cases. Am. Rev. Respir. Dis. 98:16–21
    [Google Scholar]
  160. 160. 
    Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE et al. 2004. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am. J. Respir. Crit. Care Med. 170:242–51
    [Google Scholar]
  161. 161. 
    Ebina M, Shimizukawa M, Shibata N, Kimura Y, Suzuki T et al. 2004. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 169:1203–8
    [Google Scholar]
  162. 162. 
    Hamada K, Nagai S, Tanaka S, Handa T, Shigematsu M et al. 2007. Significance of pulmonary arterial pressure and diffusion capacity of the lung as prognosticator in patients with idiopathic pulmonary fibrosis. Chest 131:650–56
    [Google Scholar]
  163. 163. 
    Magro CM, Waldman WJ, Knight DA, Allen JN, Nadasdy T et al. 2006. Idiopathic pulmonary fibrosis related to endothelial injury and antiendothelial cell antibodies. Hum. Immunol. 67:284–97
    [Google Scholar]
  164. 164. 
    Ando M, Miyazaki E, Ito T, Hiroshige S, Nureki SI et al. 2010. Significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis. Lung 188:247–52
    [Google Scholar]
  165. 165. 
    Murray LA, Habiel DM, Hohmann M, Camelo A, Shang H et al. 2017. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight 2:16e92192
    [Google Scholar]
  166. 166. 
    Giaid A, Michel RP, Stewart DJ, Sheppard M, Corrin B, Hamid Q 1993. Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet 341:1550–54
    [Google Scholar]
  167. 167. 
    Giaid A, Yanagisawa M, Langleben D, Michel RP, Levy R et al. 1993. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328:1732–39
    [Google Scholar]
  168. 168. 
    Raghu G, Behr J, Brown KK, Egan JJ, Kawut SM et al. 2013. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann. Intern. Med. 158:641–49
    [Google Scholar]
  169. 169. 
    Farkas L, Gauldie J, Voelkel NF, Kolb M. 2011. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am. J. Respir. Cell Mol. Biol. 45:1–15
    [Google Scholar]
  170. 170. 
    Collum SD, Amione-Guerra J, Cruz-Solbes AS, DiFrancesco A, Hernandez AM et al. 2017. Pulmonary hypertension associated with idiopathic pulmonary fibrosis: current and future perspectives. Can. Respir. J. 2017:1430350
    [Google Scholar]
  171. 171. 
    Hanumegowda C, Farkas L, Kolb M. 2012. Angiogenesis in pulmonary fibrosis: too much or not enough?. Chest 142:200–7
    [Google Scholar]
  172. 172. 
    Sumi M, Satoh H, Kagohashi K, Ishikawa H, Sekizawa K. 2005. Increased serum levels of endostatin in patients with idiopathic pulmonary fibrosis. J. Clin. Lab. Anal. 19:146–49
    [Google Scholar]
  173. 173. 
    Hashimoto N, Phan SH, Imaizumi K, Matsuo M, Nakashima H et al. 2010. Endothelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 43:161–72
    [Google Scholar]
  174. 174. 
    Am. Thorac. Soc 2000. Idiopathic pulmonary fibrosis: diagnosis and treatment: international consensus statement. Am. J. Respir. Crit. Care Med. 161:646–64
    [Google Scholar]
  175. 175. 
    Idiopathic Pulm. Fibros. Clin. Res. Netw 2012. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366:1968–77
    [Google Scholar]
  176. 176. 
    Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J et al. 2013. The immunology of fibrosis. Annu. Rev. Immunol. 31:107–35
    [Google Scholar]
  177. 177. 
    Michalski JE, Schwartz DA. 2020. Genetic risk factors for idiopathic pulmonary fibrosis: insights into immunopathogenesis. J. Inflamm. Res. 13:1305–18
    [Google Scholar]
  178. 178. 
    Noth I, Zhang Y, Ma SF, Flores C, Barber M et al. 2013. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir. Med. 1:309–17
    [Google Scholar]
  179. 179. 
    Liang J, Zhang Y, Xie T, Liu N, Chen H et al. 2016. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat. Med. 22:1285–93
    [Google Scholar]
  180. 180. 
    O'Dwyer DN, Armstrong ME, Trujillo G, Cooke G, Keane MP et al. 2013. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 188:1442–50
    [Google Scholar]
  181. 181. 
    Kimura M, Tani K, Miyata J, Sato K, Hayashi A et al. 2005. The significance of cathepsins, thrombin and aminopeptidase in diffuse interstitial lung diseases. J. Med. Investig. 52:93–100
    [Google Scholar]
  182. 182. 
    Hamada N, Maeyama T, Kawaguchi T, Yoshimi M, Fukumoto J et al. 2008. The role of high mobility group box1 in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 39:440–47
    [Google Scholar]
  183. 183. 
    Millien VO, Lu W, Shaw J, Yuan X, Mak G et al. 2013. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 341:792–96
    [Google Scholar]
  184. 184. 
    Gasse P, Mary C, Guenon I, Noulin N, Charron S et al. 2007. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J. Clin. Investig. 117:3786–99
    [Google Scholar]
  185. 185. 
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–77
    [Google Scholar]
  186. 186. 
    Tian R, Zhu Y, Yao J, Meng X, Wang J et al. 2017. NLRP3 participates in the regulation of EMT in bleomycin-induced pulmonary fibrosis. Exp. Cell Res. 357:328–34
    [Google Scholar]
  187. 187. 
    Stout-Delgado HW, Cho SJ, Chu SG, Mitzel DN, Villalba J et al. 2016. Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am. J. Respir. Cell Mol. Biol. 55:252–63
    [Google Scholar]
  188. 188. 
    Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P et al. 2013. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15:978–90
    [Google Scholar]
  189. 189. 
    Cho SJ, Moon JS, Nikahira K, Yun HS, Harris R et al. 2020. GLUT1-dependent glycolysis regulates exacerbation of fibrosis via AIM2 inflammasome activation. Thorax 75:227–36
    [Google Scholar]
  190. 190. 
    Moon JS, Hisata S, Park MA, DeNicola GM, Ryter SW et al. 2015. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12:102–15
    [Google Scholar]
  191. 191. 
    Ji J, Hou J, Xia Y, Xiang Z, Han X 2021. NLRP3 inflammasome activation in alveolar epithelial cells promotes myofibroblast differentiation of lung-resident mesenchymal stem cells during pulmonary fibrogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 1867:166077
    [Google Scholar]
  192. 192. 
    Lasithiotaki I, Giannarakis I, Tsitoura E, Samara KD, Margaritopoulos GA et al. 2016. NLRP3 inflammasome expression in idiopathic pulmonary fibrosis and rheumatoid lung. Eur. Respir. J. 47:910–18
    [Google Scholar]
  193. 193. 
    Li Y, Li H, Liu S, Pan P, Su X et al. 2018. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation. Mol. Immunol. 99:134–44
    [Google Scholar]
  194. 194. 
    Cho SJ, Hong KS, Jeong JH, Lee M, Choi AMK et al. 2019. DROSHA-dependent AIM2 inflammasome activation contributes to lung inflammation during idiopathic pulmonary fibrosis. Cells 8:8938
    [Google Scholar]
  195. 195. 
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804
    [Google Scholar]
  196. 196. 
    Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210:1977–92
    [Google Scholar]
  197. 197. 
    Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT et al. 2011. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 184:547–60
    [Google Scholar]
  198. 198. 
    Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM et al. 2017. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214:2387–404
    [Google Scholar]
  199. 199. 
    McCubbrey AL, Barthel L, Mohning MP, Redente EF, Mould KJ et al. 2018. Deletion of c-FLIP from CD11bhi macrophages prevents development of bleomycin-induced lung fibrosis. Am. J. Respir. Cell Mol. Biol. 58:66–78
    [Google Scholar]
  200. 200. 
    Joshi N, Watanabe S, Verma R, Jablonski RP, Chen CI et al. 2020. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur. Respir. J. 55:11900646
    [Google Scholar]
  201. 201. 
    Iyonaga K, Takeya M, Saita N, Sakamoto O, Yoshimura T et al. 1994. Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases. Hum. Pathol. 25:455–63
    [Google Scholar]
  202. 202. 
    Kreuter M, Bradley SJ, Lee JS, Tzouvelekis A, Oldham JM et al. 2021. Monocyte count as a prognostic biomarker in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 204:174–81
    [Google Scholar]
  203. 203. 
    Heukels P, Moor CC, von der Thusen JH, Wijsenbeek MS, Kool M. 2019. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med. 147:79–91
    [Google Scholar]
  204. 204. 
    Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M et al. 2017. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541:96–101
    [Google Scholar]
  205. 205. 
    Bitterman PB, Wewers MD, Rennard SI, Adelberg S, Crystal RG 1986. Modulation of alveolar macrophage-driven fibroblast proliferation by alternative macrophage mediators. J. Clin. Investig. 77:700–8
    [Google Scholar]
  206. 206. 
    Zhou Y, Peng H, Sun H, Peng X, Tang C et al. 2014. Chitinase 3–like 1 suppresses injury and promotes fibroproliferative responses in mammalian lung fibrosis. Sci. Transl. Med. 6:240ra76
    [Google Scholar]
  207. 207. 
    Madsen SJ, Gach HM, Hong SJ, Uzal FA, Peng Q, Hirschberg H. 2013. Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood–brain barrier disruption. Lasers Surg. Med. 45:524–32
    [Google Scholar]
  208. 208. 
    Schupp JC, Binder H, Jager B, Cillis G, Zissel G et al. 2015. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis. PLOS ONE 10:e0116775
    [Google Scholar]
  209. 209. 
    Cai M, Bonella F, He X, Sixt SU, Sarria R et al. 2013. CCL18 in serum, BAL fluid and alveolar macrophage culture supernatant in interstitial lung diseases. Respir. Med. 107:1444–52
    [Google Scholar]
  210. 210. 
    Prasse A, Probst C, Bargagli E, Zissel G, Toews GB et al. 2009. Serum CC chemokine ligand-18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179:717–23
    [Google Scholar]
  211. 211. 
    Prasse A, Pechkovsky DV, Toews GB, Jungraithmayr W, Kollert F et al. 2006. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am. J. Respir. Crit. Care Med. 173:781–92
    [Google Scholar]
  212. 212. 
    Raghu G, van den Blink B, Hamblin MJ, Brown AW, Golden JA et al. 2018. Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: a randomized clinical trial. JAMA 319:2299–307
    [Google Scholar]
  213. 213. 
    Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT et al. 2019. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54:21802441
    [Google Scholar]
  214. 214. 
    Allden SJ, Ogger PP, Ghai P, McErlean P, Hewitt R et al. 2019. The transferrin receptor CD71 delineates functionally distinct airway macrophage subsets during idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 200:209–19
    [Google Scholar]
  215. 215. 
    Nuovo GJ, Hagood JS, Magro CM, Chin N, Kapil R et al. 2012. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis. Mod. Pathol. 25:416–33
    [Google Scholar]
  216. 216. 
    Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R 2019. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15:705–30
    [Google Scholar]
  217. 217. 
    Keane MP, Belperio JA, Burdick MD, Strieter RM. 2001. IL-12 attenuates bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:L92–97
    [Google Scholar]
  218. 218. 
    King TE Jr., Albera C, Bradford WZ, Costabel U, Hormel P et al. 2009. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet 374:222–28
    [Google Scholar]
  219. 219. 
    Hashimoto S, Gon Y, Takeshita I, Maruoka S, Horie T 2001. IL-4 and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through c-Jun NH2-terminal kinase–dependent pathway. J. Allergy Clin. Immunol. 107:1001–8
    [Google Scholar]
  220. 220. 
    Celada LJ, Kropski JA, Herazo-Maya JD, Luo W, Creecy A et al. 2018. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci. Transl. Med. 10:460eaar8356
    [Google Scholar]
  221. 221. 
    Kolahian S, Fernandez IE, Eickelberg O, Hartl D 2016. Immune mechanisms in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 55:309–22
    [Google Scholar]
  222. 222. 
    Horsburgh S, Todryk S, Ramming A, Distler JHW, O'Reilly S. 2018. Innate lymphoid cells and fibrotic regulation. Immunol. Lett. 195:38–44
    [Google Scholar]
  223. 223. 
    Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C et al. 2014. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. PNAS 111:367–72
    [Google Scholar]
  224. 224. 
    Luzina IG, Kopach P, Lockatell V, Kang PH, Nagarsekar A et al. 2013. Interleukin-33 potentiates bleomycin-induced lung injury. Am. J. Respir. Cell Mol. Biol. 49:999–1008
    [Google Scholar]
  225. 225. 
    Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS et al. 2014. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol. 134:1422–32.e11
    [Google Scholar]
  226. 226. 
    Kinder BW, Brown KK, Schwarz MI, Ix JH, Kervitsky A, King TE Jr 2008. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest 133:226–32
    [Google Scholar]
  227. 227. 
    Xaubet A, Agusti C, Luburich P, Barbera JA, Carrion M et al. 1998. Interleukin-8 expression in bronchoalveolar lavage cells in the evaluation of alveolitis in idiopathic pulmonary fibrosis. Respir. Med. 92:338–44
    [Google Scholar]
  228. 228. 
    Chua F, Dunsmore SE, Clingen PH, Mutsaers SE, Shapiro SD et al. 2007. Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 170:65–74
    [Google Scholar]
  229. 229. 
    Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D et al. 2014. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J. Pathol. 233:294–307
    [Google Scholar]
  230. 230. 
    Broekelmann TJ, Limper AH, Colby TV, McDonald JA 1991. Transforming growth factor beta 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. PNAS 88:6642–46
    [Google Scholar]
  231. 231. 
    Khalil N, O'Connor RN, Unruh HW, Warren PW, Flanders KC et al. 1991. Increased production and immunohistochemical localization of transforming growth factor-α in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 5:155–62
    [Google Scholar]
  232. 232. 
    Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. 2020. Single-cell sequencing techniques from individual to multiomics analyses. Exp. Mol. Med. 52:1419–27
    [Google Scholar]
  233. 233. 
    Hwang B, Lee JH, Bang D. 2018. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50:1–14
    [Google Scholar]
  234. 234. 
    Takezaki A, Tsukumo SI, Setoguchi Y, Ledford JG, Goto H et al. 2019. A homozygous SFTPA1 mutation drives necroptosis of type II alveolar epithelial cells in patients with idiopathic pulmonary fibrosis. J. Exp. Med. 216:2724–35
    [Google Scholar]
  235. 235. 
    Wang Y, Kuan PJ, Xing C, Cronkhite JT, Torres F et al. 2009. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am. J. Hum. Genet. 84:52–59
    [Google Scholar]
  236. 236. 
    Campo I, Zorzetto M, Mariani F, Kadija Z, Morbini P et al. 2014. A large kindred of pulmonary fibrosis associated with a novel ABCA3 gene variant. Respir. Res. 15:43
    [Google Scholar]
  237. 237. 
    Alder JK, Stanley SE, Wagner CL, Hamilton M, Hanumanthu VS, Armanios M. 2015. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest 147:1361–68
    [Google Scholar]
  238. 238. 
    Kropski JA, Mitchell DB, Markin C, Polosukhin VV, Choi L et al. 2014. A novel dyskerin (DKC1) mutation is associated with familial interstitial pneumonia. Chest 146:e1–7
    [Google Scholar]
  239. 239. 
    Cogan JD, Kropski JA, Zhao M, Mitchell DB, Rives L et al. 2015. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am. J. Respir. Crit. Care Med. 191:646–55
    [Google Scholar]
  240. 240. 
    Stuart BD, Choi J, Zaidi S, Xing C, Holohan B et al. 2015. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47:512–17
    [Google Scholar]
  241. 241. 
    Korthagen NM, van Moorsel CHM, Barlo NP, Kazemier KM, Ruven HJT, Grutters JC. 2012. Association between variations in cell cycle genes and idiopathic pulmonary fibrosis. PLOS ONE 7:e30442
    [Google Scholar]
  242. 242. 
    Korthagen NM, van Moorsel CHM, Kazemier KM, Ruven HJT, Grutters JC. 2012. IL1RN genetic variations and risk of IPF: a meta-analysis and mRNA expression study. Immunogenetics 64:371–77
    [Google Scholar]
  243. 243. 
    Ahn MH, Park BL, Lee SH, Park SW, Park JS et al. 2011. A promoter SNP rs4073T>A in the common allele of the interleukin 8 gene is associated with the development of idiopathic pulmonary fibrosis via the IL-8 protein enhancing mode. Respir. Res. 12:73
    [Google Scholar]
  244. 244. 
    Kishore A, Zizkova V, Kocourkova L, Petrkova J, Bouros E et al. 2016. Association study for 26 candidate loci in idiopathic pulmonary fibrosis patients from four European populations. Front. Immunol. 7:274
    [Google Scholar]
  245. 245. 
    Xin L, Jiang M, Su G, Xie M, Chen H et al. 2018. The association between transforming growth factor beta1 polymorphism and susceptibility to pulmonary fibrosis: a meta-analysis (MOOSE compliant). Medicine 97:e11876
    [Google Scholar]
  246. 246. 
    Xue J, Gochuico BR, Alawad AS, Feghali-Bostwick CA, Noth I et al. 2011. The HLA class II allele DRB1*1501 is over-represented in patients with idiopathic pulmonary fibrosis. PLOS ONE 6:e14715
    [Google Scholar]
  247. 247. 
    Allen RJ, Porte J, Braybrooke R, Flores C, Fingerlin TE et al. 2017. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir. Med. 5:869–80
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-030240
Loading
/content/journals/10.1146/annurev-pathol-042320-030240
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error