1932

Abstract

While significant progress has been made in treatments for type 1 diabetes (T1D) based on exogenous insulin, transplantation of insulin-producing cells (islets or stem cell–derived β cells) remains a promising curative strategy. The current paradigm for T1D cell therapy is clinical islet transplantation (CIT)—the infusion of islets into the liver—although this therapeutic modality comes with its own limitations that deteriorate islet health. Biomaterials can be leveraged to actively address the limitations of CIT, including undesired host inflammatory and immune responses, lack of vascularization, hypoxia, and the absence of native islet extracellular matrix cues. Moreover, in efforts toward a clinically translatable T1D cell therapy, much research now focuses on developing biomaterial platforms at the macroscale, at which implanted platforms can be easily retrieved and monitored. In this review, we discuss how biomaterials have recently been harnessed for macroscale T1D β cell replacement therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042320-094846
2022-01-24
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042320-094846.html?itemId=/content/journals/10.1146/annurev-pathol-042320-094846&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Desai T, Shea LD. 2017. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16:5338–50
    [Google Scholar]
  2. 2. 
    Papas KK, De Leon H, Suszynski TM, Johnson RC. 2019. Oxygenation strategies for encapsulated islet and beta cell transplants. Adv. Drug Deliv. Rev. 139:139–56
    [Google Scholar]
  3. 3. 
    Mathieu C, Gillard P, Benhalima K. 2017. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat. Rev. Endocrinol. 13:7385–99
    [Google Scholar]
  4. 4. 
    Shah R, Patel M, Maahs D, Shah V. 2016. Insulin delivery methods: past, present and future. Int. J. Pharm. Investig. 6:11–9
    [Google Scholar]
  5. 5. 
    Latres E, Finan DA, Greenstein JL, Kowalski A, Kieffer TJ. 2019. Navigating two roads to glucose normalization in diabetes: automated insulin delivery devices and cell therapy. Cell Metab 29:3545–63
    [Google Scholar]
  6. 6. 
    Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR et al. 2019. State of type 1 diabetes management and outcomes from the T1D Exchange in 2016–2018. Diabetes Technol. Ther. 21:266–72
    [Google Scholar]
  7. 7. 
    Shapiro AMJ, Lakey JRT, Ryan EA, Korbutt GS, Toth E et al. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:4230–38
    [Google Scholar]
  8. 8. 
    Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R et al. 2016. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 39:71230–40
    [Google Scholar]
  9. 9. 
    Shapiro AMJ, Pokrywczynska M, Ricordi C. 2017. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13:5268–77
    [Google Scholar]
  10. 10. 
    Ludwig B 2019. Islet immunoisolation by macroencapsulation. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas, Vol. 1 G Orlando, L Piemonti, C Ricordi, RJ Stratta, RWG Gruessner 751–59 London: Elsevier
    [Google Scholar]
  11. 11. 
    Weaver JD, Headen DM, Aquart J, Johnson CT, Shea LD et al. 2017. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 3:6e1700184
    [Google Scholar]
  12. 12. 
    Ernst AU, Bowers DT, Wang L-H, Shariati K, Plesser MD et al. 2019. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv. Drug Deliv. Rev. 139:116–38
    [Google Scholar]
  13. 13. 
    Marfil-Garza BA, Polishevska K, Pepper AR, Korbutt GS. 2020. Current state and evidence of cellular encapsulation strategies in type 1 diabetes. Compr. Physiol. 10:3839–78
    [Google Scholar]
  14. 14. 
    An D, Ji Y, Chiu A, Lu YC, Song W et al. 2015. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies. Biomaterials 37:40–48
    [Google Scholar]
  15. 15. 
    Morihara K, Oka T, Tsuzuki H. 1979. Semi-synthesis of human insulin by trypsin-catalysed replacement. Nature 280:2412–13
    [Google Scholar]
  16. 16. 
    Ludwig B, Ludwig S, Steffen A, Knauf Y, Zimerman B et al. 2017. Favorable outcome of experimental islet xenotransplantation without immunosuppression in a nonhuman primate model of diabetes. PNAS 114:4411745–50
    [Google Scholar]
  17. 17. 
    Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I et al. 2014. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32:111121–33
    [Google Scholar]
  18. 18. 
    Scobie L, Denner J, Schuurman HJ. 2017. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9, editorial commentary. Xenotransplantation 24:61303–7
    [Google Scholar]
  19. 19. 
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG et al. 2008. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26:4443–52
    [Google Scholar]
  20. 20. 
    Rorsman P, Ashcroft FM. 2018. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98:1117–214
    [Google Scholar]
  21. 21. 
    Carlsson PO, Palm F, Andersson A, Liss P 2001. Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes 50:3489–95
    [Google Scholar]
  22. 22. 
    Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL 2012. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. PNAS 109:114245–50
    [Google Scholar]
  23. 23. 
    Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D et al. 1997. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in β cells. J. Biol. Chem. 272:3018572–79
    [Google Scholar]
  24. 24. 
    Dionne KE, Colton CK, Yarmush ML 1993. Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes 42:112–21
    [Google Scholar]
  25. 25. 
    Child A, Larkin EJ, Fontaine MJ 2020. Co-encapsulation of ECM proteins to enhance pancreatic islet cell function. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas, Vol. 2 G Orlando, L Piemonti, C Ricordi, RJ Stratta, RWG Gruessner 307–13 London: Elsevier
    [Google Scholar]
  26. 26. 
    Bosco D, Meda P, Halban PA, Rouiller DG 2000. Importance of cell-matrix interactions in rat islet β-cell secretion in vitro: role of α6β1 integrin. Diabetes 49:2233–43
    [Google Scholar]
  27. 27. 
    Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AMJ 2015. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat. Biotechnol. 33:518–23
    [Google Scholar]
  28. 28. 
    Bowers DT, Song W, Wang L-H, Ma M. 2019. Engineering the vasculature for islet transplantation. Acta Biomater. 95:131–51
    [Google Scholar]
  29. 29. 
    Gan WJ, Do OH, Cottle L, Ma W, Kosobrodova E et al. 2018. Local integrin activation in pancreatic β cells targets insulin secretion to the vasculature. Cell Rep 24:112819–26.e3
    [Google Scholar]
  30. 30. 
    Jones GL, Juszczak MT, Hughes SJ, Kooner P, Powis SH, Press M. 2007. Time course and quantification of pancreatic islet revasculariztion following intraportal transplantation. Cell Transplant 16:5505–16
    [Google Scholar]
  31. 31. 
    Paredes-Juarez GA, Sahasrabudhe NM, Tjoelker RS, De Haan BJ, Engelse MA et al. 2015. DAMP production by human islets under low oxygen and nutrients in the presence or absence of an immunoisolating-capsule and necrostatin-1. Sci. Rep. 5:14623
    [Google Scholar]
  32. 32. 
    Ko SH, Ryu GR, Kim S, Ahn YB, Yoon KH et al. 2008. Inducible nitric oxide synthase-nitric oxide plays an important role in acute and severe hypoxic injury to pancreatic beta cells. Transplantation 85:3323–30
    [Google Scholar]
  33. 33. 
    Marzorati S, Melzi R, Nano R, Antonioli B, Di Carlo V et al. 2004. In vitro modulation of monocyte chemoattractant protein-1 release in human pancreatic islets. Transplant. Proc. 36:3607–8
    [Google Scholar]
  34. 34. 
    Moritz W, Meier F, Stroka DM, Giuliani M, Kugelmeier P et al. 2002. Apoptosis in hypoxic human pancreatic islets correlates with HIF-1α expression. FASEB J. 16:7745–47
    [Google Scholar]
  35. 35. 
    Tjernberg J, Ekdahl KN, Lambris JD, Korsgren O, Nilsson B 2008. Acute antibody-mediated complement activation mediates lysis of pancreatic islets cells and may cause tissue loss in clinical islet transplantation. Transplantation 85:81193–99
    [Google Scholar]
  36. 36. 
    Biarnés M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E. 2002. β-Cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes 51:166–72
    [Google Scholar]
  37. 37. 
    Paty BW, Harmon JS, Marsh CL, Robertson RP. 2002. Inhibitory effects of immunosuppressive drugs on insulin secretion from HIT-T15 cells and Wistar rat islets. Transplantation 73:3353–57
    [Google Scholar]
  38. 38. 
    Scharp DW, Marchetti P. 2014. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 67–68:35–73
    [Google Scholar]
  39. 39. 
    Sullivan SJ, Maki T, Borland KM, Mahoney MD, Solomon BA et al. 1991. Biohybrid artificial pancreas: long-term implantation studies in diabetic, pancreatectomized dogs. Science 252:5006718–21
    [Google Scholar]
  40. 40. 
    Song S, Blaha C, Moses W, Park J, Wright N et al. 2017. An intravascular bioartificial pancreas device (iBAP) with silicon nanopore membranes (SNM) for islet encapsulation under convective mass transport. Lab Chip 17:101778–92
    [Google Scholar]
  41. 41. 
    Pedraza E, Brady AC, Fraker CA, Molano RD, Sukert S et al. 2013. Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transplant 22:71123–25
    [Google Scholar]
  42. 42. 
    Coronel MM, Stabler CL. 2013. Engineering a local microenvironment for pancreatic islet replacement. Curr. Opin. Biotechnol. 24:5900–8
    [Google Scholar]
  43. 43. 
    Kharbikar BN, Chendke GS, Desai TA. 2021. Modulating the foreign body response of implants for diabetes treatment. Adv. Drug Deliv. Rev. 174:87–113
    [Google Scholar]
  44. 44. 
    Fuchs S, Ernst AU, Wang L-H, Shariati K, Wang X et al. 2021. Hydrogels in emerging technologies for type 1 diabetes. Chem. Rev. 121:1811458526
    [Google Scholar]
  45. 45. 
    Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR et al. 2013. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:6553–56
    [Google Scholar]
  46. 46. 
    Dusseault J, Tam SK, Ménard M, Polizu S, Jourdan G et al. 2006. Evaluation of alginate purification methods: effect on polyphenol, endotoxin, and protein contamination. J. Biomed. Mater. Res. A 76:2243–51
    [Google Scholar]
  47. 47. 
    Martinsen A, Skjåk-Bræk G, Smidsrød O. 1989. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33:179–89
    [Google Scholar]
  48. 48. 
    Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH et al. 2015. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14:6643–51
    [Google Scholar]
  49. 49. 
    Hu S, de Vos P. 2019. Polymeric approaches to reduce tissue responses against devices applied for islet-cell encapsulation. Front. Bioeng. Biotechnol. 7:134
    [Google Scholar]
  50. 50. 
    Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ 2010. Bioartificial matrices for therapeutic vascularization. PNAS 107:83323–28
    [Google Scholar]
  51. 51. 
    Partini M, Pantani R. 2007. FTIR analysis of hydrolysis in aliphatic polyesters. Polym. Degrad. Stab. 92:81491–97
    [Google Scholar]
  52. 52. 
    Neufeld T, Ludwig B, Barkai U, Weir GC, Colton CK et al. 2013. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLOS ONE 8:8e70150
    [Google Scholar]
  53. 53. 
    Marchioli G, Luca ADi, de Koning E, Engelse M, Van Blitterswijk CA et al. 2016. Hybrid polycaprolactone/alginate scaffolds functionalized with VEGF to promote de novo vessel formation for the transplantation of islets of Langerhans. Adv. Healthc. Mater. 5:131606–16
    [Google Scholar]
  54. 54. 
    Xie X, Doloff JC, Yesilyurt V, Sadraei A, McGarrigle JJ et al. 2018. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2:12894–906
    [Google Scholar]
  55. 55. 
    Liu Q, Chiu A, Wang LH, An D, Zhong M et al. 2019. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat. Commun. 10:5262
    [Google Scholar]
  56. 56. 
    Li B, Yuan Z, Jain P, Hung HC, He Y et al. 2020. De novo design of functional zwitterionic biomimetic material for immunomodulation. Sci. Adv. 6:22eaba0754
    [Google Scholar]
  57. 57. 
    Stabler CL, Li Y, Stewart JM, Keselowsky BG. 2019. Engineering immunomodulatory biomaterials for type 1 diabetes. Nat. Rev. Mater. 4:6429–50
    [Google Scholar]
  58. 58. 
    Gibly RF, Graham JG, Luo X, Lowe WL, Hering BJ, Shea LD. 2011. Advancing islet transplantation: from engraftment to the immune response. Diabetologia 54:102494–505
    [Google Scholar]
  59. 59. 
    Jiang K, Weaver JD, Li Y, Chen X, Liang J, Stabler CL 2017. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 114:71–81
    [Google Scholar]
  60. 60. 
    Haque MR, Lee DY, Ahn CH, Jeong JH, Byun Y. 2014. Local co-delivery of pancreatic islets and liposomal clodronate using injectable hydrogel to prevent acute immune reactions in a type 1 diabetes. Pharm. Res. 31:92453–62
    [Google Scholar]
  61. 61. 
    Thomson AW, Bonham CA, Zeevi A. 1995. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther. Drug Monit. 17:6584–91
    [Google Scholar]
  62. 62. 
    Pathak S, Regmi S, Gupta B, Poudel BK, Pham TT et al. 2017. Drug delivery single synchronous delivery of FK506-loaded polymeric microspheres with pancreatic islets for the successful treatment of streptozocin-induced diabetes in mice. Drug Deliv 24:11350–59
    [Google Scholar]
  63. 63. 
    Farah S, Doloff JC, Müller P, Sadraei A, Han HJ et al. 2019. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nat. Mater. 18:8892–904
    [Google Scholar]
  64. 64. 
    Headen DM, Woodward KB, Coronel MM, Shrestha P, Weaver JD et al. 2018. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nat. Mater. 17:8732–39
    [Google Scholar]
  65. 65. 
    Graham JG, Zhang X, Goodman A, Pothoven K, Houlihan J et al. 2013. PLG scaffold delivered antigen-specific regulatory T cells induce systemic tolerance in autoimmune diabetes. Tissue Eng. A 19:11–121465–75
    [Google Scholar]
  66. 66. 
    Coronel MM, Martin KE, Hunckler MD, Barber G, O'Neill EB et al. 2020. Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival. Sci. Adv. 6:35eaba5573
    [Google Scholar]
  67. 67. 
    Schweicher J. 2014. Membranes to achieve immunoprotection of transplanted islets. Front. Biosci. 19:149
    [Google Scholar]
  68. 68. 
    Colton CK. 1995. Implantable biohybrid artificial organs. Cell Transplant. 4:4415–36
    [Google Scholar]
  69. 69. 
    Nafea EH, Marson A, Poole-Warren LA, Martens PJ. 2011. Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J. Control. Release 154:2110–22
    [Google Scholar]
  70. 70. 
    Li Y, Frei AW, Yang EY, Labrada-Miravet I, Sun C et al. 2020. In vitro platform establishes antigen-specific CD8+ T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 256:120182
    [Google Scholar]
  71. 71. 
    Barkai U, Rotem A, de Vos P. 2016. Survival of encapsulated islets: more than a membrane story. World J. Transplant. 6:169
    [Google Scholar]
  72. 72. 
    Cantarelli E, Piemonti L 2011. Alternative transplantation sites for pancreatic islet grafts. Curr. Diab. Rep. 11:5364–74
    [Google Scholar]
  73. 73. 
    Perez VL, Caicedo A, Berman DM, Arrieta E, Abdulreda MH et al. 2011. The anterior chamber of the eye as a clinical transplantation site for the treatment of diabetes: a study in a baboon model of diabetes. Diabetologia 54:51121–26
    [Google Scholar]
  74. 74. 
    Kakabadze Z, Shanava K, Ricordi C, Shapiro AMJ, Gupta S, Berishvili E. 2012. An isolated venous sac as a novel site for cell therapy in diabetes mellitus. Transplantation 94:4319–24
    [Google Scholar]
  75. 75. 
    Wszola M, Berman A, Gorski L, Ostaszewska A, Serwanska-Swietek M et al. 2018. Endoscopic islet autotransplantation into gastric submucosa—1000-day follow-up of patients. Transplant. Proc. 50:72119–23
    [Google Scholar]
  76. 76. 
    Baidal DA, Ricordi C, Berman DM, Alvarez A, Padilla N et al. 2017. Bioengineering of an intraabdominal endocrine pancreas. N. Engl. J. Med. 376:191887–89
    [Google Scholar]
  77. 77. 
    Carlsson P-O, Espes D, Sedigh A, Rotem A, Zimerman B et al. 2018. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. Am. J. Transplant. 18:71735–44
    [Google Scholar]
  78. 78. 
    Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM et al. 2015. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl. Med. 4:101214–22
    [Google Scholar]
  79. 79. 
    Yu M, Agarwal D, Korutla L, May CL, Wang W et al. 2020. Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes. Nat. Metab. 2:101013–20
    [Google Scholar]
  80. 80. 
    Yang B, Cao G, Cai K, Wang G, Li P et al. 2020. VEGF-modified PVA/silicone nanofibers enhance islet function transplanted in subcutaneous site followed by device-less procedure. Int. J. Nanomed. 15:587–99
    [Google Scholar]
  81. 81. 
    Song W, Chiu A, Wang L-H, Schwartz RE, Li B et al. 2019. Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nat. Commun. 10:4602
    [Google Scholar]
  82. 82. 
    Vlahos AE, Talior-Volodarsky I, Kinney SM, Sefton M V. 2020. A scalable device-less biomaterial approach for subcutaneous islet transplantation. Biomaterials 269:120499
    [Google Scholar]
  83. 83. 
    Brauker JH, Carr-Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. 1995. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29:121517–24
    [Google Scholar]
  84. 84. 
    Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA et al. 2010. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. PNAS 107:3415211–16
    [Google Scholar]
  85. 85. 
    Chiu YC, Cheng MH, Engel H, Kao SW, Larson JC et al. 2011. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32:266045–51
    [Google Scholar]
  86. 86. 
    Choi S-W, Zhang Y, MacEwan MR, Xia Y. 2013. Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv. Healthc. Mater. 2:1145–54
    [Google Scholar]
  87. 87. 
    Huang HH, Harrington S, Stehno-Bittel L. 2018. The flaws and future of islet volume measurements. Cell Transplant. 27:71017–26
    [Google Scholar]
  88. 88. 
    Lammert E, Gu G, McLaughlin M, Brown D, Brekken R et al. 2003. Role of VEGF-A in vascularization of pancreatic islets. Curr. Biol. 13:121070–74
    [Google Scholar]
  89. 89. 
    Gebe JA, Preisinger A, Gooden MD, D'Amico LA, Vernon RB. 2018. Local, controlled release in vivo of vascular endothelial growth factor within a subcutaneous scaffolded islet implant reduces early islet necrosis and improves performance of the graft. Cell Transplant. 27:3531–41
    [Google Scholar]
  90. 90. 
    Weaver JD, Headen DM, Hunckler MD, Coronel MM, Stabler CL, García AJ. 2018. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation. Biomaterials 172:54–65
    [Google Scholar]
  91. 91. 
    Brady A-C, Martino MM, Pedraza E, Sukert S, Pileggi A et al. 2013. Proangiogenic hydrogels within macroporous scaffolds enhance islet engraftment in an extrahepatic site. Tissue Eng. A 19:23–242544–52
    [Google Scholar]
  92. 92. 
    Mao D, Zhu M, Zhang X, Ma R, Yang X et al. 2017. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival. Acta Biomater 59:210–20
    [Google Scholar]
  93. 93. 
    Nguyen TT, Emami F, Yook S, Nguyen HT, Pham TT et al. 2020. Local release of NECA (5′-(N-ethylcarboxamido)adenosine) from implantable polymeric sheets for enhanced islet revascularization in extrahepatic transplantation site. J. Control. Release 321:509–18
    [Google Scholar]
  94. 94. 
    Bowers DT, Olingy CE, Chhabra P, Langman L, Merrill PH et al. 2018. An engineered macroencapsulation membrane releasing FTY720 to precondition pancreatic islet transplantation. J. Biomed. Mater. Res. B Appl. Biomater. 106:2555–68
    [Google Scholar]
  95. 95. 
    Richardson TP, Peters MC, Ennett AB, Mooney DJ. 2001. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:111029–34
    [Google Scholar]
  96. 96. 
    Tengood JE, Kovach KM, Vescovi PE, Russell AJ, Little SR 2010. Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis. Biomaterials 31:307805–12
    [Google Scholar]
  97. 97. 
    Smink AM, Li S, Swart DH, Hertsig DT, de Haan BJ et al. 2017. Stimulation of vascularization of a subcutaneous scaffold applicable for pancreatic islet-transplantation enhances immediate post-transplant islet graft function but not long-term normoglycemia. J. Biomed. Mater. Res. A 105:92533–42
    [Google Scholar]
  98. 98. 
    Luan NM, Iwata H. 2014. Long-term allogeneic islet graft survival in prevascularized subcutaneous sites without immunosuppressive treatment. Am. J. Transplant. 344:71533–42
    [Google Scholar]
  99. 99. 
    Smink AM, Hertsig DT, Schwab L, Van Apeldoorn AA, De Koning E et al. 2017. A retrievable, efficacious polymeric scaffold for subcutaneous transplantation of rat pancreatic islets. Ann. Surg. 266:1149–57
    [Google Scholar]
  100. 100. 
    Pepper AR, Pawlick R, Bruni A, Wink J, Rafiei Y et al. 2017. Transplantation of human pancreatic endoderm cells reverses diabetes post transplantation in a prevascularized subcutaneous site. Stem Cell Rep 8:61689–700
    [Google Scholar]
  101. 101. 
    Talior-Volodarsky I, Mahou R, Zhang D, Sefton M. 2017. The role of insulin growth factor-1 on the vascular regenerative effect of MAA coated disks and macrophage-endothelial cell crosstalk. Biomaterials 144:199–210
    [Google Scholar]
  102. 102. 
    Lisovsky A, Zhang DKY, Sefton MV. 2016. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model. Biomaterials 98:203–14
    [Google Scholar]
  103. 103. 
    Komatsu H, Gonzalez N, Kandeel F, Mullen Y 2020. Intermittent normobaric oxygen inhalation enhances subcutaneous prevascularization for cell transplantation. Microvasc. Res. 132:104070
    [Google Scholar]
  104. 104. 
    Vlahos AE, Cober N, Sefton MV. 2017. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. PNAS 114:359337–42
    [Google Scholar]
  105. 105. 
    Kuppan P, Seeberger K, Kelly S, Rosko M, Adesida A et al. 2020. Co-transplantation of human adipose-derived mesenchymal stem cells with neonatal porcine islets within a prevascularized subcutaneous space augments the xenograft function. Xenotransplantation 27:4e12581
    [Google Scholar]
  106. 106. 
    Perez-Basterrechea M, Martinez Esteban M, Alvarez-Viejo M, Fontanil T, Cal S et al. 2017. Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation. PLOS ONE 12:7e0180695
    [Google Scholar]
  107. 107. 
    Townsend SE, Gannon M. 2019. Extracellular matrix-associated factors play critical roles in regulating pancreatic β-cell proliferation and survival. Endocrinology 160:81885–94
    [Google Scholar]
  108. 108. 
    Vlahos AE, Kinney SM, Kingston BR, Keshavjee S, Won SY et al. 2020. Endothelialized collagen based pseudo-islets enables tuneable subcutaneous diabetes therapy. Biomaterials 232:119710
    [Google Scholar]
  109. 109. 
    Montazeri L, Hojjati-Emami S, Bonakdar S, Tahamtani Y, Hajizadeh-Saffar E et al. 2016. Improvement of islet engrafts by enhanced angiogenesis and microparticle-mediated oxygenation. Biomaterials 89:157–65
    [Google Scholar]
  110. 110. 
    Barkai U, Weir GC, Colton CK, Ludwig B, Bornstein SR et al. 2013. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant 22:81463–76
    [Google Scholar]
  111. 111. 
    Coronel MM, Liang J-P, Li Y, Stabler CL 2019. Oxygen generating biomaterial improves the function and efficacy of beta cells within a macroencapsulation device. Biomaterials 210:1–11
    [Google Scholar]
  112. 112. 
    Riess JG. 2006. Perfluorocarbon-based oxygen delivery. Artif. Cells Blood Substit. Biotechnol. 34:6567–80
    [Google Scholar]
  113. 113. 
    Krafft MP, Chittofrati A, Reiss JG 2003. Emulsions and microemulsions with a fluorocarbon phase. Curr. Opin. Colloid Interface Sci. 8:3251–58
    [Google Scholar]
  114. 114. 
    Maillard E, Juszczak MT, Clark A, Hughes SJ, Gray DRW, Johnson PRV 2011. Perfluorodecalin-enriched fibrin matrix for human islet culture. Biomaterials 32:359282–89
    [Google Scholar]
  115. 115. 
    An D, Wang L-H, Ernst AU, Chiu A, Lu Y-C et al. 2019. An atmosphere-breathing refillable biphasic device for cell replacement therapy. Adv. Mater. 31:521905135
    [Google Scholar]
  116. 116. 
    Cao R, Avgoustiniatos E, Papas K, Vos P, Lakey JRT. 2020. Mathematical predictions of oxygen availability in micro- and macro-encapsulated human and porcine pancreatic islets. J. Biomed. Mater. Res. B Appl. Biomater. 108:2343–52
    [Google Scholar]
  117. 117. 
    Evron Y, Colton CK, Ludwig B, Weir GC, Zimermann B et al. 2018. Long-term viability and function of transplanted islets macroencapsulated at high density are achieved by enhanced oxygen supply. Sci. Rep. 8:6508
    [Google Scholar]
  118. 118. 
    Lamb M, Storrs R, Li S, Liang O, Laugenour K et al. 2011. Function and viability of human islets encapsulated in alginate sheets: in vitro and in vivo culture. Transplant. Proc. 43:93265–66
    [Google Scholar]
  119. 119. 
    Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R et al. 2013. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12:6584–90
    [Google Scholar]
  120. 120. 
    An D, Chiu A, Flanders JA, Song W, Shou D et al. 2017. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. PNAS 115:2E263–72
    [Google Scholar]
  121. 121. 
    Ernst AU, Wang LH, Ma M 2019. Interconnected toroidal hydrogels for islet encapsulation. Adv. Healthc. Mater. 8:121900423
    [Google Scholar]
  122. 122. 
    Skrzypek K, Groot Nibbelink M, van Lente J, Buitinga M, Engelse MA et al. 2017. Pancreatic islet macroencapsulation using microwell porous membranes. Sci. Rep. 7:19186
    [Google Scholar]
  123. 123. 
    Chen J, Wang D, Wang LH, Liu W, Chiu A et al. 2020. An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 32:432001628
    [Google Scholar]
  124. 124. 
    Zhu Y, Wang D, Yao X, Wang M, Zhao Y et al. 2021. Biomimetic hybrid scaffold of electrospun silk fibroin and pancreatic decellularized extracellular matrix for islet survival. J. Biomater. Sci. Polym. Ed. 32:2151–65
    [Google Scholar]
  125. 125. 
    Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM et al. 2018. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 8:10452
    [Google Scholar]
  126. 126. 
    Citro A, Moser PT, Dugnani E, Rajab KT, Ren X et al. 2019. Biofabrication of a vascularized islet organ for type 1 diabetes. Biomaterials 199:40–51
    [Google Scholar]
  127. 127. 
    Wang X, Wang K, Zhang W, Qiang M, Luo Y 2017. A bilaminated decellularized scaffold for islet transplantation: structure, properties and functions in diabetic mice. Biomaterials 138:80–90
    [Google Scholar]
  128. 128. 
    Llacua LA, Faas MM, de Vos P. 2018. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 61:61261–72
    [Google Scholar]
  129. 129. 
    Janmey PA, Winer JP, Weisel JW. 2009. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface 6:301–10
    [Google Scholar]
  130. 130. 
    Kim JS, Lim JH, Nam HY, Lim HJ, Shin JS et al. 2012. In situ application of hydrogel-type fibrin-islet composite optimized for rapid glycemic control by subcutaneous xenogeneic porcine islet transplantation. J. Control. Release 162:2382–90
    [Google Scholar]
  131. 131. 
    Berman DM, Molano RD, Fotino C, Ulissi U, Gimeno J et al. 2016. Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold. Diabetes 65:51350–61
    [Google Scholar]
  132. 132. 
    Salvay DM, Rives CB, Zhang X, Chen F, Kaufman DB et al. 2008. Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation. Transplantation 85:101456–64
    [Google Scholar]
  133. 133. 
    Hlavaty KA, Gibly RF, Zhang X, Rives CB, Graham JG et al. 2014. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds. Am. J. Transplant. 14:71523–32
    [Google Scholar]
  134. 134. 
    Matsushima H, Kuroki T, Adachi T, Kitasato A, Ono S et al. 2016. Human fibroblast sheet promotes human pancreatic islet survival and function in vitro. Cell Transplant 25:1525–37
    [Google Scholar]
  135. 135. 
    Medina JD, Alexander M, Hunckler MD, Fernández-Yagüe MA, Coronel MM et al. 2020. Functionalization of alginate with extracellular matrix peptides enhances viability and function of encapsulated porcine islets. Adv. Healthc. Mater. 9:92000102
    [Google Scholar]
  136. 136. 
    Llacua A, De Haan BJ, Smink SA, De Vos P 2016. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J. Biomed. Mater. Res. A 104:71788–96
    [Google Scholar]
  137. 137. 
    Paez-Mayorga J, Capuani S, Hernandez N, Farina M, Chua CYX et al. 2020. Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation. Biomaterials 257:120232
    [Google Scholar]
  138. 138. 
    Smith KE, Purvis WG, Davis MA, Min CG, Cooksey AM et al. 2018. In vitro characterization of neonatal, juvenile, and adult porcine islet oxygen demand, β-cell function, and transcriptomes. Xenotransplantation 25:6e12432
    [Google Scholar]
  139. 139. 
    Emamaullee JA, Shapiro AMJ, Rajotte RV, Korbutt G, Elliott JF 2006. Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation 82:7945–52
    [Google Scholar]
  140. 140. 
    Farina M, Ballerini A, Fraga DW, Nicolov E, Hogan M et al. 2017. 3D printed vascularized device for subcutaneous transplantation of human islets. Biotechnol. J. 12:91700169
    [Google Scholar]
  141. 141. 
    Komatsu H, Gonzalez N, Ortiz J, Rawson J, Omori K et al. 2021. Early-phase luciferase signals of islet grafts predicts successful subcutaneous site transplantation in rats. Mol. Imaging Biol. 23:2173–79
    [Google Scholar]
  142. 142. 
    Shi W, Pawlick RL, Bruni A, Rafiei Y, Pepper AR et al. 2016. Photoacoustic imaging of angiogenesis in a subcutaneous islet transplant site in a murine model. J. Biomed. Opt. 21:6066003
    [Google Scholar]
  143. 143. 
    Patel SN, Ishahak M, Chaimov D, Velraj A, LaShoto D et al. 2021. Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci. Adv. 7:7eaba5515
    [Google Scholar]
  144. 144. 
    Jiang K, Chaimov D, Patel SN, Liang J-P, Wiggins SC et al. 2019. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials 198:37–48
    [Google Scholar]
  145. 145. 
    Farina M, Chua CYX, Ballerini A, Thekkedath U, Alexander JF et al. 2018. Transcutaneously refillable, 3D-printed biopolymeric encapsulation system for the transplantation of endocrine cells. Biomaterials 177:125–38
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042320-094846
Loading
/content/journals/10.1146/annurev-pathol-042320-094846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error