1932

Abstract

Drug transporters are now widely acknowledged as important determinants governing drug absorption, excretion, and, in many cases, extent of drug entry into target organs. There is also a greater appreciation that altered drug transporter function, whether due to genetic polymorphisms, drug-drug interactions, or environmental factors such as dietary constituents, can result in unexpected toxicity. Such effects are in part due to the interplay between various uptake and efflux transporters with overlapping functional capabilities that can manifest as marked interindividual variability in drug disposition in vivo. Here we review transporters of the solute carrier (SLC) and ATP-binding cassette (ABC) superfamilies considered to be of major importance in drug therapy and outline how understanding the expression, function, and genetic variation in such drug transporters will result in better strategies for optimal drug design and tissue targeting as well as reduce the risk for drug-drug interactions and adverse drug responses.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010611-134529
2012-02-10
2025-01-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/52/1/annurev-pharmtox-010611-134529.html?itemId=/content/journals/10.1146/annurev-pharmtox-010611-134529&mimeType=html&fmt=ahah

Literature Cited

  1. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL. 1.  et al. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9:215–36 [Google Scholar]
  2. Ho RH, Kim RB. 2.  2005. Transporters and drug therapy: implications for drug disposition and disease. Clin. Pharmacol. Ther. 78:260–77 [Google Scholar]
  3. Schinkel AH, Jonker JW. 3.  2003. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev. 55:3–29 [Google Scholar]
  4. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA. 4.  2004. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch. 447:465–68 [Google Scholar]
  5. Nies AT, Koepsell H, Damme K, Schwab M. 5.  2011. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb. Exp. Pharmacol. 2011:105–67 [Google Scholar]
  6. Choi MK, Song IS. 6.  2008. Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab. Pharmacokinet. 23:243–53 [Google Scholar]
  7. Koepsell H, Lips K, Volk C. 7.  2007. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 24:1227–51 [Google Scholar]
  8. Nies AT, Koepsell H, Winter S, Burk O, Klein K. 8.  et al. 2009. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 50:1227–40 [Google Scholar]
  9. Kirpichnikov D, McFarlane SI, Sowers JR. 9.  2002. Metformin: an update. Ann. Intern. Med. 137:25–33 [Google Scholar]
  10. Kerb R, Brinkmann U, Chatskaia N, Gorbunov D, Gorboulev V. 10.  et al. 2002. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 12:591–95 [Google Scholar]
  11. Sakata T, Anzai N, Shin HJ, Noshiro R, Hirata T. 11.  et al. 2004. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem. Biophys. Res. Commun. 313:789–93 [Google Scholar]
  12. Chen L, Takizawa M, Chen E, Schlessinger A, Segenthelar J. 12.  et al. 2010. Genetic polymorphisms in organic cation transporter 1 (OCT1) in Chinese and Japanese populations exhibit altered function. J. Pharmacol. Exp. Ther. 335:42–50 [Google Scholar]
  13. Leabman MK, Huang CC, Kawamoto M, Johns SJ, Stryke D. 13.  et al. 2002. Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 12:395–405 [Google Scholar]
  14. Ogasawara K, Terada T, Motohashi H, Asaka J, Aoki M. 14.  et al. 2008. Analysis of regulatory polymorphisms in organic ion transporter genes (SLC22A) in the kidney. J. Hum. Genet. 53:607–14 [Google Scholar]
  15. Sakata T, Anzai N, Kimura T, Miura D, Fukutomi T. 15.  et al. 2010. Functional analysis of human organic cation transporter OCT3 (SLC22A3) polymorphisms. J. Pharmacol. Sci. 113:263–66 [Google Scholar]
  16. Shu Y, Leabman MK, Feng B, Mangravite LM, Huang CC. 16.  et al. 2003. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc. Natl. Acad. Sci. USA 100:5902–7 [Google Scholar]
  17. Wang ZJ, Yin OQ, Tomlinson B, Chow MS. 17.  2008. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet. Genomics 18:637–45 [Google Scholar]
  18. Song IS, Shin HJ, Shim EJ, Jung IS, Kim WY. 18.  et al. 2008. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 84:559–62 [Google Scholar]
  19. Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S. 19.  et al. 2007. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Investig. 117:1422–31 [Google Scholar]
  20. Shu Y, Brown C, Castro RA, Shi RJ, Lin ET. 20.  et al. 2008. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 83:273–80 [Google Scholar]
  21. Chen Y, Li S, Brown C, Cheatham S, Castro RA. 21.  et al. 2009. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genomics 19:497–504 [Google Scholar]
  22. Tzvetkov MV, Vormfelde SV, Balen D, Meineke I, Schmidt T. 22.  et al. 2009. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 86:299–306 [Google Scholar]
  23. Ahlin G, Chen L, Lazorova L, Chen Y, Ianculescu AG. 23.  et al. 2010. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. In press, doi:10.1038/tpj.2010.54 [Google Scholar]
  24. Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA. 24.  et al. 2011. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin. Pharmacol. Ther. 89:416–21 [Google Scholar]
  25. Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. 25.  2002. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 302:510–15 [Google Scholar]
  26. Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, Sugiyama Y. 26.  2003. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol. Pharmacol. 63:844–48 [Google Scholar]
  27. Moreno-Navarrete JM, Ortega FJ, Rodriguez-Hermosa JI, Sabater M, Pardo G. 27.  et al. 2011. OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects. Diabetes 60:168–76 [Google Scholar]
  28. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. 28.  2009. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 9:242–47 [Google Scholar]
  29. Gambineri A, Tomassoni F, Gasparini DI, Di Rocco A, Mantovani V. 29.  et al. 2010. Organic cation transporter 1 polymorphisms predict the metabolic response to metformin in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 95:E204–8 [Google Scholar]
  30. Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T. 30.  et al. 2007. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet. 52:117–22 [Google Scholar]
  31. Zhou K, Donnelly LA, Kimber CH, Donnan PT, Doney AS. 31.  et al. 2009. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes 58:1434–39 [Google Scholar]
  32. Tzvetkov MV, Saadatmand AR, Bokelmann K, Meineke I, Kaiser R, Brockmöller J. 32.  2010. Effects of OCT1 polymorphisms on the cellular uptake, plasma concentrations and efficacy of the 5-HT3 antagonists tropisetron and ondansetron. Pharmacogenomics J. In press doi:10.1038/tpj.2010.75 [Google Scholar]
  33. Thomas J, Wang L, Clark RE, Pirmohamed M. 33.  2004. Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–45 [Google Scholar]
  34. White DL, Dang P, Engler J, Frede A, Zrim S. 34.  et al. 2010. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J. Clin. Oncol. 28:2761–67 [Google Scholar]
  35. Engler JR, Hughes TP, White DL. 35.  2011. OCT-1 as a determinant of response to antileukemic treatment. Clin. Pharmacol. Ther. 89:608–11 [Google Scholar]
  36. Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y. 36.  et al. 2006. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66:8847–57 [Google Scholar]
  37. Li S, Chen Y, Zhang S, More SS, Huang X, Giacomini KM. 37.  2011. Role of organic cation transporter 1, OCT1 in the pharmacokinetics and toxicity of cis-diammine(pyridine)chloroplatinum(II) and oxaliplatin in mice. Pharm. Res. 28:610–25 [Google Scholar]
  38. Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A. 38.  2009. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther. 86:396–402 [Google Scholar]
  39. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M. 39.  et al. 2010. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 176:1169–80 [Google Scholar]
  40. Tanihara Y, Masuda S, Katsura T, Inui K. 40.  2009. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem. Pharmacol. 78:1263–71 [Google Scholar]
  41. Franke RM, Kosloske AM, Lancaster CS, Filipski KK, Hu C. 41.  et al. 2010. Influence of Oct1/Oct2-deficiency on cisplatin-induced changes in urinary N-acetyl-β-d-glucosaminidase. Clin. Cancer Res. 16:4198–206 [Google Scholar]
  42. Tsuruoka S, Ioka T, Wakaumi M, Sakamoto K, Ookami H, Fujimura A. 42.  2006. Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2. Clin. Pharmacol. Ther. 79:389–96 [Google Scholar]
  43. Koepsell H. 43.  1998. Organic cation transporters in intestine, kidney, liver, and brain. Annu. Rev. Physiol. 60:243–66 [Google Scholar]
  44. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. 44.  2005. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA 102:17923–28 [Google Scholar]
  45. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K. 45.  et al. 2006. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 17:2127–35 [Google Scholar]
  46. Chen Y, Teranishi K, Li S, Yee SW, Hesselson S. 46.  et al. 2009. Genetic variants in multidrug and toxic compound extrusion-1, hMATE1, alter transport function. Pharmacogenomics J. 9:127–36 [Google Scholar]
  47. Meyer zu Schwabedissen HE, Verstuyft C, Kroemer HK, Becquemont L, Kim RB. 47.  2010. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am. J. Physiol. Renal Physiol. 298:F997–1005 [Google Scholar]
  48. Ha Choi J, Wah Yee S, Kim MJ, Nguyen L, Ho Lee J. 48.  et al. 2009. Identification and characterization of novel polymorphisms in the basal promoter of the human transporter, MATE1. Pharmacogenet. Genomics 19:770–80 [Google Scholar]
  49. Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T. 49.  et al. 2009. Identification of multidrug and toxin extrusion (MATE1 and MATE2-K) variants with complete loss of transport activity. J. Hum. Genet. 54:40–46 [Google Scholar]
  50. Toyama K, Yonezawa A, Tsuda M, Masuda S, Yano I. 50.  et al. 2010. Heterozygous variants of multidrug and toxin extrusions (MATE1 and MATE2-K) have little influence on the disposition of metformin in diabetic patients. Pharmacogenet. Genomics 20:135–38 [Google Scholar]
  51. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. 51.  2009. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 58:745–49 [Google Scholar]
  52. Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. 52.  2010. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet. Genomics 20:38–44 [Google Scholar]
  53. Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. 53.  2009. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol. Pharmacol. 75:1280–86 [Google Scholar]
  54. Watanabe S, Tsuda M, Terada T, Katsura T, Inui K. 54.  2010. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice. J. Pharmacol. Exp. Ther. 334:651–56 [Google Scholar]
  55. Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K. 55.  2010. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem. Pharmacol. 80:1762–67 [Google Scholar]
  56. Imamura Y, Murayama N, Okudaira N, Kurihara A, Okazaki O. 56.  et al. 2011. Prediction of fluoroquinolone-induced elevation in serum creatinine levels: a case of drug-endogenous substance interaction involving the inhibition of renal secretion. Clin. Pharmacol. Ther. 89:81–88 [Google Scholar]
  57. Matsushima S, Maeda K, Inoue K, Ohta KY, Yuasa H. 57.  et al. 2009. The inhibition of human multidrug and toxin extrusion 1 is involved in the drug-drug interaction caused by cimetidine. Drug Metab. Dispos. 37:555–59 [Google Scholar]
  58. Minematsu T, Giacomini KM. 58.  2011. Interactions of tyrosine kinase inhibitors with organic cation transporters, OCTs, and multidrug and toxic compound extrusion proteins. Mol. Cancer Ther. 10:531–39 [Google Scholar]
  59. Burckhardt G, Burckhardt BC. 59.  2011. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb. Exp. Pharmacol. 2011:29–104 [Google Scholar]
  60. Vanwert AL, Gionfriddo MR, Sweet DH. 60.  2010. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm. Drug Dispos. 31:1–71 [Google Scholar]
  61. Vanwert AL, Bailey RM, Sweet DH. 61.  2007. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am. J. Physiol. Renal Physiol. 293:F1332–41 [Google Scholar]
  62. Vanwert AL, Srimaroeng C, Sweet DH. 62.  2008. Organic anion transporter 3 (Oat3/Slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol. Pharmacol. 74:122–31 [Google Scholar]
  63. Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M. 63.  et al. 2009. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64–0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab. Dispos. 37:315–21 [Google Scholar]
  64. Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. 64.  2008. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am. J. Physiol. Renal Physiol. 294:F867–73 [Google Scholar]
  65. Thyss A, Milano G, Kubar J, Namer M, Schneider M. 65.  1986. Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet 1:256–58 [Google Scholar]
  66. Takeda M, Khamdang S, Narikawa S, Kimura H, Hosoyamada M. 66.  et al. 2002. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther. 302:666–71 [Google Scholar]
  67. Mulato AS, Ho ES, Cihlar T. 67.  2000. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J. Pharmacol. Exp. Ther. 295:10–15 [Google Scholar]
  68. Han YF, Fan XH, Wang XJ, Sun K, Xue H. 68.  et al. 2011. Association of intergenic polymorphism of organic anion transporter 1 and 3 genes with hypertension and blood pressure response to hydrochlorothiazide. Am. J. Hypertens. 24:340–46 [Google Scholar]
  69. Niemi M. 69.  2007. Role of OATP transporters in the disposition of drugs. Pharmacogenomics 8:787–802 [Google Scholar]
  70. Tirona RG, Kim RB. 70.  2007. Organic anion-transporting polypeptides. Drug Transporters G You, ME Morris 75–104 Hoboken, NJ: Wiley [Google Scholar]
  71. Kalliokoski A, Niemi M. 71.  2009. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 158:693–705 [Google Scholar]
  72. Niemi M, Pasanen MK, Neuvonen PJ. 72.  2011. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 63:157–81 [Google Scholar]
  73. Tirona RG, Leake BF, Merino G, Kim RB. 73.  2001. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276:35669–75 [Google Scholar]
  74. Couvert P, Giral P, Dejager S, Gu J, Huby T. 74.  et al. 2008. Association between a frequent allele of the gene encoding OATP1B1 and enhanced LDL-lowering response to fluvastatin therapy. Pharmacogenomics 9:1217–27 [Google Scholar]
  75. Niemi M, Neuvonen PJ, Hofmann U, Backman JT, Schwab M. 75.  et al. 2005. Acute effects of pravastatin on cholesterol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet. Genomics 15:303–9 [Google Scholar]
  76. Gerloff T, Schaefer M, Mwinyi J, Johne A, Sudhop T. 76.  et al. 2006. Influence of the SLCO1B1*1b and *5 haplotypes on pravastatin's cholesterol lowering capabilities and basal sterol serum levels. Naunyn-Schmiedeberg's Arch. Pharmacol. 373:45–50 [Google Scholar]
  77. Tachibana-Iimori R, Tabara Y, Kusuhara H, Kohara K, Kawamoto R. 77.  et al. 2004. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab. Pharmacokinet. 19:375–80 [Google Scholar]
  78. Niemi M, Kivisto KT, Hofmann U, Schwab M, Eichelbaum M, Fromm MF. 78.  2005. Fexofenadine pharmacokinetics are associated with a polymorphism of the SLCO1B1 gene (encoding OATP1B1). Br. J. Clin. Pharmacol. 59:602–4 [Google Scholar]
  79. Innocenti F, Kroetz DL, Schuetz E, Dolan ME, Ramirez J. 79.  et al. 2009. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J. Clin. Oncol. 27:2604–14 [Google Scholar]
  80. Xiang X, Jada SR, Li HH, Fan L, Tham LS. 80.  et al. 2006. Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet. Genomics 16:683–91 [Google Scholar]
  81. Kohlrausch FB, de Cássia Estrela R, Barroso PF, Suarez-Kurtz G. 81.  2010. The impact of SLCO1B1 polymorphisms on the plasma concentration of lopinavir and ritonavir in HIV-infected men. Br. J. Clin. Pharmacol. 69:95–98 [Google Scholar]
  82. Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N. 82.  et al. 2010. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet. Genomics 20:112–20 [Google Scholar]
  83. Trevino LR, Shimasaki N, Yang W, Panetta JC, Cheng C. 83.  et al. 2009. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J. Clin. Oncol. 27:5972–78 [Google Scholar]
  84. Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M. 84.  et al. 2005. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. 77:468–78 [Google Scholar]
  85. Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M. 85.  2008. Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. J. Clin. Pharmacol. 48:311–21 [Google Scholar]
  86. He J, Qiu Z, Li N, Yu Y, Lu Y. 86.  et al. 2011. Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur. J. Clin. Pharmacol. 67:701–7 [Google Scholar]
  87. Sai K, Saito Y, Maekawa K, Kim SR, Kaniwa N. 87.  et al. 2010. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother. Pharmacol. 66:95–105 [Google Scholar]
  88. Han JY, Lim HS, Shin ES, Yoo YK, Park YH. 88.  et al. 2008. Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59:69–75 [Google Scholar]
  89. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Piñan MA, Garcia-Miguel P. 89.  et al. 2011. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 57:612–19 [Google Scholar]
  90. Treiber A, Schneiter R, Hausler S, Stieger B. 90.  2007. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab. Dispos. 35:1400–7 [Google Scholar]
  91. Taguchi M, Ichida F, Hirono K, Miyawaki T, Yoshimura N. 91.  et al. 2011. Pharmacokinetics of bosentan in routinely treated Japanese pediatric patients with pulmonary arterial hypertension. Drug Metab. Pharmacokinet. 26:280–87 [Google Scholar]
  92. Schwarz UI, Meyer zu Schwabedissen HE, Tirona RG, Suzuki A, Leake BF. 92.  et al. 2011. Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet. Genomics 21:103–14 [Google Scholar]
  93. Letschert K, Keppler D, Konig J. 93.  2004. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics 14:441–52 [Google Scholar]
  94. Baker SD, Verweij J, Cusatis GA, van Schaik RH, Marsh S. 94.  et al. 2008. Pharmacogenetic pathway analysis of docetaxel elimination. Clin. Pharmacol. Ther. 85:155–63 [Google Scholar]
  95. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S. 95.  et al. 2007. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin. Pharmacol. Ther. 81:76–82 [Google Scholar]
  96. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A. 96.  2005. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther. 4:815–18 [Google Scholar]
  97. Kiyotani K, Mushiroda T, Kubo M, Zembutsu H, Sugiyama Y, Nakamura Y. 97.  2008. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci. 99:967–72 [Google Scholar]
  98. van de Steeg E, van Esch A, Wagenaar E, van der Kruijssen CM, van Tellingen O. 98.  et al. 2010. High impact of Oatp1a/1b transporters on in vivo disposition of the hydrophobic anticancer drug paclitaxel. Clin. Cancer Res. 17:294–301 [Google Scholar]
  99. Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H. 99.  et al. 2008. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res. 68:10315–23 [Google Scholar]
  100. 100.  Deleted in proof
  101. Mougey EB, Feng H, Castro M, Irvin CG, Lima JJ. 101.  2009. Absorption of montelukast is transporter mediated: A common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet. Genomics 19:129–38 [Google Scholar]
  102. Tapaninen T, Neuvonen PJ, Niemi M. 102.  2010. Orange and apple juice greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren. Br. J. Clin. Pharmacol. 71:718–26 [Google Scholar]
  103. Tapaninen T, Neuvonen PJ, Niemi M. 103.  2010. Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren. Clin. Pharmacol. Ther. 88:339–42 [Google Scholar]
  104. Mougey EB, Lang JE, Wen X, Lima JJ. 104.  2010. Effect of citrus juice and SLCO2B1 genotype on the pharmacokinetics of montelukast. J. Clin. Pharmacol. 51:751–60 [Google Scholar]
  105. Zaher H, Meyer zu Schwabedissen HE, Tirona RG, Cox ML, Obert LA. 105.  et al. 2008. Targeted disruption of murine organic anion-transporting polypeptide 1b2 (oatp1b2/Slco1b2) significantly alters disposition of prototypical drug substrates pravastatin and rifampin. Mol. Pharmacol. 74:320–29 [Google Scholar]
  106. Chen C, Stock JL, Liu X, Shi J, Van Deusen JW. 106.  et al. 2008. Utility of a novel Oatp1b2 knockout mouse model for evaluating the role of Oatp1b2 in the hepatic uptake of model compounds. Drug Metab. Dispos. 36:1840–45 [Google Scholar]
  107. Lu H, Choudhuri S, Ogura K, Csanaky IL, Lei X. 107.  et al. 2008. Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol. Sci. 103:35–45 [Google Scholar]
  108. van de Steeg E, Wagenaar E, van der Kruijssen CM, Burggraaff JE, de Waart DR. 108.  et al. 2010. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J. Clin. Investig. 120:2942–52 [Google Scholar]
  109. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. 109.  2007. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 82:726–33 [Google Scholar]
  110. Lee YJ, Lee MG, Lim LA, Jang SB, Chung JY. 110.  2010. Effects of SLCO1B1 and ABCB1 genotypes on the pharmacokinetics of atorvastatin and 2-hydroxyatorvastatin in healthy Korean subjects. Int. J. Clin. Pharmacol. Ther. 48:36–45 [Google Scholar]
  111. Maeda K, Ieiri I, Yasuda K, Fujino A, Fujiwara H. 111.  et al. 2006. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin. Pharmacol. Ther. 79:427–39 [Google Scholar]
  112. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K. 112.  et al. 2003. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73:554–65 [Google Scholar]
  113. Niemi M, Pasanen MK, Neuvonen PJ. 113.  2006. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin. Pharmacol. Ther. 80:356–66 [Google Scholar]
  114. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M. 114.  et al. 2004. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14:429–40 [Google Scholar]
  115. Ho RH, Choi L, Lee W, Mayo G, Schwarz UI. 115.  et al. 2007. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet. Genomics 17:647–56 [Google Scholar]
  116. Igel M, Arnold KA, Niemi M, Hofmann U, Schwab M. 116.  et al. 2006. Impact of the SLCO1B1 polymorphism on the pharmacokinetics and lipid-lowering efficacy of multiple-dose pravastatin. Clin. Pharmacol. Ther. 79:419–26 [Google Scholar]
  117. Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T. 117.  2004. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther. 75:415–21 [Google Scholar]
  118. Chung JY, Cho JY, Yu KS, Kim JR, Oh DS. 118.  et al. 2005. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 78:342–50 [Google Scholar]
  119. Ieiri I, Suwannakul S, Maeda K, Uchimaru H, Hashimoto K. 119.  et al. 2007. SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 82:541–47 [Google Scholar]
  120. Deng JW, Song IS, Shin HJ, Yeo CW, Cho DY. 120.  et al. 2008. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: The contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet. Genomics 18:424–33 [Google Scholar]
  121. Lee E, Ryan S, Birmingham B, Zalikowski J, March R. 121.  et al. 2005. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin. Pharmacol. Ther. 78:330–41 [Google Scholar]
  122. Choi JH, Lee MG, Cho JY, Lee JE, Kim KH, Park K. 122.  2008. Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans. Clin. Pharmacol. Ther. 83:251–57 [Google Scholar]
  123. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. 123.  2006. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics 16:873–79 [Google Scholar]
  124. Link E, Parish S, Armitage J, Bowman L, Heath S. 124.  et al. 2008. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359:789–99 [Google Scholar]
  125. Marciante KD, Durda JP, Heckbert SR, Lumley T, Rice K. 125.  et al. 2011. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet. Genomics 21:280–88 [Google Scholar]
  126. Brunham LR, Lansberg PJ, Zhang L, Miao F, Carter C. 126.  et al. 2011. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. In press, doi:10.1038/tpj.2010.92 [Google Scholar]
  127. Voora D, Shah SH, Spasojevic I, Ali S, Reed CR. 127.  et al. 2009. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54:1609–16 [Google Scholar]
  128. Donnelly LA, Doney AS, Tavendale R, Lang CC, Pearson ER. 128.  et al. 2011. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clin. Pharmacol. Ther. 89:210–16 [Google Scholar]
  129. Knauer MJ, Urquhart BL, Meyer zu Schwabedissen HE, Schwarz UI, Lemke CJ. 129.  et al. 2010. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ. Res. 106:297–306 [Google Scholar]
  130. Juliano RL, Ling V. 130.  1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–62 [Google Scholar]
  131. Cascorbi I. 131.  2011. P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb. Exp. Pharmacol. 2011:261–83 [Google Scholar]
  132. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE. 132.  et al. 1992. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–54 [Google Scholar]
  133. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M. 133.  1998. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58:5337–39 [Google Scholar]
  134. Miyake K, Mickley L, Litman T, Zhan Z, Robey R. 134.  et al. 1999. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59:8–13 [Google Scholar]
  135. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y. 135.  et al. 1998. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 95:15665–70 [Google Scholar]
  136. Sharom FJ. 136.  2008. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–27 [Google Scholar]
  137. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. 137.  2006. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 5:219–34 [Google Scholar]
  138. McDevitt CA, Callaghan R. 138.  2007. How can we best use structural information on P-glycoprotein to design inhibitors?. Pharmacol. Ther. 113:429–41 [Google Scholar]
  139. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S. 139.  et al. 2009. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–22 [Google Scholar]
  140. Chen C, Liu X, Smith BJ. 140.  2003. Utility of Mdr1-gene deficient mice in assessing the impact of P-glycoprotein on pharmacokinetics and pharmacodynamics in drug discovery and development. Curr. Drug Metab. 4:272–91 [Google Scholar]
  141. Loescher W, Potschka H. 141.  2005. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 76:22–76 [Google Scholar]
  142. Teft WA, Mansell SE, Kim RB. 142.  2011. Endoxifen, the active metabolite of tamoxifen, is a substrate of the efflux transporter P-glycoprotein (multidrug resistance 1). Drug Metab. Dispos. 39:558–62 [Google Scholar]
  143. Iusuf D, Teunissen SF, Wagenaar E, Rosing H, Beijnen JH, Schinkel AH. 143.  2011. P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen, and restricts their brain penetration. J. Pharmacol. Exp. Ther. 337:710–17 [Google Scholar]
  144. Potschka H. 144.  2010. Modulating P-glycoprotein regulation: future perspectives for pharmacoresistant epilepsies?. Epilepsia 51:1333–47 [Google Scholar]
  145. Tahara H, Kusuhara H, Fuse E, Sugiyama Y. 145.  2005. P-glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood-brain barrier, but only a limited role in its biliary excretion. Drug. Metab. Dispos. 33:963–68 [Google Scholar]
  146. Yang JJ, Milton MN, Yu S, Liao M, Liu N. 146.  et al. 2010. P-glycoprotein and breast cancer resistance protein affect disposition of tandutinib, a tyrosine kinase inhibitor. Drug Metab. Lett. 4:201–12 [Google Scholar]
  147. Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL. 147.  et al. 2009. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab. Dispos. 37:439–42 [Google Scholar]
  148. Tang SC, Lagas JS, Lankheet NA, Poller B, Hillebrand MJ. 148.  et al. 2011. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int. J. Cancer In press, doi:10.1002/ijc.26000 [Google Scholar]
  149. Oostendorp RL, Buckle T, Beijnen JH, van Tellingen O, Schellens JH. 149.  2009. The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Investig. New Drugs 27:31–40 [Google Scholar]
  150. Syvanen S, Lindhe O, Palner M, Kornum BR, Rahman O. 150.  et al. 2009. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab. Dispos 37:635–43 [Google Scholar]
  151. Chinn LW, Kroetz DL. 151.  2007. ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clin. Pharmacol. Ther. 81:265–69 [Google Scholar]
  152. Glaeser H. 152.  2011. Importance of P-glycoprotein for drug-drug interactions. Handb. Exp. Pharmacol. 2011:285–97 [Google Scholar]
  153. Gutmann H, Hruz P, Zimmermann C, Beglinger C, Drewe J. 153.  2005. Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem. Pharmacol. 70:695–99 [Google Scholar]
  154. Schwabedissen HE, Kroemer HK. 154.  2011. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb. Exp. Pharmacol. 2011:325–71 [Google Scholar]
  155. Robey RW, To KK, Polgar O, Dohse M, Fetsch P. 155.  et al. 2009. ABCG2: a perspective. Adv. Drug Deliv. Rev. 61:3–13 [Google Scholar]
  156. Xia CQ, Yang JJ, Gan LS. 156.  2005. Breast cancer resistance protein in pharmacokinetics and drug-drug interactions. Expert Opin. Drug Metab. Toxicol. 1:595–611 [Google Scholar]
  157. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH. 157.  et al. 2000. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl. Cancer Inst. 92:1651–56 [Google Scholar]
  158. Vlaming ML, Lagas JS, Schinkel AH. 158.  2009. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv. Drug Deliv. Rev. 61:14–25 [Google Scholar]
  159. Vlaming ML, Pala Z, van Esch A, Wagenaar E, de Waart DR. 159.  et al. 2009. Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin. Cancer Res. 15:3084–93 [Google Scholar]
  160. Vlaming ML, van Esch A, Pala Z, Wagenaar E, van de Wetering K. 160.  et al. 2009. Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol. Cancer Ther. 8:3350–59 [Google Scholar]
  161. Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E. 161.  et al. 2005. The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med. 11:127–29 [Google Scholar]
  162. Merino G, Jonker JW, Wagenaar E, van Herwaarden AE, Schinkel AH. 162.  2005. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol. Pharmacol. 67:1758–64 [Google Scholar]
  163. Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H. 163.  van et al. 2007. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol. Cell. Biol. 27:1247–53 [Google Scholar]
  164. Urquhart BL, Ware JA, Tirona RG, Ho RH, Leake BF. 164.  et al. 2008. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet. Genomics 18:439–48 [Google Scholar]
  165. Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M. 165.  et al. 2008. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin. Pharmacol. Ther. 84:95–103 [Google Scholar]
  166. Zaher H, Khan AA, Palandra J, Brayman TG, Yu L, Ware JA. 166.  2006. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol. Pharm. 3:55–61 [Google Scholar]
  167. Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K. 167.  et al. 2003. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13:19–28 [Google Scholar]
  168. Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L. 168.  et al. 2010. Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J. Pharm. Sci. 99:1046–62 [Google Scholar]
  169. Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. 169.  2009. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86:197–203 [Google Scholar]
  170. Zhang W, Yu BN, He YJ, Fan L, Li Q. 170.  et al. 2006. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin. Chim. Acta 373:99–103 [Google Scholar]
  171. Kitamura S, Maeda K, Wang Y, Sugiyama Y. 171.  2008. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab. Dispos. 36:2014–23 [Google Scholar]
  172. Hirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y. 172.  2005. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol. 68:800–7 [Google Scholar]
  173. Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. 173.  2009. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10:1617–24 [Google Scholar]
  174. Hu M, Lui SS, Mak VW, Chu TT, Lee VW. 174.  et al. 2010. Pharmacogenetic analysis of lipid responses to rosuvastatin in Chinese patients. Pharmacogenet. Genomics 20:634–37 [Google Scholar]
  175. Tomlinson B, Hu M, Lee VW, Lui SS, Chu TT. 175.  et al. 2010. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin. Pharmacol. Ther. 87:558–62 [Google Scholar]
  176. Bailey KM, Romaine SP, Jackson BM, Farrin AJ, Efthymiou M. 176.  et al. 2010. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ. Cardiovasc. Genet. 3:276–85 [Google Scholar]
  177. Rudin CM, Liu W, Desai A, Karrison T, Jiang X. 177.  et al. 2008. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J. Clin. Oncol. 26:1119–27 [Google Scholar]
  178. Benderra Z, Faussat AM, Sayada L, Perrot JY, Chaoui D. 178.  et al. 2004. Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin. Cancer Res. 10:7896–902 [Google Scholar]
  179. Steinbach D, Sell W, Voigt A, Hermann J, Zintl F, Sauerbrey A. 179.  2002. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 16:1443–47 [Google Scholar]
  180. Tsunoda S, Okumura T, Ito T, Kondo K, Ortiz C. 180.  et al. 2006. ABCG2 expression is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma. Oncology 71:251–58 [Google Scholar]
  181. Ross DD, Nakanishi T. 181.  2010. Impact of breast cancer resistance protein on cancer treatment outcomes. Methods Mol. Biol. 596:251–90 [Google Scholar]
  182. Ishikawa T, Nakagawa H. 182.  2009. Human ABC transporter ABCG2 in cancer chemotherapy and pharmacogenomics. J. Exp. Ther. Oncol. 8:5–24 [Google Scholar]
  183. Deeley RG, Westlake C, Cole SP. 183.  2006. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev. 86:849–99 [Google Scholar]
  184. Wijnholds J, Evers R, van Leusden MR, Mol CA, Zaman GJ. 184.  et al. 1997. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med. 3:1275–79 [Google Scholar]
  185. Lorico A, Rappa G, Finch RA, Yang D, Flavell RA, Sartorelli AC. 185.  1997. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res. 57:5238–42 [Google Scholar]
  186. Letourneau IJ, Deeley RG, Cole SP. 186.  2005. Functional characterization of non-synonymous single nucleotide polymorphisms in the gene encoding human multidrug resistance protein 1 (MRP1/ABCC1). Pharmacogenet. Genomics 15:647–57 [Google Scholar]
  187. Nies AT, Keppler D. 187.  2007. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 453:643–59 [Google Scholar]
  188. Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F. 188.  et al. 1997. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology 25:1539–42 [Google Scholar]
  189. Gradhand U, Kim RB. 189.  2008. Pharmacogenomics of MRP transporters (ABCC1–5) and BCRP (ABCG2). Drug Metab. Rev. 40:317–54 [Google Scholar]
  190. Treinen-Moslen M, Kanz MF. 190.  2006. Intestinal tract injury by drugs: importance of metabolite delivery by yellow bile road. Pharmacol. Ther. 112:649–67 [Google Scholar]
  191. Russel FG, Koenderink JB, Masereeuw R. 191.  2008. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol. Sci. 29:200–7 [Google Scholar]
  192. Hoque MT, Conseil G, Cole SP. 192.  2009. Involvement of NHERF1 in apical membrane localization of MRP4 in polarized kidney cells. Biochem. Biophys. Res. Commun. 379:60–64 [Google Scholar]
  193. Krishnamurthy P, Schwab M, Takenaka K, Nachagari D, Morgan J. 193.  et al. 2008. Transporter-mediated protection against thiopurine-induced hematopoietic toxicity. Cancer Res. 68:4983–89 [Google Scholar]
  194. Ansari M, Sauty G, Labuda M, Gagne V, Laverdiere C. 194.  et al. 2009. Polymorphism in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood 114:1383–86 [Google Scholar]
  195. Brüggemann M, Trautmann H, Hoelzer D, Kneba M, Gökbuget N, Raff T. 195.  2009. Multidrug resistance-associated protein 4 (MRP4) gene polymorphisms and treatment response in adult acute lymphoblastic leukemia. Blood 114:5400–1 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010611-134529
Loading
/content/journals/10.1146/annurev-pharmtox-010611-134529
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error