Designed ankyrin repeat proteins (DARPins) can recognize targets with specificities and affinities that equal or surpass those of antibodies, but because of their robustness and extreme stability, they allow a multitude of more advanced formats and applications. This review highlights recent advances in DARPin design, illustrates their properties, and gives some examples of their use. In research, they have been established as intracellular, real-time sensors of protein conformations and as crystallization chaperones. For future therapies, DARPins have been developed by advanced, structure-based protein engineering to selectively induce apoptosis in tumors by uncoupling surface receptors from their signaling cascades. They have also been used successfully for retargeting viruses. In ongoing clinical trials, DARPins have shown good safety and efficacy in macular degeneration diseases. These developments all ultimately exploit the high stability, solubility, and aggregation resistance of these molecules, permitting a wide range of conjugates and fusions to be produced and purified.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Forrer P, Stumpp MT, Binz HK, Plückthun A. 1.  2003. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett. 539:2–6 [Google Scholar]
  2. Skerra A, Plückthun A. 2.  1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–41 [Google Scholar]
  3. Glockshuber R, Malia M, Pfitzinger I, Plückthun A. 3.  1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29:1362–67 [Google Scholar]
  4. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. 4.  1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12:433–55 [Google Scholar]
  5. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G. 5.  et al. 2000. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296:57–86 [Google Scholar]
  6. Hanes J, Plückthun A. 6.  1997. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94:4937–42 [Google Scholar]
  7. Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Plückthun A. 7.  1998. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. USA 95:14130–35 [Google Scholar]
  8. Ewert S, Honegger A, Plückthun A. 8.  2004. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34:184–99 [Google Scholar]
  9. Plückthun A, Moroney SE. 9.  2005. Modern antibody technology: the impact on drug development. Modern Biopharmaceuticals J Knäblein 1147–86 Weinheim: Wiley-VCH [Google Scholar]
  10. Kobe B, Kajava AV. 10.  2000. When protein folding is simplified to protein coiling: the continuum of solenoid protein structures. Trends Biochem. Sci. 25:509–15 [Google Scholar]
  11. Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A. 11.  2003. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332:489–503 [Google Scholar]
  12. Stumpp MT, Forrer P, Binz HK, Plückthun A. 12.  2003. Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J. Mol. Biol. 332:471–87 [Google Scholar]
  13. Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD. 13.  2004. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–80 [Google Scholar]
  14. Aderem A, Ulevitch RJ. 14.  2000. Toll-like receptors in the induction of the innate immune response. Nature 406:782–87 [Google Scholar]
  15. Heidrich K, Blanvillain-Baufumé S, Parker JE. 15.  2012. Molecular and spatial constraints on NB-LRR receptor signaling. Curr. Opin. Plant Biol. 15:385–91 [Google Scholar]
  16. Pancer Z, Cooper MD. 16.  2006. The evolution of adaptive immunity. Annu. Rev. Immunol. 24:497–518 [Google Scholar]
  17. Waterhouse RM, Povelones M, Christophides GK. 17.  2010. Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins. BMC Genomics 11:531 [Google Scholar]
  18. Boersma YL, Plückthun A. 18.  2011. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr. Opin. Biotechnol. 22:849–57 [Google Scholar]
  19. Jost C, Plückthun A. 19.  2014. Engineered proteins with high specificity. Curr. Opin. Struct. Biol. 27:102–12 [Google Scholar]
  20. Bork P. 20.  1993. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally. Proteins 17:363–74 [Google Scholar]
  21. Li J, Mahajan A, Tsai MD. 21.  2006. Ankyrin repeat: a unique motif mediating protein–protein interactions. Biochemistry 45:15168–78 [Google Scholar]
  22. Walker RG, Willingham AT, Zuker CS. 22.  2000. A Drosophila mechanosensory transduction channel. Science 287:2229–34 [Google Scholar]
  23. Sedgwick SG, Smerdon SJ. 23.  1999. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24:311–16 [Google Scholar]
  24. Forrer P, Binz HK, Stumpp MT, Plückthun A. 24.  2004. Consensus design of repeat proteins. ChemBioChem 5:183–89 [Google Scholar]
  25. Virnekäs B, Ge L, Plückthun A, Schneider KC, Wellnhofer G, Moroney SE. 25.  1994. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 22:5600–7 [Google Scholar]
  26. Plückthun A. 26.  2012. Ribosome display: a perspective. Methods Mol. Biol. 805:3–28 [Google Scholar]
  27. Steiner D, Forrer P, Plückthun A. 27.  2008. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol. 382:1211–27 [Google Scholar]
  28. Interlandi G, Wetzel SK, Settanni G, Plückthun A, Caflisch A. 28.  2008. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. J. Mol. Biol. 375:837–54 [Google Scholar]
  29. Kramer MA, Wetzel SK, Plückthun A, Mittl PR, Grütter MG. 29.  2010. Structural determinants for improved stability of designed ankyrin repeat proteins with a redesigned C-capping module. J. Mol. Biol. 404:381–91 [Google Scholar]
  30. Wetzel SK, Ewald C, Settanni G, Jurt S, Plückthun A, Zerbe O. 30.  2010. Residue-resolved stability of full-consensus ankyrin repeat proteins probed by NMR. J. Mol. Biol. 402:241–58 [Google Scholar]
  31. Schilling J, Schoeppe J, Plückthun A. 31.  2014. From DARPins to LoopDARPins: novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J. Mol. Biol. 426:691–721 [Google Scholar]
  32. Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C. 32.  et al. 2004. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22:575–82 [Google Scholar]
  33. Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, Grütter MG. 33.  2003. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc. Natl. Acad. Sci. USA 100:1700–5 [Google Scholar]
  34. Tamaskovic R, Simon M, Stefan N, Schwill M, Plückthun A. 34.  2012. Designed ankyrin repeat proteins (DARPins): from research to therapy. Methods Enzymol. 503:101–34 [Google Scholar]
  35. Wetzel SK, Settanni G, Kenig M, Binz HK, Plückthun A. 35.  2008. Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J. Mol. Biol. 376:241–57 [Google Scholar]
  36. Binz HK, Kohl A, Plückthun A, Grütter MG. 36.  2006. Crystal structure of a consensus-designed ankyrin repeat protein: implications for stability. Proteins 65:280–84 [Google Scholar]
  37. Mattheakis LC, Bhatt RR, Dower WJ. 37.  1994. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91:9022–26 [Google Scholar]
  38. Hanes J, Jermutus L, Plückthun A. 38.  2000. Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol. 328:404–30 [Google Scholar]
  39. Hanes J, Schaffitzel C, Knappik A, Plückthun A. 39.  2000. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18:1287–92 [Google Scholar]
  40. Luginbühl B, Kanyo Z, Jones RM, Fletterick RJ, Prusiner SB. 40.  et al. 2006. Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. J. Mol. Biol. 363:75–97 [Google Scholar]
  41. Zahnd C, Wyler E, Schwenk JM, Steiner D, Lawrence MC. 41.  et al. 2007. A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369:1015–28 [Google Scholar]
  42. Dreier B, Mikheeva G, Belousova N, Parizek P, Boczek E. 42.  et al. 2011. Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. J. Mol. Biol. 405:410–26 [Google Scholar]
  43. Dreier B, Plückthun A. 43.  2010. Ribosome display, a technology for selecting and evolving proteins from large libraries. Methods Mol. Biol. 687:283–306 [Google Scholar]
  44. Amstutz P, Binz HK, Parizek P, Stumpp MT, Kohl A. 44.  et al. 2005. Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280:24715–22 [Google Scholar]
  45. Zahnd C, Pécorari F, Straumann N, Wyler E, Plückthun A. 45.  2006. Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J. Biol. Chem. 281:35167–75 [Google Scholar]
  46. Schweizer A, Roschitzki-Voser H, Amstutz P, Briand C, Gulotti-Georgieva M. 46.  et al. 2007. Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15:625–36 [Google Scholar]
  47. Huber T, Steiner D, Röthlisberger D, Plückthun A. 47.  2007. In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: the Na+-citrate symporter CitS as an example. J. Struct. Biol. 159:206–21 [Google Scholar]
  48. Veesler D, Dreier B, Blangy S, Lichière J, Tremblay D. 48.  et al. 2009. Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode. J. Biol. Chem. 384:30718–26 [Google Scholar]
  49. Stefan N, Martin-Killias P, Wyss-Stoeckle S, Honegger A, Zangemeister-Wittke U, Plückthun A. 49.  2011. DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J. Mol. Biol. 413:826–43 [Google Scholar]
  50. Zahnd C, Sarkar CA, Plückthun A. 50.  2010. Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng. Des. Sel. 23:175–84 [Google Scholar]
  51. Siva AC, Kirkland RE, Lin B, Maruyama T, McWhirter J. 51.  et al. 2008. Selection of anti-cancer antibodies from combinatorial libraries by whole-cell panning and stringent subtraction with human blood cells. J. Immunol. Methods 330:109–19 [Google Scholar]
  52. Fekkes P, Driessen AJ. 52.  1999. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63:161–73 [Google Scholar]
  53. Bibi E. 53.  2011. Early targeting events during membrane protein biogenesis in Escherichia coli. Biochim. Biophys. Acta 1808:841–50 [Google Scholar]
  54. Steiner D, Forrer P, Stumpp MT, Plückthun A. 54.  2006. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat. Biotechnol. 24:823–31 [Google Scholar]
  55. Dröge MJ, Boersma YL, Braun PG, Buining RJ, Julsing MK. 55.  et al. 2006. Phage display of an intracellular carboxylesterase of Bacillus subtilis: comparison of Sec and Tat pathway export capabilities. Appl. Environ. Microbiol. 72:4589–95 [Google Scholar]
  56. Paschke M, Höhne W. 56.  2005. A twin-arginine translocation (Tat)-mediated phage display system. Gene 350:79–88 [Google Scholar]
  57. Nangola S, Minard P, Tayapiwatana C. 57.  2010. Appraisal of translocation pathways for displaying ankyrin repeat protein on phage particles. Protein Expr. Purif. 74:156–61 [Google Scholar]
  58. Speck J, Arndt KM, Müller KM. 58.  2011. Efficient phage display of intracellularly folded proteins mediated by the TAT pathway. Protein Eng. Des. Sel. 24:473–84 [Google Scholar]
  59. Pepper LR, Cho YK, Boder ET, Shusta EV. 59.  2008. A decade of yeast surface display technology: Where are we now. Comb. Chem. High Throughput Screen. 11:127–34 [Google Scholar]
  60. Amstutz P, Koch H, Binz HK, Deuber SA, Plückthun A. 60.  2006. Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Eng. Des. Sel. 19:219–29 [Google Scholar]
  61. Kummer L, Parizek P, Rube P, Millgramm B, Prinz A. 61.  et al. 2012. Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc. Natl. Acad. Sci. USA 109:E2248–57 [Google Scholar]
  62. Parizek P, Kummer L, Rube P, Prinz A, Herberg FW, Plückthun A. 62.  2012. Designed ankyrin repeat proteins (DARPins) as novel isoform-specific intracellular inhibitors of c-Jun N-terminal kinases. ACS Chem. Biol. 7:1356–66 [Google Scholar]
  63. Kummer L, Hsu CW, Dagliyan O, MacNevin C, Kaufholz M. 63.  et al. 2013. Knowledge-based design of a biosensor to quantify localized ERK activation in living cells. Chem. Biol. 20:847–56 [Google Scholar]
  64. Gilbreth RN, Koide S. 64.  2012. Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr. Opin. Struct. Biol. 22:413–20 [Google Scholar]
  65. Bukowska MA, Grütter MG. 65.  2013. New concepts and aids to facilitate crystallization. Curr. Opin. Struct. Biol. 23:409–16 [Google Scholar]
  66. Theurillat JP, Dreier B, Nagy-Davidescu G, Seifert B, Behnke S. 66.  et al. 2010. Designed ankyrin repeat proteins: a novel tool for testing epidermal growth factor receptor 2 expression in breast cancer. Mod. Pathol. 23:1289–97 [Google Scholar]
  67. Kuo TT, Baker K, Yoshida M, Qiao SW, Aveson VG. 67.  et al. 2010. Neonatal Fc receptor: from immunity to therapeutics. J. Clin. Immunol. 30:777–89 [Google Scholar]
  68. Simon M, Frey R, Zangemeister-Wittke U, Plückthun A. 68.  2013. Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjug. Chem. 24:1955–66 [Google Scholar]
  69. Simon M, Stefan N, Borsig L, Plückthun A, Zangemeister-Wittke U. 69.  2014. Increasing the antitumor effect of an EpCAM-targeting fusion toxin by facile click PEGylation. Mol. Cancer Ther. 13:375–85 [Google Scholar]
  70. Chapman AP. 70.  2002. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54:531–45 [Google Scholar]
  71. Kubetzko S, Sarkar CA, Plückthun A. 71.  2005. Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol. Pharmacol. 68:1439–54 [Google Scholar]
  72. Zahnd C, Kawe M, Stumpp MT, de Pasquale C, Tamaskovic R. 72.  et al. 2010. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res. 70:1595–605 [Google Scholar]
  73. Willuda J, Kubetzko S, Waibel R, Schubiger PA, Zangemeister-Wittke U, Plückthun A. 73.  2001. Tumor targeting of mono-, di- and tetravalent anti-p185HER-2 miniantibodies multimerized by self-associating peptides. J. Biol. Chem. 276:14385–92 [Google Scholar]
  74. Adams GP, McCartney JE, Tai MS, Oppermann H, Huston JS. 74.  et al. 1993. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res. 53:4026–34 [Google Scholar]
  75. Maeda H, Nakamura H, Fang J. 75.  2013. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65:71–79 [Google Scholar]
  76. Schmidt MM, Wittrup KD. 76.  2009. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther. 8:2861–71 [Google Scholar]
  77. Thurber GM, Schmidt MM, Wittrup KD. 77.  2008. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev. 60:1421–34 [Google Scholar]
  78. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM. 78.  et al. 2001. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61:4750–55 [Google Scholar]
  79. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ. 79.  et al. 2011. Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res. 71:2250–59 [Google Scholar]
  80. Waibel R, Alberto R, Willuda J, Finnern R, Schibli R. 80.  et al. 1999. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)–carbonyl complex. Nat. Biotechnol. 17:897–901 [Google Scholar]
  81. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. 81.  1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–82 [Google Scholar]
  82. Moasser MM. 82.  2007. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469–87 [Google Scholar]
  83. Verma S, Miles D, Gianni L, Krop IE, Welslau M. 83.  et al. 2012. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367:1783–91 [Google Scholar]
  84. Burris HA III, Rugo HS, Vukelja SJ, Vogel CL, Borson RA. 84.  et al. 2011. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)–positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol. 29:398–405 [Google Scholar]
  85. Kumler I, Tuxen MK, Nielsen DL. 85.  2014. A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat. Rev. 40:259–70 [Google Scholar]
  86. Lee SC, Srivastava RM, López-Albaitero A, Ferrone S, Ferris RL. 86.  2011. Natural killer (NK):dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity. Immunol. Res. 50:248–54 [Google Scholar]
  87. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. 87.  2004. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–28 [Google Scholar]
  88. Sliwkowski MX, Schaefer G, Akita RW, Lofgren JA, Fitzpatrick VD. 88.  et al. 1994. Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J. Biol. Chem. 269:14661–65 [Google Scholar]
  89. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD. 89.  et al. 2009. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15:429–40 [Google Scholar]
  90. Schaefer G, Fitzpatrick VD, Sliwkowski MX. 90.  1997. γ-Heregulin: a novel heregulin isoform that is an autocrine growth factor for the human breast cancer cell line, MDA-MB-175. Oncogene 15:1385–94 [Google Scholar]
  91. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A. 91.  et al. 2011. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 71:1871–82 [Google Scholar]
  92. Finn RS, Slamon DJ. 92.  2003. Monoclonal antibody therapy for breast cancer: Herceptin. Cancer Chemother. Biol. Response Modif. 21:223–33 [Google Scholar]
  93. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S. 93.  et al. 1999. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17:2639–48 [Google Scholar]
  94. Boersma YL, Chao G, Steiner D, Wittrup KD, Plückthun A. 94.  2011. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J. Biol. Chem. 286:41273–85 [Google Scholar]
  95. Jost C, Schilling J, Tamaskovic R, Schwill M, Honegger A, Plückthun A. 95.  2013. Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 21:1979–91 [Google Scholar]
  96. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB. 96.  et al. 2003. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–60 [Google Scholar]
  97. Dawson JP, Bu Z, Lemmon MA. 97.  2007. Ligand-induced structural transitions in ErbB receptor extracellular domains. Structure 15:942–54 [Google Scholar]
  98. Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E. 98.  et al. 2013. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152:543–56 [Google Scholar]
  99. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP. 99.  et al. 2013. Architecture and membrane interactions of the EGF receptor. Cell 152:557–69 [Google Scholar]
  100. Zuppinger C, Suter TM. 100.  2010. Cancer therapy-associated cardiotoxicity and signaling in the myocardium. J. Cardiovasc. Pharmacol. 56:141–46 [Google Scholar]
  101. van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG. 101.  2010. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31:1913–21 [Google Scholar]
  102. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC. 102.  2007. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am. J. Pathol. 171:386–95 [Google Scholar]
  103. Biggers K, Scheinfeld N. 103.  2008. VB4-845, a conjugated recombinant antibody and immunotoxin for head and neck cancer and bladder cancer. Curr. Opin. Mol. Ther. 10:176–86 [Google Scholar]
  104. Di Paolo C, Willuda J, Kubetzko S, Lauffer I, Tschudi D. 104.  et al. 2003. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin. Cancer. Res. 9:2837–48 [Google Scholar]
  105. Hussain S, Plückthun A, Allen TM, Zangemeister-Wittke U. 105.  2006. Chemosensitization of carcinoma cells using epithelial cell adhesion molecule-targeted liposomal antisense against bcl-2/bcl-xL. Mol. Cancer Ther. 5:3170–80 [Google Scholar]
  106. Hussain S, Plückthun A, Allen TM, Zangemeister-Wittke U. 106.  2007. Antitumor activity of an epithelial cell adhesion molecule targeted nanovesicular drug delivery system. Mol. Cancer Ther. 6:3019–27 [Google Scholar]
  107. Martin-Killias P, Stefan N, Rothschild S, Plückthun A, Zangemeister-Wittke U. 107.  2011. A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protein has potent antitumor activity. Clin. Cancer. Res. 17:100–10 [Google Scholar]
  108. Alley SC, Okeley NM, Senter PD. 108.  2010. Antibody-drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 14:529–37 [Google Scholar]
  109. Winkler J, Martin-Killias P, Plückthun A, Zangemeister-Wittke U. 109.  2009. EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol. Cancer Ther. 9:2674–83 [Google Scholar]
  110. Salmon F, Grosios K, Petry H. 110.  2014. Safety profile of recombinant adeno-associated viral vectors: focus on alipogene tiparvovec (Glybera®). Expert Rev. Clin. Pharmacol. 7:53–65 [Google Scholar]
  111. Amalfitano A, Parks RJ. 111.  2002. Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr. Gene Ther. 2:111–33 [Google Scholar]
  112. Sullivan NJ, Geisbert TW, Geisbert JB, Xu L, Yang ZY. 112.  et al. 2003. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 424:681–84 [Google Scholar]
  113. Yeh HH, Ogawa K, Balatoni J, Mukhapadhyay U, Pal A. 113.  et al. 2011. Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT. Proc. Natl. Acad. Sci. USA 108:1603–8 [Google Scholar]
  114. Beatty MS, Curiel DT. 114.  2012. Chapter two–adenovirus strategies for tissue-specific targeting. Adv. Cancer Res. 115:39–67 [Google Scholar]
  115. Dreier B, Honegger A, Hess C, Nagy-Davidescu G, Mittl PR. 115.  et al. 2013. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc. Natl. Acad. Sci. USA 110:E869–77 [Google Scholar]
  116. Forrer P, Chang C, Ott D, Wlodawer A, Plückthun A. 116.  2004. Kinetic stability and crystal structure of the viral capsid protein SHP. J. Mol. Biol. 344:179–93 [Google Scholar]
  117. Yanagi Y, Takeda M, Ohno S, Seki F. 117.  2006. Measles virus receptors and tropism. Jpn. J. Infect. Dis. 59:1–5 [Google Scholar]
  118. Münch RC, Mühlebach MD, Schaser T, Kneissl S, Jost C. 118.  et al. 2011. DARPins: an efficient targeting domain for lentiviral vectors. Mol. Ther. 19:686–93 [Google Scholar]
  119. Friedrich K, Hanauer JR, Prüfer S, Münch RC, Volker I. 119.  et al. 2013. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol. Ther. 21:849–59 [Google Scholar]
  120. Münch RC, Janicki H, Volker I, Rasbach A, Hallek M. 120.  et al. 2013. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol. Ther. 21:109–18 [Google Scholar]
  121. Stahl A, Stumpp MT, Schlegel A, Ekawardhani S, Lehrling C. 121.  et al. 2013. Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis 16:101–11 [Google Scholar]
  122. Syed BA, Evans JB, Bielory L. 122.  2012. Wet AMD market. Nat. Rev. Drug Discov. 11:827 [Google Scholar]
  123. Campochiaro PA, Channa R, Berger BB, Heier JS, Brown DM. 123.  et al. 2013. Treatment of diabetic macular edema with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am. J. Ophthalmol. 155:697–704.e2 [Google Scholar]
  124. Wolf S, Souied EH, Mauget-Faysse M, Devin F, Patel M. 124.  et al. 2011. Phase I MP0112 Wet AMD study: results of a single escalating dose study with DARPin MP0112 in Wet AMD. Presented at Annu. Meet. Assoc. Res. Vis. Ophthalmology, May 2, Fort Lauderdale, FL, poster 1655 [Google Scholar]
  125. Souied EH, Devin F, Mauget-Faÿsse M, Kolář P, Wolf-Schnurrbusch U. 125.  et al. 2014. Treatment of exudative age-related macular degeneration with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a Phase I/II study. Am. J. Ophthalmol. 158:724–32.e2 [Google Scholar]
  126. Schilling J, Schoeppe J, Sauer E, Plückthun A. 126.  2014. Co-crystallization with conformation-specific designed ankyrin repeat proteins explains the conformational flexibility of BCL-W. J. Mol. Biol. 426:2346–61 [Google Scholar]
  127. Schroeder T, Barandun J, Flütsch A, Briand C, Mittl PR, Grütter MG. 127.  2013. Specific inhibition of caspase-3 by a competitive DARPin: molecular mimicry between native and designed inhibitors. Structure 21:277–89 [Google Scholar]
  128. Pecqueur L, Duellberg C, Dreier B, Jiang Q, Wang C. 128.  et al. 2012. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proc. Natl. Acad. Sci. USA 109:12011–16 [Google Scholar]
  129. Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L. 129.  et al. 2013. Structure of a kinesin-tubulin complex and implications for kinesin motility. Nat. Struct. Mol. Biol. 20:1001–7 [Google Scholar]
  130. Eggel A, Baumann MJ, Amstutz P, Stadler BM, Vogel M. 130.  2009. DARPins as bispecific receptor antagonists analyzed for immunoglobulin E receptor blockage. J. Mol. Biol. 393:598–607 [Google Scholar]
  131. Eggel A, Buschor P, Baumann MJ, Amstutz P, Stadler BM, Vogel M. 131.  2011. Inhibition of ongoing allergic reactions using a novel anti-IgE DARPin-Fc fusion protein. Allergy 66:961–68 [Google Scholar]
  132. Kim B, Eggel A, Tarchevskaya SS, Vogel M, Prinz H, Jardetzky TS. 132.  2012. Accelerated disassembly of IgE-receptor complexes by a disruptive macromolecular inhibitor. Nature 491:613–17 [Google Scholar]
  133. Mann A, Friedrich N, Krarup A, Weber J, Stiegeler E. 133.  et al. 2013. Conformation-dependent recognition of HIV gp120 by designed ankyrin repeat proteins provides access to novel HIV entry inhibitors. J. Virol. 87:5868–81 [Google Scholar]
  134. Bender NK, Heilig CE, Droll B, Wohlgemuth J, Armbruster FP, Heilig B. 134.  2007. Immunogenicity, efficacy and adverse events of adalimumab in RA patients. Rheumatol. Int. 27:269–74 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error