1932

Abstract

Cystic fibrosis (CF) is caused by defects in an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Recently, a new airway epithelial cell type has been discovered and dubbed the pulmonary ionocyte. Unexpectedly, these ionocytes express higher levels of CFTR than any other airway epithelial cell type. However, ionocytes are not the sole CFTR-expressing airway epithelial cells, and CF-associated disease genes are in fact expressed in multiple airway epithelial cell types. The experimental depletion of ionocytes perturbs epithelial physiology in the mouse trachea, but the role of these rare cells in the pathogenesis of human CF remains mysterious. Ionocytes have been described in diverse tissues(kidney and inner ear) and species (frog and fish). We draw on these prior studies to suggest potential roles of airway ionocytes in health and disease. A complete understanding of ionocytes in the mammalian airway will ultimately depend on cell type–specific genetic manipulation

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-042420-094031
2022-01-24
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/17/1/annurev-pathol-042420-094031.html?itemId=/content/journals/10.1146/annurev-pathol-042420-094031&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B et al. 2018. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:7718319–24
    [Google Scholar]
  2. 2. 
    Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J et al. 2018. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–81
    [Google Scholar]
  3. 3. 
    Drumm ML, Pope HA, Cliff WH, Rommens JM, Marvin SA et al. 1990. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62:61227–33
    [Google Scholar]
  4. 4. 
    Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S et al. 1990. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells. Nature 347:6291358–63
    [Google Scholar]
  5. 5. 
    Smith JJ, Welsh MJ. 1992. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J. Clin. Investig. 89:41148–53
    [Google Scholar]
  6. 6. 
    Quinton PM. 1999. Physiological basis of cystic fibrosis: a historical perspective. Physiol. Rev. 79:1S3–22
    [Google Scholar]
  7. 7. 
    Cutting GR. 2015. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. 16:145–56
    [Google Scholar]
  8. 8. 
    Stoltz DA, Meyerholz DK, Welsh MJ. 2015. Origins of cystic fibrosis lung disease. N. Engl. J. Med. 372:4351–62
    [Google Scholar]
  9. 9. 
    Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J et al. 2005. Characterization of wild-type and ΔF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol. Biol. Cell 16:52154–67
    [Google Scholar]
  10. 10. 
    Goldfarbmuren KC, Jackson ND, Sajuthi SP, Dyjack N, Li KS et al. 2020. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat. Commun. 11:12485
    [Google Scholar]
  11. 11. 
    Okuda K, Dang H, Kobayashi Y, Carraro G, Nakano S et al. 2021. Secretory cells dominate airway CFTR expression and function in human airway superficial epithelia. Am. J. Respir. Crit. Care Med 203:1275–89
    [Google Scholar]
  12. 12. 
    Engelhardt JF, Yankaskas JR, Ernst SA, Yang Y, Marino CR et al. 1992. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat. Genet. 2:3240–48
    [Google Scholar]
  13. 13. 
    Engelhardt JF, Zepeda M, Cohn JA, Yankaskas JR, Wilson JM. 1994. Expression of the cystic fibrosis gene in adult human lung. J. Clin. Investig. 93:2737–49
    [Google Scholar]
  14. 14. 
    Scudieri P, Musante I, Venturini A, Guidone D, Genovese M et al. 2020. Ionocytes and CFTR chloride channel expression in normal and cystic fibrosis nasal and bronchial epithelial cells. Cells 9:92090
    [Google Scholar]
  15. 15. 
    Bedrossian CW, Greenberg SD, Singer DB, Hansen JJ, Rosenberg HS 1976. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum. Pathol. 7:2195–204
    [Google Scholar]
  16. 16. 
    Keys A, Willmer EN. 1932.. ‘ Chloride secreting cells’ in the gills of fishes, with special reference to the common eel. J. Physiol. 76:3368–78
    [Google Scholar]
  17. 17. 
    Karnaky KJ, Kinter LB, Kinter WB, Stirling CE. 1976. Teleost chloride cell: II. Autoradiographic localization of gill Na, K-ATPase in killifish fundulus heteroclitus adapted to low and high salinity environments. J. Cell Biol. 70:1157–77
    [Google Scholar]
  18. 18. 
    Lee TH, Hwang PP, Lin HC, Huang FL. 1996. Mitochondria-rich cells in the branchial epithelium of the teleost, Oreochromis mossambicus, acclimated to various hypotonic environments. Fish Physiol. Biochem. 15:6513–23
    [Google Scholar]
  19. 19. 
    Wood CM, Marshall WS. 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus—a euryhaline estuarine teleost. Estuaries 17:134–52
    [Google Scholar]
  20. 20. 
    Mattheij JAM, Stroband HWJ. 1971. The effects of osmotic experiments and prolactin on the mucous cells in the skin and the ionocytes in the gills of the teleost Cichlasoma biocellatum. Z. Zellforsch. Mikrosk. Anat. 121:193–101
    [Google Scholar]
  21. 21. 
    Fridman S. 2020. Ontogeny of the osmoregulatory capacity of teleosts and the role of ionocytes. Front. Mar. Sci. 7:709
    [Google Scholar]
  22. 22. 
    Farquhar MG, Palade GE. 1965. Cell junctions in amphibian skin. J. Cell Biol. 26:1263–91
    [Google Scholar]
  23. 23. 
    Foskett JK, Ussing HH. 1986. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium. J. Membr. Biol. 91:3251–58
    [Google Scholar]
  24. 24. 
    Ehrenfeld J, Lacoste I, Harvey BJ. 1989. The key role of the mitochondria-rich cell in Na+ and H+ transport across the frog skin epithelium. Pflügers Arch 414:159–67
    [Google Scholar]
  25. 25. 
    Dubaissi E, Papalopulu N. 2011. Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. Dis. Model. Mech. 4:2179–92
    [Google Scholar]
  26. 26. 
    Quigley IK, Stubbs JL, Kintner C. 2011. Specification of ion transport cells in the Xenopus larval skin. Development 138:4705–14
    [Google Scholar]
  27. 27. 
    Kriz W, Kaissling B 2008. Structural organization of the mammalian kidney. Seldin and Giebisch's The Kidney RJ Alpern, OW Moe, M Caplan 479–563 Amsterdam: Elseiver, 5th ed..
    [Google Scholar]
  28. 28. 
    Rao R, Bhalla V, Uria N, Pastor-Soler M. 2019. Intercalated cells of the kidney collecting duct in kidney physiology. Semin. Nephrol. 39:353–67
    [Google Scholar]
  29. 29. 
    Honda K, Kim SH, Kelly MC, Burns JC, Constance L et al. 2017. Molecular architecture underlying fluid absorption by the developing inner ear. eLife 6:e26851
    [Google Scholar]
  30. 30. 
    Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T. 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl cotransporter and CFTR anion channel. J. Exp. Biol. 208:112023–36
    [Google Scholar]
  31. 31. 
    Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T. 2008. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J. Exp. Biol. 211:162584–99
    [Google Scholar]
  32. 32. 
    Hiroi J, McCormick SD. 2012. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir. Physiol. Neurobiol. 184:3257–68
    [Google Scholar]
  33. 33. 
    Marshall WS, Lynch EM, Cozzi RRF. 2002. Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. J. Exp. Biol. 205:91265–73
    [Google Scholar]
  34. 34. 
    Shaw JR, Sato JD, VanderHeide J, LaCasse T, Stanton CR et al. 2008. The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus. Cell Physiol. Biochem. 22:1–469–78
    [Google Scholar]
  35. 35. 
    Marshall WS, Emberley TR, Singer TD, Bryson SE, McCormick SD. 1999. Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach. J. Exp. Biol. 202:111535–44
    [Google Scholar]
  36. 36. 
    Phennicie RT, Sullivan MJ, Singer JT, Yoder JA, Kim CH. 2010. Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infect. Immun. 78:114542–50
    [Google Scholar]
  37. 37. 
    Navis A, Bagnat M. 2015. Loss of cftr function leads to pancreatic destruction in larval zebrafish. Dev. Biol. 399:2237–48
    [Google Scholar]
  38. 38. 
    Bagnat M, Navis A, Marjoram L. 2013. Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish. Development 140:81703–12
    [Google Scholar]
  39. 39. 
    Lin LY, Horng JL, Kunkel JG, Hwang PP. 2006. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. Physiol. Cell Physiol. 290:2371–78
    [Google Scholar]
  40. 40. 
    Horng J-L, Lin L-Y, Hwang P-P. 2009. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am. J. Physiol. Cell Physiol. 296:4C682–92
    [Google Scholar]
  41. 41. 
    Shih T-H, Horng J-L, Liu S-T, Hwang P-P, Lin L-Y. 2012. Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302:1R84–93
    [Google Scholar]
  42. 42. 
    Guh YJ, Lin CH, Hwang PP. 2015. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI J 14:627–59
    [Google Scholar]
  43. 43. 
    Bastani B, Purcell H, Hemken P, Trigg D, Gluck S. 1991. Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J. Clin. Investig. 88:1126–36
    [Google Scholar]
  44. 44. 
    Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K et al. 2001. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. PNAS 98:74221–26
    [Google Scholar]
  45. 45. 
    Frische S, Kwon TH, Frøkiær J, Madsen KM, Nielsen S. 2003. Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am. J. Physiol. Ren. Physiol. 284:3F584–93
    [Google Scholar]
  46. 46. 
    Petrovic S, Wang Z, Ma L, Soleimani M. 2003. Regulation of the apical Cl/HCO3 exchanger pendrin in rat cortical collecting duct in metabolic acidosis. Am. J. Physiol. Ren. Physiol. 284:1F103–12
    [Google Scholar]
  47. 47. 
    Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH et al. 2002. Regulation of the expression of the CL/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int 62:62109–17
    [Google Scholar]
  48. 48. 
    Teng-umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM. 1996. Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J. Am. Soc. Nephrol. 7:2260–74
    [Google Scholar]
  49. 49. 
    Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY et al. 2003. Localization of pendrin in mouse kidney. Am. J. Physiol. Ren. Physiol. 284:1F229–41
    [Google Scholar]
  50. 50. 
    Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM. 1999. Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J. Am. Soc. Nephrol. 10:11–12
    [Google Scholar]
  51. 51. 
    Leir SH, Yin S, Kerschner JL, Cosme W, Harris A. 2020. An atlas of human proximal epididymis reveals cell-specific functions and distinct roles for CFTR. Life Sci. Alliance 3:11e202000744
    [Google Scholar]
  52. 52. 
    Shum WWC, Da Silva N, Brown D, Breton S 2009. Regulation of luminal acidification in the male reproductive tract via cell–cell crosstalk. J. Exp. Biol. 212:1753–61
    [Google Scholar]
  53. 53. 
    Chen H, Ruan YC, Xu WM, Chen J, Chan HC 2012. Regulation of male fertility by CFTR and implications in male infertility. Hum. Reprod. Update 18:6703–13
    [Google Scholar]
  54. 54. 
    Golson ML, Kaestner KH. 2016. Fox transcription factors: from development to disease. Development 143:244558–70
    [Google Scholar]
  55. 55. 
    Hulander M, Wurst W, Carlsson P, Enerbäck S. 1998. The winged helix transcription factor FKh10 is required for normal development of the inner ear. Nat. Genet. 20:4374–76
    [Google Scholar]
  56. 56. 
    Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson EJ et al. 2003. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130:2013–25
    [Google Scholar]
  57. 57. 
    Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A et al. 2004. Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J. Clin. Investig. 113:111560–70
    [Google Scholar]
  58. 58. 
    Vidarsson H, Westergren R, Heglind M, Blomqvist SR, Breton S, Enerbäck S. 2009. The forkhead transcription factor Foxi1 is a master regulator of vacuolar H+-ATPase proton pump subunits in the inner ear, kidney and epididymis. PLOS ONE 4:2e4471
    [Google Scholar]
  59. 59. 
    Jeong HW, Un SJ, Koo BK, Kim WY, Im SK et al. 2009. Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J. Clin. Investig. 119:113290–300
    [Google Scholar]
  60. 60. 
    Mukherjee M, DeRiso J, Otterpohl K, Ratnayake I, Kota D et al. 2019. Endogenous Notch signaling in adult kidneys maintains segment-specific epithelial cell types of the distal tubules and collecting ducts to ensure water homeostasis. J. Am. Soc. Nephrol. 30:1110–26
    [Google Scholar]
  61. 61. 
    Jänicke M, Carney TJ, Hammerschmidt M. 2007. Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev. Biol. 307:2258–71
    [Google Scholar]
  62. 62. 
    Jonz MG, Nurse CA. 2006. Epithelial mitochondria-rich cells and associated innervation in adult and developing zebrafish. J. Comp. Neurol. 497:5817–32
    [Google Scholar]
  63. 63. 
    Marshall WS, Duquesnay RM, Gillis JM, Bryson SE, Liedtke CM. 1998. Neural modulation of salt secretion in teleost opercular epithelium by α2-adrenergic receptors and inositol 1,4,5-trisphosphate. J. Exp. Biol. 201:121959–65
    [Google Scholar]
  64. 64. 
    Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV. 2009. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136:132297–307
    [Google Scholar]
  65. 65. 
    Stupnikov MR, Yang Y, Mori M, Lu J, Cardoso WV 2019. Jagged and delta ligands control distinct events during airway progenitor cell differentiation. eLife 8:e50487
    [Google Scholar]
  66. 66. 
    Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K et al. 2019. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25:71153–63
    [Google Scholar]
  67. 67. 
    Rehman T, Thornell IM, Pezzulo AA, Thurman AL, Romano Ibarra GS et al. 2020. TNF and IL-17 alkalinize airway surface liquid through CFTR and pendrin. Am. J. Physiol. Cell Physiol. 319:2C331–44
    [Google Scholar]
  68. 68. 
    Liu X, Yan Z, Luo M, Engelhardt JF. 2006. Species-specific differences in mouse and human airway epithelial biology of recombinant adeno-associated virus transduction. Am. J. Respir. Cell Mol. Biol. 34:156–64
    [Google Scholar]
  69. 69. 
    Knowles M, Gatzy J, Boucher R. 1981. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305:251489–95
    [Google Scholar]
  70. 70. 
    Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S et al. 2011. Human cystic fibrosis airway epithelia have reduced Cl conductance but not increased Na+ conductance. PNAS 108:2510260–65
    [Google Scholar]
  71. 71. 
    Farmen SL, Karp PH, Ng P, Palmer DJ, Koehler DR et al. 2005. Gene transfer of CFTR to airway epithelia: Low levels of expression are sufficient to correct Cl transport and overexpression can generate basolateral CFTR. Am. J. Physiol. Lung Cell. Mol. Physiol. 289:6L1123–30
    [Google Scholar]
  72. 72. 
    Shah VS, Ernst S, Tang XX, Karp PH, Parker CP et al. 2016. Relationships among CFTR expression, HCO3 secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies. PNAS 113:195382–87
    [Google Scholar]
  73. 73. 
    Dannhoffer L, Blouquit-Laye S, Regnier A, Chinet T. 2009. Functional properties of mixed cystic fibrosis and normal bronchial epithelial cell cultures. Am. J. Respir. Cell Mol. Biol. 40:6717–23
    [Google Scholar]
  74. 74. 
    Johnson LG, Olsen JC, Sarkadi B, Moore KL, Swanstrom R, Boucher RC. 1992. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat. Genet. 2:121–25
    [Google Scholar]
  75. 75. 
    Blouquit S, Regnier A, Dannhoffer L, Fermanian C, Naline E et al. 2006. Ion and fluid transport properties of small airways in cystic fibrosis. Am. J. Respir. Crit. Care Med. 174:3299–305
    [Google Scholar]
  76. 76. 
    Li X, Tang XX, Vargas Buonfiglio LG, Comellas AP, Thornell IM et al. 2016. Electrolyte transport properties in distal small airways from cystic fibrosis pigs with implications for host defense. Am. J. Physiol. Lung Cell. Mol. Physiol. 310:7L670–79
    [Google Scholar]
  77. 77. 
    Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R et al. 2005. Genetic modifiers of lung disease in cystic fibrosis. N. Engl. J. Med. 353:141443–53
    [Google Scholar]
  78. 78. 
    Darrah RJ, Jacono FJ, Joshi N, Mitchell AL, Sattar A et al. 2019. AGTR2 absence or antagonism prevents cystic fibrosis pulmonary manifestations. J. Cyst. Fibros. 18:1127–34
    [Google Scholar]
  79. 79. 
    Rose MC, Voynow JA. 2006. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86:245–78
    [Google Scholar]
  80. 80. 
    Geitani R, Moubareck CA, Xu Z, Karam Sarkis D, Touqui L 2020. Expression and roles of antimicrobial peptides in innate defense of airway mucosa: potential implication in cystic fibrosis. Front. Immunol. 11:1198
    [Google Scholar]
  81. 81. 
    Simonin J, Bille E, Crambert G, Noel S, Dreano E et al. 2019. Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Sci. Rep. 9:16516
    [Google Scholar]
  82. 82. 
    Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE. 2001. Expression and localization of epithelial aquaporins in the adult human lung. Am. J. Respir. Cell Mol. Biol. 24:3224–34
    [Google Scholar]
  83. 83. 
    Garnett JP, Kalsi KK, Sobotta M, Bearham J, Carr G et al. 2016. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion. Sci. Rep. 6:37955
    [Google Scholar]
  84. 84. 
    Shah VS, Meyerholz DK, Tang XX, Reznikov L, Alaiwa MA et al. 2016. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 351:6272503–7
    [Google Scholar]
  85. 85. 
    Ostrowski LE, Yin W, Diggs PS, Rogers TD, O'Neal WK, Grubb BR 2007. Expression of CFTR from a ciliated cell-specific promoter is ineffective at correcting nasal potential difference in CF mice. Gene Ther 14:201492–501
    [Google Scholar]
  86. 86. 
    Everett LA, Glaser B, Beck JC, Idol JR, Buchs A et al. 1997. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet. 17:4411–22
    [Google Scholar]
  87. 87. 
    Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A et al. 2001. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum. Mol. Genet. 10:2153–61
    [Google Scholar]
  88. 88. 
    Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H et al. 1999. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat. Genet. 21:184–90
    [Google Scholar]
  89. 89. 
    Stover EH, Akil I, Al-Sabban EA, Baguley DM, Bianca S et al. 2002. Novel ATP6V1B1 and ATP6V0a4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J. Med. Genet. 39:11796–803
    [Google Scholar]
  90. 90. 
    Lorente-Cánovas B, Ingham N, Norgett EE, Golder ZJ, Frankl FEK, Steel KP. 2013. Mice deficient in H+-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear. Dis. Model. Mech. 6:2434–42
    [Google Scholar]
  91. 91. 
    Martins LMN, Camargos PAM, Becker HMG, Becker CG, Guimarães RES. 2010. Hearing loss in cystic fibrosis. Int. J. Pediatr. Otorhinolaryngol. 74:5469–73
    [Google Scholar]
  92. 92. 
    Norgett EE, Golder ZJ, Lorente-Cánovas B, Ingham N, Steel KP, Frankl FEK 2012. Atp6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype. PNAS 109:3413775–80
    [Google Scholar]
  93. 93. 
    Kandasamy N, Fugazzola L, Evans M, Chatterjee K, Karet F. 2011. Life-threatening metabolic alkalosis in Pendred syndrome. Eur. J. Endocrinol. 165:1167–70
    [Google Scholar]
  94. 94. 
    Enerbäck S, Nilsson D, Edwards N, Heglind M, Alkanderi S et al. 2018. Acidosis and deafness in patients with recessive mutations in FOXI1. J. Am. Soc. Nephrol. 29:31041–48
    [Google Scholar]
  95. 95. 
    Wine JJ, Joo NS. 2004. Submucosal glands and airway defense. Proc. Am. Thorac. Soc. 1:147–53
    [Google Scholar]
  96. 96. 
    Widdicombe JH, Wine JJ. 2015. Airway gland structure and function. Physiol Rev 95:1241–319
    [Google Scholar]
  97. 97. 
    Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ et al. 2014. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345:6198818–22
    [Google Scholar]
  98. 98. 
    Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S et al. 2012. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487:109–13
    [Google Scholar]
  99. 99. 
    Quinton PM. 2017. Both ways at once: keeping small airways clean. Physiology 32:5380–90
    [Google Scholar]
  100. 100. 
    Macklem PT. 1998. The physiology of small airways. Am. J. Respir. Crit. Care Med. 157:5S181–83
    [Google Scholar]
  101. 101. 
    Zuo WL, Rostami MR, Shenoy SA, Leblanc MG, Salit J et al. 2020. Cell-specific expression of lung disease risk-related genes in the human small airway epithelium. Respir. Res. 21:1200
    [Google Scholar]
  102. 102. 
    Kostikas K, Papatheodorou G, Ganas K, Psathakis K, Panagou P, Loukides S. 2002. pH in expired breath condensate of patients with inflammatory airway diseases. Am. J. Respir. Crit. Care Med. 165:101364–70
    [Google Scholar]
  103. 103. 
    Hunt J, Yu Y, Burns J, Gaston B, Ngamtrakulpanit L et al. 2006. Identification of acid reflux cough using serial assays of exhaled breath condensate pH. Cough 2:3
    [Google Scholar]
  104. 104. 
    Niimi A, Nguyen LT, Usmani O, Mann B, Chung KF. 2004. Reduced pH and chloride levels in exhaled breath condensate of patients with chronic cough. Thorax 59:7608–12
    [Google Scholar]
  105. 105. 
    Shivaraju M, Chitta UK, Grange RMH, Jain IH, Capen D et al. 2021. Airway stem cells sense hypoxia and differentiate into protective solitary neuroendocrine cells. Science 371:652452–57
    [Google Scholar]
  106. 106. 
    Marshall WS. 2011. Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta Physiol 202:3487–99
    [Google Scholar]
  107. 107. 
    Buyck JM, Verriere V, Benmahdi R, Higgins G, Guery B et al. 2013. P. aeruginosa LPS stimulates calcium signaling and chloride secretion via CFTR in human bronchial epithelial cells. J. Cyst. Fibros. 12:160–67
    [Google Scholar]
  108. 108. 
    Yew HM, Zimmer AM, Perry SF. 2020. Assessing intracellular pH regulation in H+-ATPase-rich ionocytes in zebrafish larvae using in vivo ratiometric imaging. J. Exp. Biol. 223:5jeb212928
    [Google Scholar]
/content/journals/10.1146/annurev-pathol-042420-094031
Loading
/content/journals/10.1146/annurev-pathol-042420-094031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error