1932

Abstract

Focal segmental glomerulosclerosis (FSGS) is the morphologic manifestation of a spectrum of kidney diseases that primarily impact podocytes, cells that create the filtration barrier of the glomerulus. As its name implies, only parts of the kidney and glomeruli are affected, and only a portion of the affected glomerulus may be sclerosed. Although the diagnosis is based primarily on microscopic features, patient stratification relies on clinical data such as proteinuria and etiological criteria. FSGS affects both children and adults and has an elevated risk of progression to end-stage renal disease. The prevalence of FSGS is rising among various populations, and the efficacy of various therapies is limited. Therefore, understanding the pathophysiology of FSGS and developing targeted therapies to address the complex needs of FSGS patients are topics of great interest that are currently being studied across various clinical trials. We discuss the etiology of FSGS, describe the major contributing pathophysiological pathways, and outline emerging therapeutic strategies along with their pitfalls.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-051220-092001
2025-01-24
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pathmechdis/20/1/annurev-pathol-051220-092001.html?itemId=/content/journals/10.1146/annurev-pathol-051220-092001&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wiggins RC. 2007.. The spectrum of podocytopathies: a unifying view of glomerular diseases. . Kidney Int. 71::120514
    [Crossref] [Google Scholar]
  2. 2.
    Zhong J, Whitman JB, Yang HC, Fogo AB. 2019.. Mechanisms of scarring in focal segmental glomerulosclerosis. . J. Histochem. Cytochem. 67::62332
    [Crossref] [Google Scholar]
  3. 3.
    Kriz W, Lemley KV. 2017.. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. . Pediatr. Nephrol. 32::40517
    [Crossref] [Google Scholar]
  4. 4.
    Troost JP, Trachtman H, Nachman PH, Kretzler M, Spino C, et al. 2018.. An outcomes-based definition of proteinuria remission in focal segmental glomerulosclerosis. . Clin. J. Am. Soc. Nephrol. 13::41421
    [Crossref] [Google Scholar]
  5. 5.
    Troost JP, Trachtman H, Spino C, Kaskel FJ, Friedman A, et al. 2021.. Proteinuria reduction and kidney survival in focal segmental glomerulosclerosis. . Am. J. Kidney Dis. 77::21625
    [Crossref] [Google Scholar]
  6. 6.
    Canetta PA, Troost JP, Mahoney S, Kogon AJ, Carlozzi N, et al. 2019.. Health-related quality of life in glomerular disease. . Kidney Int. 95::120924
    [Crossref] [Google Scholar]
  7. 7.
    McGrogan A, Franssen CF, de Vries CS. 2011.. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. . Nephrol. Dial. Transplant. 26::41430
    [Crossref] [Google Scholar]
  8. 8.
    Rosenberg AZ, Kopp JB. 2017.. Focal segmental glomerulosclerosis. . Clin. J. Am. Soc. Nephrol. 12::50217
    [Crossref] [Google Scholar]
  9. 9.
    D'Agati VD, Kaskel FJ, Falk RJ. 2011.. Focal segmental glomerulosclerosis. . N. Engl. J. Med. 365::2398411
    [Crossref] [Google Scholar]
  10. 10.
    Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, et al. (KDIGO Glomerular Dis. Work Group). 2021.. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. . Kidney Int. 100::S1276
    [Crossref] [Google Scholar]
  11. 11.
    Kopp JB, Anders HJ, Susztak K, Podestà MA, Remuzzi G, et al. 2020.. Podocytopathies. . Nat. Rev. Dis. Primers 6::68
    [Crossref] [Google Scholar]
  12. 12.
    De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC. 2021.. Therapeutic trials in adult FSGS: lessons learned and the road forward. . Nat. Rev. Nephrol. 17::61930
    [Crossref] [Google Scholar]
  13. 13.
    Gentili A, Tangheroni W, Gelli G. 1954.. Proteinuria caused by transfusion of blood from nephrotic to non-nephrotic individuals. . Minerva Med. 45::6038
    [Google Scholar]
  14. 14.
    Shalhoub RJ. 1974.. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. . Lancet 2::55660
    [Crossref] [Google Scholar]
  15. 15.
    Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF. 1972.. Recurrence of idiopathic nephrotic syndrome after renal transplantation. . Lancet 2::34348
    [Crossref] [Google Scholar]
  16. 16.
    Artero M, Biava C, Amend W, Tomlanovich S, Vincenti F. 1992.. Recurrent focal glomerulosclerosis: natural history and response to therapy. . Am. J. Med. 92::37583
    [Crossref] [Google Scholar]
  17. 17.
    Uffing A, Pérez-Sáez MJ, Mazzali M, Manfro RC, Bauer AC, et al. 2020.. Recurrence of FSGS after kidney transplantation in adults. . Clin. J. Am. Soc. Nephrol. 15::24756
    [Crossref] [Google Scholar]
  18. 18.
    Cheong HI, Han HW, Park HW, Ha IS, Han KS, et al. 2000.. Early recurrent nephrotic syndrome after renal transplantation in children with focal segmental glomerulosclerosis. . Nephrol. Dial. Transplant. 15::7881
    [Crossref] [Google Scholar]
  19. 19.
    Chang JW, Pardo V, Sageshima J, Chen L, Tsai HL, et al. 2012.. Podocyte foot process effacement in postreperfusion allograft biopsies correlates with early recurrence of proteinuria in focal segmental glomerulosclerosis. . Transplantation 93::123844
    [Crossref] [Google Scholar]
  20. 20.
    Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. 2012.. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. . N. Engl. J. Med. 366::164849
    [Crossref] [Google Scholar]
  21. 21.
    Kienzl-Wagner K, Rosales A, Scheidl S, Giner T, Bösmüller C, et al. 2018.. Successful management of recurrent focal segmental glomerulosclerosis. . Am. J. Transplant. 18::281822
    [Crossref] [Google Scholar]
  22. 22.
    Kemper MJ, Wolf G, Müller-Wiefel DE. 2001.. Transmission of glomerular permeability factor from a mother to her child. . N. Engl. J. Med. 344::38687
    [Crossref] [Google Scholar]
  23. 23.
    Dantal J, Bigot E, Bogers W, Testa A, Kriaa F, et al. 1994.. Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. . N. Engl. J. Med. 330::714
    [Crossref] [Google Scholar]
  24. 24.
    Deegens JK, Andresdottir MB, Croockewit S, Wetzels JF. 2004.. Plasma exchange improves graft survival in patients with recurrent focal glomerulosclerosis after renal transplant. . Transpl. Int. 17::15157
    [Crossref] [Google Scholar]
  25. 25.
    Zimmerman SW. 1984.. Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. . Clin. Nephrol. 22::3238
    [Google Scholar]
  26. 26.
    Le Berre L, Godfrin Y, Lafond-Puyet L, Perretto S, Le Carrer D, et al. 2000.. Effect of plasma fractions from patients with focal and segmental glomerulosclerosis on rat proteinuria. . Kidney Int. 58::250211
    [Crossref] [Google Scholar]
  27. 27.
    Avila-Casado MC, Perez-Torres I, Auron A, Soto V, Fortoul TI, et al. 2004.. Proteinuria in rats induced by serum from patients with collapsing glomerulopathy. . Kidney Int. 66::13343
    [Crossref] [Google Scholar]
  28. 28.
    Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, et al. 1996.. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. . N. Engl. J. Med. 334::87883
    [Crossref] [Google Scholar]
  29. 29.
    Leroy S, Guigonis V, Bruckner D, Emal-Aglae V, Deschênes G, et al. 2009.. Successful anti-TNFα treatment in a child with posttransplant recurrent focal segmental glomerulosclerosis. . Am. J. Transplant. 9::85861
    [Crossref] [Google Scholar]
  30. 30.
    Chung CF, Kitzler T, Kachurina N, Pessina K, Babayeva S, et al. 2019.. Intrinsic tumor necrosis factor-α pathway is activated in a subset of patients with focal segmental glomerulosclerosis. . PLOS ONE 14::e0216426
    [Crossref] [Google Scholar]
  31. 31.
    Mariani LH, Eddy S, AlAkwaa FM, McCown PJ, Harder JL, et al. 2023.. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis. . Kidney Int. 103::56579
    [Crossref] [Google Scholar]
  32. 32.
    Beaudreuil S, Zhang X, Herr F, Harper F, Candelier JJ, et al. 2019.. Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. . PLOS ONE 14::e0219353
    [Crossref] [Google Scholar]
  33. 33.
    Bauvois B, Mothu N, Nguyen J, Nguyen-Khoa T, Nöel LH, et al. 2007.. Specific changes in plasma concentrations of matrix metalloproteinase-2 and -9, TIMP-1 and TGF-β1 in patients with distinct types of primary glomerulonephritis. . Nephrol. Dial. Transplant. 22::111522
    [Crossref] [Google Scholar]
  34. 34.
    Mujtaba MA, Sharfuddin AA, Book BL, Goggins WC, Khalil AA, et al. 2015.. Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal segmental glomerulosclerosis recurrence. . Clin. Transplant. 29::60611
    [Crossref] [Google Scholar]
  35. 35.
    Abuzeineh M, Aala A, Alasfar S, Alachkar N. 2020.. Angiotensin II receptor 1 antibodies associate with post-transplant focal segmental glomerulosclerosis and proteinuria. . BMC Nephrol. 21::253
    [Crossref] [Google Scholar]
  36. 36.
    Hejazian SM, Ardalan M, Shoja MM, Samadi N, Zununi Vahed S. 2020.. Expression levels of miR-30c and miR-186 in adult patients with membranous glomerulonephritis and focal segmental glomerulosclerosis. . Int. J. Nephrol. Renovasc. Dis. 13::193201
    [Crossref] [Google Scholar]
  37. 37.
    Iranzad R, Motavalli R, Ghassabi A, Pourakbari R, Etemadi J, et al. 2021.. Roles of microRNAs in renal disorders related to primary podocyte dysfunction. . Life Sci. 277::119463
    [Crossref] [Google Scholar]
  38. 38.
    Doublier S, Zennaro C, Musante L, Spatola T, Candiano G, et al. 2017.. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. . PLOS ONE 12::e0188045
    [Crossref] [Google Scholar]
  39. 39.
    Savin VJ, McCarthy ET, Sharma R, Charba D, Sharma M. 2008.. Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. . Transl. Res. 151::28892
    [Crossref] [Google Scholar]
  40. 40.
    Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, et al. 2015.. Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. . J. Immunol. Res. 2015::714964
    [Crossref] [Google Scholar]
  41. 41.
    McCarthy ET, Sharma M, Savin VJ. 2010.. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. . Clin. J. Am. Soc. Nephrol. 5::211521
    [Crossref] [Google Scholar]
  42. 42.
    Sudhini YR, Wei C, Reiser J. 2022.. suPAR: an inflammatory mediator for kidneys. . Kidney Dis. 8::26574
    [Crossref] [Google Scholar]
  43. 43.
    Wei C, Möller CC, Altintas MM, Li J, Schwarz K, et al. 2008.. Modification of kidney barrier function by the urokinase receptor. . Nat. Med. 14::5563
    [Crossref] [Google Scholar]
  44. 44.
    Wei C, El Hindi S, Li J, Fornoni A, Goes N, et al. 2011.. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. . Nat. Med. 17::95260
    [Crossref] [Google Scholar]
  45. 45.
    Wei C, Trachtman H, Li J, Dong C, Friedman AL, et al. 2012.. Circulating suPAR in two cohorts of primary FSGS. . J. Am. Soc. Nephrol. 23::205159
    [Crossref] [Google Scholar]
  46. 46.
    Alachkar N, Li J, Matar D, Vujjini V, Alasfar S, et al. 2018.. Monitoring suPAR levels in post-kidney transplant focal segmental glomerulosclerosis treated with therapeutic plasma exchange and rituximab. . BMC Nephrol. 19::361
    [Crossref] [Google Scholar]
  47. 47.
    Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, et al. 2017.. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. . Nat. Med. 23::1006
    [Crossref] [Google Scholar]
  48. 48.
    Huang J, Liu G, Zhang YM, Cui Z, Wang F, et al. 2013.. Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. . Kidney Int. 84::36672
    [Crossref] [Google Scholar]
  49. 49.
    Meijers B, Maas RJ, Sprangers B, Claes K, Poesen R, et al. 2014.. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. . Kidney Int. 85::63640
    [Crossref] [Google Scholar]
  50. 50.
    Sinha A, Bajpai J, Saini S, Bhatia D, Gupta A, et al. 2014.. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. . Kidney Int. 85::64958
    [Crossref] [Google Scholar]
  51. 51.
    Thunø M, Macho B, Eugen-Olsen J. 2009.. suPAR: the molecular crystal ball. . Dis. Markers 27::15772
    [Crossref] [Google Scholar]
  52. 52.
    Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, et al. 2015.. Soluble urokinase receptor and chronic kidney disease. . N. Engl. J. Med. 373::191625
    [Crossref] [Google Scholar]
  53. 53.
    Hayek SS, Leaf DE, Samman Tahhan A, Raad M, Sharma S, et al. 2020.. Soluble urokinase receptor and acute kidney injury. . N. Engl. J. Med. 382::41626
    [Crossref] [Google Scholar]
  54. 54.
    Nusshag C, Wei C, Hahm E, Hayek SS, Li J, et al. 2023.. suPAR links a dysregulated immune response to tissue inflammation and sepsis-induced acute kidney injury. . JCI Insight 8::e165740
    [Crossref] [Google Scholar]
  55. 55.
    Cathelin D, Placier S, Ploug M, Verpont MC, Vandermeersch S, et al. 2014.. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. . J. Am. Soc. Nephrol. 25::166268
    [Crossref] [Google Scholar]
  56. 56.
    Spinale JM, Mariani LH, Kapoor S, Zhang J, Weyant R, et al. 2015.. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. . Kidney Int. 87::56474
    [Crossref] [Google Scholar]
  57. 57.
    Alfano M, Cinque P, Giusti G, Proietti S, Nebuloni M, et al. 2015.. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes. . Sci. Rep. 5::13647
    [Crossref] [Google Scholar]
  58. 58.
    Wei C, Li J, Adair BD, Zhu K, Cai J, et al. 2019.. uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. . J. Clin. Investig. 129::194659
    [Crossref] [Google Scholar]
  59. 59.
    Winnicki W, Sunder-Plassmann G, Sengölge G, Handisurya A, Herkner H, et al. 2019.. Diagnostic and prognostic value of soluble urokinase-type plasminogen activator receptor (suPAR) in focal segmental glomerulosclerosis and impact of detection method. . Sci. Rep. 9::13783
    [Crossref] [Google Scholar]
  60. 60.
    Wei C, Spear R, Hahm E, Reiser J. 2021.. suPAR, a circulating kidney disease factor. . Front. Med. 8::745838
    [Crossref] [Google Scholar]
  61. 61.
    Zhu K, Mukherjee K, Wei C, Hayek SS, Collins A, et al. 2023.. The D2D3 form of uPAR acts as an immunotoxin and may cause diabetes and kidney disease. . Sci. Transl. Med. 15::eabq6492
    [Crossref] [Google Scholar]
  62. 62.
    Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, et al. 2014.. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. . Sci. Transl. Med. 6::256ra136
    [Crossref] [Google Scholar]
  63. 63.
    Wei C, Sigdel TK, Sarwal MM, Reiser J. 2015.. Circulating CD40 autoantibody and suPAR synergy drives glomerular injury. . Ann. Transl. Med. 3::300
    [Google Scholar]
  64. 64.
    Rashmi P, Sigdel TK, Rychkov D, Damm I, Da Silva AA, et al. 2023.. Perturbations in podocyte transcriptome and biological pathways induced by FSGS associated circulating factors. . Ann. Transl. Med. 11::315
    [Crossref] [Google Scholar]
  65. 65.
    Ruotsalainen V, Ljungberg P, Wartiovaara J, Lenkkeri U, Kestilä M, et al. 1999.. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. . PNAS 96::796267
    [Crossref] [Google Scholar]
  66. 66.
    Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, et al. 1998.. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. . Mol. Cell 1::57582
    [Crossref] [Google Scholar]
  67. 67.
    Watts AJB, Keller KH, Lerner G, Rosales I, Collins AB, et al. 2022.. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. . J. Am. Soc. Nephrol. 33::23852
    [Crossref] [Google Scholar]
  68. 68.
    Shirai Y, Miura K, Ishizuka K, Ando T, Kanda S, et al. 2024.. A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence. . Kidney Int. 105::60817
    [Crossref] [Google Scholar]
  69. 69.
    Batal I, Watts AJB, Gibier JB, Hamroun A, Top I, et al. 2024.. Pre-transplant anti-nephrin antibodies are specific predictors of recurrent diffuse podocytopathy in the kidney allograft. . Kidney Int. 106::74952
    [Crossref] [Google Scholar]
  70. 70.
    Hengel FE, Dehde S, Lassé M, Zahner G, Seifert L, et al. 2024.. Autoantibodies targeting nephrin in podocytopathies. . N. Engl. J. Med. 391::42233
    [Crossref] [Google Scholar]
  71. 71.
    Hayek SS, Koh KH, Grams ME, Wei C, Ko YA, et al. 2017.. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. . Nat. Med. 23::94553
    [Crossref] [Google Scholar]
  72. 72.
    Chun MJ, Korbet SM, Schwartz MM, Lewis EJ. 2004.. Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. . J. Am. Soc. Nephrol. 15::216977
    [Crossref] [Google Scholar]
  73. 73.
    Rydel JJ, Korbet SM, Borok RZ, Schwartz MM. 1995.. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. . Am. J. Kidney Dis. 25::53442
    [Crossref] [Google Scholar]
  74. 74.
    Deegens JK, Dijkman HB, Borm GF, Steenbergen EJ, van den Berg JG, et al. 2008.. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. . Kidney Int. 74::156876
    [Crossref] [Google Scholar]
  75. 75.
    Schwartz MM, Korbet SM. 1993.. Primary focal and segmental glomerulosclerosis: pathology, histological variants, and pathogenesis. . Am. J. Kidney Dis. 22::87483
    [Crossref] [Google Scholar]
  76. 76.
    Kriz W, Gretz N, Lemley KV. 1998.. Progression of glomerular diseases: Is the podocyte the culprit?. Kidney Int. 54::68797
    [Crossref] [Google Scholar]
  77. 77.
    Kriz W. 2002.. Podocyte is the major culprit accounting for the progression of chronic renal disease. . Microsc. Res. Tech. 15::18995
    [Crossref] [Google Scholar]
  78. 78.
    Hommos MS, De Vriese AS, Alexander MP, Sethi S, Vaughan L, et al. 2017.. The incidence of primary versus secondary focal segmental glomerulosclerosis: a clinicopathologic study. . Mayo Clin. Proc. 92::177281
    [Crossref] [Google Scholar]
  79. 79.
    De Vriese AS, Sethi S, Nath KA, Glassock RJ, Fervenza FC. 2018.. Differentiating primary, genetic, and secondary FSGS in adults: a clinicopathologic approach. . J. Am. Soc. Nephrol. 29::75974
    [Crossref] [Google Scholar]
  80. 80.
    Fuiano G, Comi N, Magri P, Sepe V, Balletta MM, et al. 1996.. Serial morphometric analysis of sclerotic lesions in primary “focal” segmental glomerulosclerosis. . J. Am. Soc. Nephrol. 7::4955
    [Crossref] [Google Scholar]
  81. 81.
    Rich AR. 1957.. A hitherto undescribed vulnerability of the juxtamedullary glomeruli in lipoid nephrosis. . Bull. Johns Hopkins Hosp. 100::17386
    [Google Scholar]
  82. 82.
    Morita M, Mii A, Yasuda F, Arakawa Y, Kashiwagi T, et al. 2022.. Diverse alterations of glomerular capillary networks in focal segmental glomerular sclerosis. . Kidney Int. Rep. 7::122940
    [Crossref] [Google Scholar]
  83. 83.
    Nagata M, Horita S, Shu Y. 2000.. Phenotypic characteristics and cyclin-dependent kinase inhibitors repression in hyperplastic epithelial pathology in idiopathic focal segmental glomerulosclerosis. . Lab. Investig. 80::86980
    [Crossref] [Google Scholar]
  84. 84.
    Williams AM, Jensen DM, Pan X, Liu P, Liu J, et al. 2022.. Histologically resolved small RNA maps in primary focal segmental glomerulosclerosis indicate progressive changes within glomerular and tubulointerstitial regions. . Kidney Int. 101::76678
    [Crossref] [Google Scholar]
  85. 85.
    Dijkman H, Smeets B, van der Laak J, Steenbergen E, Wetzels J. 2005.. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. . Kidney Int. 68::156272
    [Crossref] [Google Scholar]
  86. 86.
    Fatima H, Moeller MJ, Smeets B, Yang HC, D'Agati VD, et al. 2012.. Parietal epithelial cell activation marker in early recurrence of FSGS in the transplant. . Clin. J. Am. Soc. Nephrol. 7::185258
    [Crossref] [Google Scholar]
  87. 87.
    Sakamoto K, Ueno T, Kobayashi N, Hara S, Takashima Y, et al. 2014..  The direction and role of phenotypic transition between podocytes and parietal epithelial cells in focal segmental glomerulosclerosis. . Am. J. Physiol. Renal Physiol. 306::F98104
    [Crossref] [Google Scholar]
  88. 88.
    Cochat P, Fargue S, Mestrallet G, Jungraithmayr T, Koch-Nogueira P, et al. 2009.. Disease recurrence in paediatric renal transplantation. . Pediatr. Nephrol. 24::2097108
    [Crossref] [Google Scholar]
  89. 89.
    Van Stralen KJ, Verrina E, Belingheri M, Dudley J, Dusek J, et al. 2013.. Impact of graft loss among kidney diseases with a high risk of post-transplant recurrence in the paediatric population. . Nephrol. Dial. Transplant. 28::103138
    [Crossref] [Google Scholar]
  90. 90.
    Canaud G, Delville M, Legendre C. 2016.. Recurrence of focal and segmental glomerulosclerosis after transplantation. . Transplantation 100::28487
    [Crossref] [Google Scholar]
  91. 91.
    Harshman LA, Bartosh S, Engen RM. 2022.. Focal segmental glomerulosclerosis: risk for recurrence and interventions to optimize outcomes following recurrence. . Pediatr. Transplant. 26::e14307
    [Crossref] [Google Scholar]
  92. 92.
    Lee SE, Min SI, Kim YS, Ha J, Ha IS, et al. 2014.. Recurrence of idiopathic focal segmental glomerulosclerosis after kidney transplantation: experience of a Korean tertiary center. . Pediatr. Transplant. 18::36976
    [Crossref] [Google Scholar]
  93. 93.
    Kang HG, Ha IS, Cheong HI. 2016.. Recurrence and treatment after renal transplantation in children with FSGS. . Biomed. Res. Int. 2016::6832971
    [Google Scholar]
  94. 94.
    Kwon HE, Kim YH, Lee SA, Lee JJ, Ko Y, et al. 2023.. Post-operative recurrence of focal segmental glomerulosclerosis according to pre-transplant treatment after kidney transplantation. . BMC Nephrol. 24::53
    [Crossref] [Google Scholar]
  95. 95.
    Shoji J, Mii A, Terasaki M, Shimizu A. 2020.. Update on recurrent focal segmental glomerulosclerosis in kidney transplantation. . Nephron 144:(Suppl. 1):6570
    [Crossref] [Google Scholar]
  96. 96.
    Bai J, Zhang T, Wang Y, Cao J, Duan Z, et al. 2023.. Incidence and risk factors for recurrent focal segmental glomerulosclerosis after kidney transplantation: a meta-analysis. . Ren. Fail. 45::2201341
    [Crossref] [Google Scholar]
  97. 97.
    Huang K, Ferris ME, Andreoni KA, Gipson DS. 2004.. The differential effect of race among pediatric kidney transplant recipients with focal segmental glomerulosclerosis. . Am. J. Kidney Dis. 43::108290
    [Crossref] [Google Scholar]
  98. 98.
    Nehus EJ, Goebel JW, Succop PS, Abraham EC. 2013.. Focal segmental glomerulosclerosis in children: Multivariate analysis indicates that donor type does not alter recurrence risk. . Transplantation 96::55054
    [Crossref] [Google Scholar]
  99. 99.
    Hwang JH, Han SS, Huh W, Park SK, Joo DJ, et al. 2012.. Outcome of kidney allograft in patients with adulthood-onset focal segmental glomerulosclerosis: comparison with childhood-onset FSGS. . Nephrol. Dial. Transplant. 27::255965
    [Crossref] [Google Scholar]
  100. 100.
    Ding WY, Koziell A, McCarthy HJ, Bierzynska A, Bhagavatula MK, et al. 2014.. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. . J. Am. Soc. Nephrol. 25::134248
    [Crossref] [Google Scholar]
  101. 101.
    Troyanov S, Jauhal A, Reich HN, Hladunewich MA, Cattran DC, et al. 2023.. Focal segmental glomerulosclerosis: assessing the risk of relapse. . Kidney Int. Rep. 8::240315
    [Crossref] [Google Scholar]
  102. 102.
    Garnier AS, Laubacher H, Briet M. 2024.. Drug-induced glomerular diseases. . Therapie 79::27181
    [Crossref] [Google Scholar]
  103. 103.
    Shabaka A, Tato Ribera A, Fernández-Juárez G. 2020.. Focal segmental glomerulosclerosis: state-of-the-art and clinical perspective. . Nephron 144::41327
    [Crossref] [Google Scholar]
  104. 104.
    Paueksakon P, Fogo AB. 2017.. Drug-induced nephropathies. . Histopathology 70::94108
    [Crossref] [Google Scholar]
  105. 105.
    Markowitz GS, Nasr SH, Stokes MB, D'Agati VD. 2010.. Treatment with IFN-α, -β, or -γ is associated with collapsing focal segmental glomerulosclerosis. . Clin. J. Am. Soc. Nephrol. 5::60715
    [Crossref] [Google Scholar]
  106. 106.
    Dauvergne M, Buob D, Rafat C, Hennino MF, Lemoine M, et al. 2021.. Renal diseases secondary to interferon-β treatment: a multicentre clinico-pathological study and systematic literature review. . Clin. Kidney J. 14::256372
    [Crossref] [Google Scholar]
  107. 107.
    Nichols B, Jog P, Lee JH, Blackler D, Wilmot M, et al. 2015.. Innate immunity pathways regulate the nephropathy gene apolipoprotein L1. . Kidney Int. 87::33242
    [Crossref] [Google Scholar]
  108. 108.
    Markowitz GS, Appel GB, Fine PL, Fenves AZ, Loon NR, et al. 2001.. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. . J. Am. Soc. Nephrol. 12::116472
    [Crossref] [Google Scholar]
  109. 109.
    Markowitz GS, Bomback AS, Perazella MA. 2015.. Drug-induced glomerular disease: direct cellular injury. . Clin. J. Am. Soc. Nephrol. 10::129199
    [Crossref] [Google Scholar]
  110. 110.
    Gong R, Wang P, Dworkin L. 2016.. What we need to know about the effect of lithium on the kidney. . Am. J. Physiol. Renal Physiol. 311::F116871
    [Crossref] [Google Scholar]
  111. 111.
    Santella RN, Rimmer JM, MacPherson BR. 1988.. Focal segmental glomerulosclerosis in patients receiving lithium carbonate. . Am. J. Med. 84::95154
    [Crossref] [Google Scholar]
  112. 112.
    Markowitz GS, Radhakrishnan J, Kambham N, Valeri AM, Hines WH, et al. 2000.. Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. . J. Am. Soc. Nephrol. 11::143948
    [Crossref] [Google Scholar]
  113. 113.
    Sakarcan A, Thomas DB, O'Reilly KP, Richards RW. 2002.. Lithium-induced nephrotic syndrome in a young pediatric patient. . Pediatr. Nephrol. 17::29092
    [Crossref] [Google Scholar]
  114. 114.
    Murakami N, Riella LV, Funakoshi T. 2014.. Risk of metabolic complications in kidney transplantation after conversion to mTOR inhibitor: a systematic review and meta-analysis. . Am. J. Transplant. 14::231727
    [Crossref] [Google Scholar]
  115. 115.
    Letavernier E, Bruneval P, Mandet C, Duong Van Huyen JP, Péraldi MN, et al. 2007.. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. . Clin. J. Am. Soc. Nephrol. 2::32633
    [Crossref] [Google Scholar]
  116. 116.
    Müller-Krebs S, Weber L, Tsobaneli J, Kihm LP, Reiser J, et al. 2013.. Cellular effects of everolimus and sirolimus on podocytes. . PLOS ONE 8::e80340
    [Crossref] [Google Scholar]
  117. 117.
    Herlitz LC, Markowitz GS, Farris AB, Schwimmer JA, Stokes MB, et al. 2010.. Development of focal segmental glomerulosclerosis after anabolic steroid abuse. . J. Am. Soc. Nephrol. 21::16372
    [Crossref] [Google Scholar]
  118. 118.
    Jaffe JA, Kimmel PL. 2006.. Chronic nephropathies of cocaine and heroin abuse: a critical review. . Clin. J. Am. Soc. Nephrol. 1::65567
    [Crossref] [Google Scholar]
  119. 119.
    Stryckers M, Van Oevelen S, Koshy P, Sprangers B, Van Craenenbroeck AH. 2023.. Focal segmental glomerulosclerosis associated with the use of the IL-23 inhibitor guselkumab. . Clin. Kidney J. 16::17012
    [Crossref] [Google Scholar]
  120. 120.
    Kim DW, Jeon H, Kim S, Lee W, Kim HJ, et al. 2021.. Pembrolizumab-induced focal segmental glomerulosclerosis: a case report. . Medicine 100::e27546
    [Crossref] [Google Scholar]
  121. 121.
    Kannan L. 2022.. Renal manifestations of recreational drugs: a narrative review of the literature. . Medicine 101::e31888
    [Crossref] [Google Scholar]
  122. 122.
    Rennke HG, Klein PS. 1989.. Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis. . Am. J. Kidney Dis. 13::44356
    [Crossref] [Google Scholar]
  123. 123.
    Kriz W, Lemley KV. 2015.. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. . J. Am. Soc. Nephrol. 26::25869
    [Crossref] [Google Scholar]
  124. 124.
    D'Agati VD. 2017.. Podocyte growing pains in adaptive FSGS. . J. Am. Soc. Nephrol. 28::282527
    [Crossref] [Google Scholar]
  125. 125.
    Dettmar AK, Oh J. 2016.. Infection-related focal segmental glomerulosclerosis in children. . Biomed. Res. Int. 2016::7351964
    [Crossref] [Google Scholar]
  126. 126.
    Prelevic V, Juric I, Coric M, Kastelan Z, Basic-Jukic N. 2023.. Collapsing focal segmental glomerulosclerosis after kidney transplantation: Is it a consequence of viral infections?. Transplant. Proc. 55::34245
    [Crossref] [Google Scholar]
  127. 127.
    Foy MC, Estrella MM, Lucas GM, Tahir F, Fine DM, et al. 2013.. Comparison of risk factors and outcomes in HIV immune complex kidney disease and HIV-associated nephropathy. . Clin. J. Am. Soc. Nephrol. 8::152432
    [Crossref] [Google Scholar]
  128. 128.
    Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. 2022.. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. . Nat. Rev. Nephrol. 18::30720
    [Crossref] [Google Scholar]
  129. 129.
    Genowska A, Zarębska-Michaluk D, Strukcinskiene B, Razbadauskas A, Moniuszko-Malinowska A, et al. 2023.. Changing epidemiological patterns of infection and mortality due to hepatitis C virus in Poland. . J. Clin. Med. 12::3922
    [Crossref] [Google Scholar]
  130. 130.
    Sakai K, Morito N, Usui J, Hagiwara M, Hiwatashi A, et al. 2011.. Focal segmental glomerulosclerosis as a complication of hepatitis B virus infection. . Nephrol. Dial. Transplant. 26::37173
    [Crossref] [Google Scholar]
  131. 131.
    Hogan JJ, Lim MA, Palmer MB, Bloom RD, Chung RT, et al. 2017.. Development of proteinuria and focal segmental glomerulosclerosis during direct-acting antiviral therapy for hepatitis C virus infection. . Hepatology 66::65860
    [Crossref] [Google Scholar]
  132. 132.
    Lai AS, Lai KN. 2006.. Viral nephropathy. . Nat. Clin. Pract. Nephrol. 2::25462
    [Crossref] [Google Scholar]
  133. 133.
    Tanawattanacharoen S, Falk RJ, Jennette JC, Kopp JB. 2000.. Parvovirus B19 DNA in kidney tissue of patients with focal segmental glomerulosclerosis. . Am. J. Kidney Dis. 35::116674
    [Crossref] [Google Scholar]
  134. 134.
    Ajaimy M, Melamed ML. 2020.. COVID-19 in patients with kidney disease. . Clin. J. Am. Soc. Nephrol. 15::108789
    [Crossref] [Google Scholar]
  135. 135.
    Sharma A, Ahmad Farouk I, Lal SK. 2021.. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. . Viruses 13::202
    [Crossref] [Google Scholar]
  136. 136.
    Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, et al. 2020.. COVID-19: consider cytokine storm syndromes and immunosuppression. . Lancet 395::103334
    [Crossref] [Google Scholar]
  137. 137.
    Enocsson H, Idoff C, Gustafsson A, Govender M, Hopkins F, et al. 2021.. Soluble urokinase plasminogen activator receptor (suPAR) independently predicts severity and length of hospitalisation in patients with COVID-19. . Front. Med. 8::791716
    [Crossref] [Google Scholar]
  138. 138.
    Wei C, Datta PK, Siegerist F, Li J, Yashwanth S, et al. 2023.. SuPAR mediates viral response proteinuria by rapidly changing podocyte function. . Nat. Commun. 14::4414
    [Crossref] [Google Scholar]
  139. 139.
    D'Agati VD, Fogo AB, Bruijn JA, Jennette JC. 2004.. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. . Am. J. Kidney Dis. 43::36882
    [Crossref] [Google Scholar]
  140. 140.
    Detwiler RK, Falk RJ, Hogan SL, Jennette JC. 1994.. Collapsing glomerulopathy: a clinically and pathologically distinct variant of focal segmental glomerulosclerosis. . Kidney Int. 45::141624
    [Crossref] [Google Scholar]
  141. 141.
    Barisoni L, Kopp JB. 2002.. Modulation of podocyte phenotype in collapsing glomerulopathies. . Microsc. Res. Tech. 57::25462
    [Crossref] [Google Scholar]
  142. 142.
    Testagrossa L, Azevedo Neto R, Resende A, Woronik V, Malheiros D. 2013.. Immunohistochemical expression of podocyte markers in the variants of focal segmental glomerulosclerosis. . Nephrol. Dial. Transplant. 28::9198
    [Crossref] [Google Scholar]
  143. 143.
    Trivedi M, Pasari A, Chowdhury AR, Abraham A, Pandey R. 2015.. Tip variant of focal segmental glomerulosclerosis: Is it truly a benign variant?. Ren. Fail. 37::76368
    [Crossref] [Google Scholar]
  144. 144.
    Chia-Gil A, Floege J, Stamellou E, Moeller MJ. 2024.. Perihilar FSGS lesions originate from flat parietal epithelial cells. . J. Nephrol. 37::14059
    [Crossref] [Google Scholar]
  145. 145.
    Stokes MB, Valeri AM, Markowitz GS, D'Agati VD. 2006.. Cellular focal segmental glomerulosclerosis: clinical and pathologic features. . Kidney Int. 70::178392
    [Crossref] [Google Scholar]
  146. 146.
    Thomas DB, Franceschini N, Hogan SL, Ten Holder S, Jennette CE, et al. 2006.. Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. . Kidney Int. 69::92026
    [Crossref] [Google Scholar]
  147. 147.
    D'Agati VD, Alster JM, Jennette JC, Thomas DB, Pullman J, et al. 2013.. Association of histologic variants in FSGS clinical trial with presenting features and outcomes. . Clin. J. Am. Soc. Nephrol. 8::399406
    [Crossref] [Google Scholar]
  148. 148.
    Deegens JK, Steenbergen EJ, Borm GF, Wetzels JF. 2008.. Pathological variants of focal segmental glomerulosclerosis in an adult Dutch population—epidemiology and outcome. . Nephrol. Dial. Transplant. 23::18692
    [Crossref] [Google Scholar]
  149. 149.
    Sethi S, Zand L, Nasr SH, Glassock RJ, Fervenza FC. 2014.. Focal and segmental glomerulosclerosis: clinical and kidney biopsy correlations. . Clin. Kidney J. 7::53137
    [Crossref] [Google Scholar]
  150. 150.
    Sethi S, Glassock RJ, Fervenza FC. 2015.. Focal segmental glomerulosclerosis: towards a better understanding for the practicing nephrologist. . Nephrol. Dial. Transplant. 30::37584
    [Crossref] [Google Scholar]
  151. 151.
    Laurinavicius A, Hurwitz S, Rennke HG. 1999.. Collapsing glomerulopathy in HIV and non-HIV patients: a clinicopathological and follow-up study. . Kidney Int. 56::220313
    [Crossref] [Google Scholar]
  152. 152.
    Catanese L, Siwy J, Wendt R, Amann K, Beige J, et al. 2023.. Differentiating primary and secondary FSGS using non-invasive urine biomarkers. . Clin. Kidney J. 17::sfad296
    [Crossref] [Google Scholar]
  153. 153.
    Fogo AB. 2015.. Causes and pathogenesis of focal segmental glomerulosclerosis. . Nat. Rev. Nephrol. 11::7687
    [Crossref] [Google Scholar]
  154. 154.
    Hildebrandt F. 2010.. Genetic kidney diseases. . Lancet 375::128795
    [Crossref] [Google Scholar]
  155. 155.
    Santín S, Bullich G, Tazón-Vega B, García-Maset R, Giménez I, et al. 2011.. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. . Clin. J. Am. Soc. Nephrol. 6::113948
    [Crossref] [Google Scholar]
  156. 156.
    Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, et al. 2007.. Nephrotic syndrome in the first year of life: Two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). . Pediatrics 119::e90719
    [Crossref] [Google Scholar]
  157. 157.
    Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC. 2018.. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. . Clin. Kidney J. 11::17990
    [Crossref] [Google Scholar]
  158. 158.
    Gast C, Pengelly RJ, Lyon M, Bunyan DJ, Seaby EG, et al. 2016.. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. . Nephrol. Dial. Transplant. 31::96170
    [Crossref] [Google Scholar]
  159. 159.
    Woroniecki RP, Kopp JB. 2007.. Genetics of focal segmental glomerulosclerosis. . Pediatr. Nephrol. 22::63844
    [Crossref] [Google Scholar]
  160. 160.
    Rood IM, Deegens JK, Wetzels JF. 2012.. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. . Nephrol. Dial. Transplant. 27::88290
    [Crossref] [Google Scholar]
  161. 161.
    Pollak MR. 2014.. Familial FSGS. . Adv. Chronic Kidney Dis. 21::42225
    [Crossref] [Google Scholar]
  162. 162.
    Ataga KI, Derebail VK, Archer DR. 2014.. The glomerulopathy of sickle cell disease. . Am. J. Hematol. 89::90714
    [Crossref] [Google Scholar]
  163. 163.
    Patrakka J, Ruotsalainen V, Reponen P, Qvist E, Laine J, et al. 2002.. Recurrence of nephrotic syndrome in kidney grafts of patients with congenital nephrotic syndrome of the Finnish type: role of nephrin. . Transplantation 73::394403
    [Crossref] [Google Scholar]
  164. 164.
    Ishizuka K, Miura K, Hashimoto T, Kaneko N, Harita Y, et al. 2021.. Degree of foot process effacement in patients with genetic focal segmental glomerulosclerosis: a single-center analysis and review of the literature. . Sci. Rep. 11::12008
    [Crossref] [Google Scholar]
  165. 165.
    Sprangers B, Meijers B, Appel G. 2016.. FSGS: diagnosis and diagnostic work-up. . Biomed. Res. Int. 2016::4632768
    [Crossref] [Google Scholar]
  166. 166.
    Bansal V, Boucher C. 2019.. Sequencing technologies and analyses: Where have we been and where are we going?. iScience 18::3741
    [Crossref] [Google Scholar]
  167. 167.
    Chanchlani R, Parekh RS. 2016.. Ethnic differences in childhood nephrotic syndrome. . Front. Pediatr. 4::39
    [Crossref] [Google Scholar]
  168. 168.
    Tuttle KR, Abner CW, Walker PD, Wang K, Rava A, et al. 2023.. Clinical characteristics and histopathology in adults with focal segmental glomerulosclerosis. . Kidney Med. 6::100748
    [Crossref] [Google Scholar]
  169. 169.
    Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, et al. 2008.. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. . Nat. Genet. 40::118592
    [Crossref] [Google Scholar]
  170. 170.
    Lipkowitz MS, Freedman BI, Langefeld CD, Comeau ME, Bowden DW, et al. 2013.. Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. . Kidney Int. 83::11420
    [Crossref] [Google Scholar]
  171. 171.
    Levy R, Kopp JB, Franceschini N. 2023.. Genetics of focal segmental glomerulosclerosis in African American children. . Am. J. Kidney Dis. 81::62728
    [Crossref] [Google Scholar]
  172. 172.
    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, et al. 2010.. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. . Science 329::84145
    [Crossref] [Google Scholar]
  173. 173.
    Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, et al. 2011.. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. . J. Am. Soc. Nephrol. 22::212937
    [Crossref] [Google Scholar]
  174. 174.
    Franceschini N, North KE, Kopp JB, McKenzie L, Winkler C. 2006.. NPHS2 gene, nephrotic syndrome and focal segmental glomerulosclerosis: a HuGE review. . Genet. Med. 8::6375
    [Crossref] [Google Scholar]
  175. 175.
    Cheong HI. 2020.. Genetic tests in children with steroid-resistant nephrotic syndrome. . Kidney Res. Clin. Pract. 39::716
    [Crossref] [Google Scholar]
  176. 176.
    Wolf G, Ritz E. 2005.. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease: pathophysiology and indications. . Kidney Int. 67::799812
    [Crossref] [Google Scholar]
  177. 177.
    Trachtman H. 2020.. Emerging drugs for treatment of focal segmental glomerulosclerosis. . Expert Opin. Emerg. Drugs 25::36775
    [Crossref] [Google Scholar]
  178. 178.
    Korbet SM. 2012.. Treatment of primary FSGS in adults. . J. Am. Soc. Nephrol. 23::176976
    [Crossref] [Google Scholar]
  179. 179.
    Senthil Nayagam L, Ganguli A, Rathi M, Kohli HS, Gupta KL, et al. 2008.. Mycophenolate mofetil or standard therapy for membranous nephropathy and focal segmental glomerulosclerosis: a pilot study. . Nephrol. Dial. Transplant. 23::192630
    [Crossref] [Google Scholar]
  180. 180.
    Yoo TH, Fornoni A. 2015.. Nonimmunologic targets of immunosuppressive agents in podocytes. . Kidney Res. Clin. Pract. 34::6975
    [Crossref] [Google Scholar]
  181. 181.
    Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, et al. 2008.. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. . Nat. Med. 14::93138
    [Crossref] [Google Scholar]
  182. 182.
    Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, et al. 1999.. A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. . Kidney Int. 56::222026
    [Crossref] [Google Scholar]
  183. 183.
    Meyrier A, Noël LH, Auriche P, Callard P, Collab. Group Soc. Néphrol. 1994.. Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. . Kidney Int. 45::144656
    [Crossref] [Google Scholar]
  184. 184.
    Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, et al. 2004.. Induction of B7-1 in podocytes is associated with nephrotic syndrome. . J. Clin. Investig. 113::139097
    [Crossref] [Google Scholar]
  185. 185.
    Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, et al. 2013.. Abatacept in B7-1–positive proteinuric kidney disease. . N. Engl. J. Med. 369::241623
    [Crossref] [Google Scholar]
  186. 186.
    Pescovitz MD, Book BK, Sidner RA. 2006.. Resolution of recurrent focal segmental glomerulosclerosis proteinuria after rituximab treatment. . N. Engl. J. Med. 354::196163
    [Crossref] [Google Scholar]
  187. 187.
    Hansrivijit P, Cheungpasitporn W, Thongprayoon C, Ghahramani N. 2020.. Rituximab therapy for focal segmental glomerulosclerosis and minimal change disease in adults: a systematic review and meta-analysis. . BMC Nephrol. 21::134
    [Crossref] [Google Scholar]
  188. 188.
    Wang L, Yu L, Wang Y, Guo Y, Zhai Z, et al. 2023.. Rituximab treatment of adults with primary focal segmental glomerulosclerosis. . Sci. Rep. 13::6740
    [Crossref] [Google Scholar]
  189. 189.
    Morris AD, Floyd L, Woywodt A, Dhaygude A. 2023.. Rituximab in the treatment of primary FSGS: time for its use in routine clinical practice?. Clin. Kidney J. 16::1199205
    [Crossref] [Google Scholar]
  190. 190.
    Hogan J, Bomback AS, Mehta K, Canetta PA, Rao MK, et al. 2013.. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. . Clin. J. Am. Soc. Nephrol. 8::207281
    [Crossref] [Google Scholar]
  191. 191.
    Peyser A, Machardy N, Tarapore F, Machardy J, Powell L, et al. 2010.. Follow-up of phase I trial of adalimumab and rosiglitazone in FSGS: III. Report of the FONT study group. . BMC Nephrol. 11::2
    [Crossref] [Google Scholar]
  192. 192.
    Alachkar N, Wei C, Arend LJ, Jackson AM, Racusen LC, et al. 2013.. Podocyte effacement closely links to suPAR levels at time of posttransplantation focal segmental glomerulosclerosis occurrence and improves with therapy. . Transplantation 96::64956
    [Crossref] [Google Scholar]
  193. 193.
    Kitajima S, Osima M, Ogura H, Nakagawa S, Yamamura Y, et al. 2023.. Long-term prognosis of focal segmental glomerulosclerosis treated with therapeutic low-density lipoprotein-apheresis in patients with severe kidney dysfunction and proteinuria. . Rheumatol. Autoimmun. 3::3542
    [Crossref] [Google Scholar]
  194. 194.
    Raina R, Wang J, Sharma A, Chakraborty R. 2020.. Extracorporeal therapies in the treatment of focal segmental glomerulosclerosis. . Blood Purif. 49::51323
    [Crossref] [Google Scholar]
  195. 195.
    Kim JH, Kim BK, Moon KC, Hong HK, Lee HS. 2003.. Activation of the TGF-β/Smad signaling pathway in focal segmental glomerulosclerosis. . Kidney Int. 64::171521
    [Crossref] [Google Scholar]
  196. 196.
    Malaga-Dieguez L, Bouhassira D, Gipson D, Trachtman H. 2015.. Novel therapies for FSGS: preclinical and clinical studies. . Adv. Chronic Kidney Dis. 22::e16
    [Crossref] [Google Scholar]
  197. 197.
    Li J, Campanale NV, Liang RJ, Deane JA, Bertram JF, et al. 2006.. Inhibition of p38 mitogen-activated protein kinase and transforming growth factor-β1/Smad signaling pathways modulates the development of fibrosis in adriamycin-induced nephropathy. . Am. J. Pathol. 169::152740
    [Crossref] [Google Scholar]
  198. 198.
    Sharma K, Jin Y, Guo J, Ziyadeh FN. 1996.. Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. . Diabetes 45::52230
    [Crossref] [Google Scholar]
  199. 199.
    Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DR, et al. 2011.. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. . Kidney Int. 79::123643
    [Crossref] [Google Scholar]
  200. 200.
    Vincenti F, Fervenza FC, Campbell KN, Diaz M, Gesualdo L, et al. 2017.. A phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis. . Kidney Int. Rep. 2::80010
    [Crossref] [Google Scholar]
  201. 201.
    Cho ME, Smith DC, Branton MH, Penzak SR, Kopp JB. 2007.. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. . Clin. J. Am. Soc. Nephrol. 2::90613
    [Crossref] [Google Scholar]
  202. 202.
    Gebeshuber CA, Kornauth C, Dong L, Sierig R, Seibler J, et al. 2013.. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. . Nat. Med. 19::48187
    [Crossref] [Google Scholar]
  203. 203.
    Denby L, Ramdas V, Lu R, Conway BR, Grant JS, et al. 2014.. MicroRNA-214 antagonism protects against renal fibrosis. . J. Am. Soc. Nephrol. 25::6580
    [Crossref] [Google Scholar]
  204. 204.
    Wu J, Zheng C, Fan Y, Zeng C, Chen Z, et al. 2014.. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. . J. Am. Soc. Nephrol. 25::92104
    [Crossref] [Google Scholar]
  205. 205.
    Cavasin MA, Rhaleb NE, Yang XP, Carretero OA. 2004.. Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. . Hypertension 43::114045
    [Crossref] [Google Scholar]
  206. 206.
    Macconi D, Tomasoni S, Romagnani P, Trionfini P, Sangalli F, et al. 2012.. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. . J. Am. Soc. Nephrol. 23::1496505
    [Crossref] [Google Scholar]
  207. 207.
    Kohan DE, Barton M. 2014.. Endothelin and endothelin antagonists in chronic kidney disease. . Kidney Int. 86::896904
    [Crossref] [Google Scholar]
  208. 208.
    Trachtman H, Nelson P, Adler S, Campbell KN, Chaudhuri A, et al. 2018.. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. . J. Am. Soc. Nephrol. 29::274554
    [Crossref] [Google Scholar]
  209. 209.
    Ingelfinger JR. 2023.. Sparsentan—another arrow in the quiver for treatment of FSGS?. N. Engl. J. Med. 389::248283
    [Crossref] [Google Scholar]
  210. 210.
    Rheault MN, Alpers CE, Barratt J, Bieler S, Canetta P, et al. 2023.. Sparsentan versus irbesartan in focal segmental glomerulosclerosis. . N. Engl. J. Med. 389::243645
    [Crossref] [Google Scholar]
  211. 211.
    van der Wijst J, Bindels RJM. 2018.. Renal physiology: TRPC5 inhibition to treat progressive kidney disease. . Nat. Rev. Nephrol. 14::14546
    [Crossref] [Google Scholar]
  212. 212.
    Yu M, Ledeboer MW, Daniels M, Malojcic G, Tibbitts TT, et al. 2019.. Discovery of a potent and selective TRPC5 inhibitor, efficacious in a focal segmental glomerulosclerosis model. . ACS Med. Chem. Lett. 10::157985
    [Crossref] [Google Scholar]
  213. 213.
    Aghajan M, Booten SL, Althage M, Hart CE, Ericsson A, et al. 2019.. Antisense oligonucleotide treatment ameliorates IFN-γ-induced proteinuria in APOL1-transgenic mice. . JCI Insight 4::e126124
    [Crossref] [Google Scholar]
  214. 214.
    de Cos M, Meliambro K, Campbell KN. 2022.. Novel treatment paradigms: focal segmental glomerulosclerosis. . Kidney Int. Rep. 8::3035
    [Crossref] [Google Scholar]
  215. 215.
    Liu Y, Shi Y, Ren R, Xie J, Wang W, et al. 2018.. Advanced therapeutics in focal and segmental glomerulosclerosis. . Nephrology 23:(Suppl. 4):5761
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pathol-051220-092001
Loading
/content/journals/10.1146/annurev-pathol-051220-092001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error