Historically, pharmacological therapies have used mechanisms such as γ-aminobutyric acid A (GABA) receptor potentiation to drive sleep through broad suppression of central nervous system activity. With the discovery of orexin signaling loss as the etiology underlying narcolepsy, a disorder associated with hypersomnolence, orexin antagonism emerged as an alternative approach to attenuate orexin-induced wakefulness more selectively. Dual orexin receptor antagonists (DORAs) block the activity of orexin 1 and 2 receptors to both reduce the threshold to transition into sleep and attenuate orexin-mediated arousal. Among DORAs evaluated clinically, suvorexant has pharmacokinetic properties engineered for a plasma half-life appropriate for rapid sleep onset and maintenance at low to moderate doses. Unlike GABA receptor modulators, DORAs promote both non-rapid eye movement (NREM) and REM sleep, do not disrupt sleep stage–specific quantitative electroencephalogram spectral profiles, and allow somnolence indistinct from normal sleep. The preservation of cognitive performance and the ability to arouse to salient stimuli after DORA administration suggest further advantages over historical therapies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Liebig J. 1.  1832. Ueber die Zersetzung des Alkohols durch Chlor. Ann. Pharm. 1:31–32 [Google Scholar]
  2. Liebig J. 2.  1832. Ueber die Verbindungen, welche durch die Einwirkung des Chlors auf Alkohol, Aether, ölbildendes Gas und Essiggeist entstehen. Ann. Pharm. 2:182–230 [Google Scholar]
  3. López-Muñoz F, Álamo C, García-García P. 3.  2011. The discovery of chlordiazepoxide and the clinical introduction of benzodiazepines: half a century of anxiolytic drugs. J. Anxiety Disord. 25:554–62 [Google Scholar]
  4. Mohler H, Okada T. 4.  1977. Benzodiazepine receptor: demonstration in the central nervous system. Science 198:849–51 [Google Scholar]
  5. Braestrup C, Squires RF. 5.  1977. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam binding. PNAS 74:3805–9 [Google Scholar]
  6. Nayeem N, Green TP, Martin IL, Barnard EA. 6.  1994. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J. Neurochem. 62:815–18 [Google Scholar]
  7. Buhr A, Baur R, Malherbe P, Sigel E. 7.  1996. Point mutations of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid(A) receptor affecting modulation of the channel by ligands of the benzodiazepine binding site. Mol. Pharmacol. 49:1080–84 [Google Scholar]
  8. 8. US Food Drug Admin. 2008. NDA 19908 S027 FDA approved labeling 4.23.08. Ambien Drug Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/019908s027lbl.pdf
  9. 9. US Food Drug Admin. 2005. Ambien CR(zolpidem tartrate extended-release tablets) Ambien Controlled Release Drug Label. http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/021774lbl.pdf [Google Scholar]
  10. Lin L, Faraco J, Li R, Kadotani H, Rogers W. 10.  et al. 1999. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–76 [Google Scholar]
  11. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. 11.  2000. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40 [Google Scholar]
  12. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S. 12.  et al. 2000. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6:991–97 [Google Scholar]
  13. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T. 13.  et al. 1999. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–51 [Google Scholar]
  14. Willie JT, Chemelli RM, Sinston CM, Tokita H, Williams SC. 14.  et al. 2003. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–30 [Google Scholar]
  15. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE. 15.  et al. 1998. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. PNAS 95:322–27 [Google Scholar]
  16. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM. 16.  et al. 1998. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–85 [Google Scholar]
  17. Ida T, Nakahara K, Katayama T, Murakami N, Nakazato M. 17.  1999. Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res 821:526–29 [Google Scholar]
  18. Wong KK, Ng SY, Lee LT, Ng HK, Chow BK. 18.  2011. Orexins and their receptors from fish to mammals: a comparative approach. Gen. Comp. Endocrinol. 171:124–30 [Google Scholar]
  19. Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. 19.  2012. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. Pharmacol. Rev. 64:389–420 [Google Scholar]
  20. Yin J, Babaoglu K, Brautigam CA, Clark L, Shao Z. 20.  et al. 2016. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat. Struct. Mol. Biol. 23:293–99 [Google Scholar]
  21. Holmqvist T, Akerman KEO, Kukkonen JP. 21.  2002. Orexin signaling in recombinant neuron-like cells. FEBS Lett 526:11–14 [Google Scholar]
  22. Kukkonen JP, Akerman KEO. 22.  2001. Orexin receptors couple to Ca2+ channels different from store-operated Ca2+ channels. NeuroReport 12:2017–20 [Google Scholar]
  23. Lund PE, Shariatmadari R, Uustare A, Detheux M, Parmentier M. 23.  et al. 2000. The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C. J. Biol. Chem. 275:30806–12 [Google Scholar]
  24. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M. 24.  et al. 2003. Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J. Pharmacol. Sci. 92:259–66 [Google Scholar]
  25. Acuna-Goycolea C, van den Pol AN. 25.  2009. Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin. J. Neurosci. 29:1503–13 [Google Scholar]
  26. Peltonen HM, Magga JM, Bart G, Turunen PM, Antikainen MSH. 26.  et al. 2009. Involvement of TRPC3 channels in calcium oscillations mediated by OX1 orexin receptors. Biochem. Biophys. Res. Commun. 385:408–12 [Google Scholar]
  27. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB. 27.  1998. Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J. Neurosci. 18:7962–71 [Google Scholar]
  28. Fujiki N, Yoshida Y, Ripley B, Mignot E, Nishino S. 28.  2003. Effects of IV and ICV hypocretin-1 (orexin A) in hypocretin receptor-2 gene mutated narcoleptic dogs and IV hypocretin-1 replacement therapy in a hypocretin-ligand-deficient narcoleptic dog. Sleep 26:953–59 [Google Scholar]
  29. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA. 29.  et al. 1999. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. PNAS 96:10911–16 [Google Scholar]
  30. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M. 30.  2004. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. PNAS 101:4649–54 [Google Scholar]
  31. Piper DC, Upton N, Smith MI, Hunter AJ. 31.  2000. The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats. Eur. J. Neurosci. 12:726–30 [Google Scholar]
  32. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. 32.  2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–24 [Google Scholar]
  33. Gotter AL, Winrow CJ, Brunner J, Garson SL, Fox SV. 33.  et al. 2013. The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neurosci 14:90 [Google Scholar]
  34. Taheri S, Sunter D, Dakin C, Moyes S, Seal L. 34.  et al. 2000. Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system. Neurosci. Lett. 279:109–12 [Google Scholar]
  35. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E. 35.  2003. Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J. Neurosci. 23:3555–60 [Google Scholar]
  36. Saper CB, Scammell TE, Lu J. 36.  2005. Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–63 [Google Scholar]
  37. Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB. 37.  et al. 2001. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 435:6–25 [Google Scholar]
  38. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LHT, Guan XM. 38.  1998. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438:71–75 [Google Scholar]
  39. Mochizuki T, Scammell TE. 39.  2003. Orexin/hypocretin: wired for wakefulness. Curr. Biol. 13:R563–R564 [Google Scholar]
  40. Torrealba F, Yanagisawa M, Saper CB. 40.  2003. Colocalization of orexin A and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119:1033–44 [Google Scholar]
  41. Eriksson KS, Sergeeva OA, Selbach O, Haas HL. 41.  2004. Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur. J. Neurosci. 19:1278–84 [Google Scholar]
  42. Mang GM, Durst T, Burki H, Imobersteg S, Abramowski D. 42.  et al. 2012. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors. Sleep 35:1625–35 [Google Scholar]
  43. Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang XH. 43.  et al. 2009. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J. Pharmacol. Exp. Ther. 330:142–51 [Google Scholar]
  44. Gotter AL, Forman MS, Harrell CM, Stevens J, Svetnik V. 44.  et al. 2016. Orexin 2 receptor antagonism is sufficient to promote NREM and REM sleep from mouse to man. Sci. Rep 6:27147 [Google Scholar]
  45. Morairty SR, Revel FG, Malherbe P, Moreau JL, Valladao D. 45.  et al. 2012. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLOS ONE 7:e39131 [Google Scholar]
  46. Kisanuki YY, Chemelli RM, Tokita S, Willie JT, Sinton CM, Yanagisawa M. 46.  2001. Behavioral and polysomnographic characterization of orexin-1 receptor and orexin-2 receptor double knockout mice. Sleep 24:A22 [Google Scholar]
  47. Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. 47.  2009. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J. Neurosci. 29:10939–49 [Google Scholar]
  48. Espana RA, Scammell TE. 48.  2011. Sleep neurobiology from a clinical perspective. Sleep 34:845–58 [Google Scholar]
  49. Chen L, McKenna JT, Bolortuya Y, Winston S, Thakkar MM. 49.  et al. 2010. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period. Eur. J. Neurosci. 32:1528–36 [Google Scholar]
  50. Hoever P, Dorffner G, Beneš H, Penzel T, Danker-Hopfe H. 50.  et al. 2012. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin. Pharmacol. Ther. 91:975–85 [Google Scholar]
  51. Coleman PJ, Cox CD, Roecker AJ. 51.  2011. Discovery of dual orexin receptor antagonists (DORAs) for the treatment of insomnia. Curr. Top. Med. Chem 11:696–725 [Google Scholar]
  52. Whitman DB, Cox CD, Breslin MJ, Brashear KM, Schreier JD. 52.  et al. 2009. Discovery of a potent, CNS-penetrant orexin receptor antagonist based on an N,N-disubstituted-1,4-diazepane scaffold that promotes sleep in rats. ChemMedChem 4:1069–74 [Google Scholar]
  53. Yin J, Mobarec JC, Kolb P, Rosenbaum DM. 53.  2015. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519:247–50 [Google Scholar]
  54. Christopher JA, Aves SJ, Brown J, Errey JC, Klair SS. 54.  et al. 2015. Discovery of HTL6641, a dual orexin receptor antagonist with differentiated pharmacodynamic properties. Med. Chem. Commun 6:947–55 [Google Scholar]
  55. Fujimoto T, Kunitomo J, Tomata Y, Nishiyama K, Nakashima M. 55.  et al. 2011. Discovery of potent, selective, orally active benzoxazepine-based orexin-2 receptor antagonists. Bioorg. Med. Chem. Lett 21:6414–16 [Google Scholar]
  56. Suzuki R, Nozawa D, Futamura A, Nishikawa-Shimono R, Abe M. 56.  et al. 2015. Discovery and in vitro and in vivo profiles of N-ethyl-N-[2-[3-(5-fluoro-2-pyridinyl)-1H-pyrazol-1-yl]ethyl]-2-(2H-1,2,3-triazol-2-yl)-benzamide as a novel class of dual orexin receptor antagonist. Bioorg. Med. Chem 23:1260–75 [Google Scholar]
  57. Winrow CJ, Gotter AL, Cox CD, Doran SM, Tannenbaum PL. 57.  et al. 2011. Promotion of sleep by suvorexant—a novel dual orexin receptor antagonist. J. Neurogenet. 25:52–61 [Google Scholar]
  58. Winrow CJ, Gotter AL, Cox CD, Tannenbaum PL, Garson SL. 58.  et al. 2012. Pharmacological characterization of MK-6096 – a dual orexin receptor antagonist for insomnia. Neuropharmacology 62:978–87 [Google Scholar]
  59. Faedo S, Perdona E, Antolini M, di Fabio R, Merlo Pich E, Corsi M. 59.  2012. Functional and binding kinetic studies make a distinction between OX1 and OX2 orexin receptor antagonists. Eur. J. Pharmacol. 692:1–9 [Google Scholar]
  60. Mould R, Brown J, Marshall FH, Langmead CJ. 60.  2014. Binding kinetics differentiates functional antagonism of orexin-2 receptor ligands. Br. J. Pharmacol. 171:351–63 [Google Scholar]
  61. Callander GE, Olorunda M, Monna D, Schuepbach E, Langenegger D. 61.  et al. 2013. Kinetic properties of “dual” orexin receptor antagonists at OX1R and OX2R orexin receptors. Front. Neurosci. 7:230 [Google Scholar]
  62. Abadie P, Rioux P, Scatton B, Zarifian E, Barre L. 62.  et al. 1996. Central benzodiazepine receptor occupancy by zolpidem in the human brain as assessed by positron emission tomography. Eur. J. Pharmacol. 295:35–44 [Google Scholar]
  63. Sun H, Kennedy WP, Wilbraham D, Lewis N, Calder N. 63.  et al. 2013. Effects of suvorexant, an orexin receptor antagonist, on sleep parameters as measured by polysomnography in healthy men. Sleep 36:259–67 [Google Scholar]
  64. Fox SV, Gotter AL, Tye SJ, Garson SL, Savitz AT. 64.  et al. 2013. Quantitative electroencephalography within sleep/wake states differentiates GABAA modulators eszopiclone and zolpidem from dual orexin receptor antagonists in rats. Neuropsychopharmacology 38:2401–8 [Google Scholar]
  65. Gotter AL, Garson SL, Stevens J, Munden RL, Fox SV. 65.  et al. 2014. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci 15:109 [Google Scholar]
  66. Ma J, Svetnik V, Snyder E, Lines C, Roth T, Herring WJ. 66.  2014. Electroencephalographic power spectral density profile of the orexin receptor antagonist suvorexant in patients with primary insomnia and healthy subjects. Sleep 37:1609–19 [Google Scholar]
  67. Snyder E, Ma J, Svetnik V, Connor KM, Lines C. 67.  et al. 2016. Effects of suvorexant on sleep architecture and power spectral profile in patients with insomnia: analysis of pooled phase 3 data. Sleep Med 19:93–100 [Google Scholar]
  68. Bonaventure P, Shelton J, Yun S, Nepomuceno D, Sutton S. 68.  et al. 2015. Characterization of JNJ-42847922, a selective orexin-2 receptor antagonist, as a clinical candidate for the treatment of insomnia. J. Pharmacol. Exp. Ther. 354:471–82 [Google Scholar]
  69. Kuduk SD, Skudlarek JW, DiMarco CN, Bruno JG, Pausch MH. 69.  et al. 2015. Identification of MK-8133: an orexin-2 selective receptor antagonist with favorable development properties. Bioorg. Med. Chem. Lett 25:2488–92 [Google Scholar]
  70. Roecker AJ, Reger TS, Mattern MC, Mercer SP, Bergman JM. 70.  et al. 2014. Discovery of MK-3697: a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia. Bioorg. Med. Chem. Lett 24:4884–90 [Google Scholar]
  71. Roecker AJ, Mercer SP, Schreier JD, Cox CD, Fraley ME. 71.  et al. 2014. Discovery of 5′′-chloro-N-[(5,6-dimethoxypyridin-2-yl)methyl]-2,2′:5′,3′′-terpyridine-3′-carbo xamide (MK-1064): a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia. ChemMedChem 9:311–22 [Google Scholar]
  72. Herring WJ, Connor KM, Ivgy-May N, Snyder E, Liu K. 72.  et al. 2014. Suvorexant in patients with insomnia: results from two 3-month randomized controlled clinical trials. Biol. Psychiatry 79:136–48 [Google Scholar]
  73. Michelson D, Snyder E, Paradis E, Chengan-Liu M, Snavely DB. 73.  et al. 2014. Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:461–71 [Google Scholar]
  74. Black SW, Morairty SR, Fisher SP, Chen TM, Warrier DR, Kilduff TS. 74.  2013. Almorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy. Sleep 36:325–36 [Google Scholar]
  75. Tannenbaum PL, Stevens J, Binns J, Savitz AT, Garson SL. 75.  et al. 2014. Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs. Front. Behav. Neurosci. 8:182 [Google Scholar]
  76. Valko PO, Gavrilov YV, Yamamoto M, Reddy H, Haybaeck J. 76.  et al. 2013. Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann. Neurol. 74:794–804 [Google Scholar]
  77. Kalogiannis M, Grupke SL, Potter PE, Edwards JG, Chemelli RM. 77.  et al. 2010. Narcoleptic orexin receptor knockout mice express enhanced cholinergic properties in laterodorsal tegmental neurons. Eur. J. Neurosci. 32:130–42 [Google Scholar]
  78. Uslaner JM, Tye SJ, Eddins DM, Wang X, Fox SV. 78.  et al. 2013. Orexin receptor antagonists differ from standard sleep drugs by promoting sleep at doses that do not disrupt cognition. Sci. Transl. Med. 5:179ra44 [Google Scholar]
  79. Morairty SR, Wilk AJ, Lincoln WU, Neylan TC, Kilduff TS. 79.  2014. The hypocretin/orexin antagonist almorexant promotes sleep without impairment of performance in rats. Front. Neurosci. 8:3 [Google Scholar]
  80. Dietrich H, Jenck F. 80.  2010. Intact learning and memory in rats following treatment with the dual orexin receptor antagonist almorexant. Psychopharmacology 212:145–54 [Google Scholar]
  81. Parks GS, Warrier DR, Dittrich L, Schwartz MD, Palmerston JB. 81.  et al. 2016. The dual hypocretin receptor antagonist almorexant is permissive for activation of wake-promoting systems. Neuropsychopharmacology 41:1144–55 [Google Scholar]
  82. Tannenbaum PL, Tye SJ, Stevens J, Gotter AL, Fox SV. 82.  et al. 2016. Inhibition of orexin signaling promotes sleep yet preserves salient arousability in monkeys. Sleep 39:603–12 [Google Scholar]
  83. Steiner MA, Lecourt H, Strasser DS, Brisbare-Roch C, Jenck F. 83.  2011. Differential effects of the dual orexin receptor antagonist almorexant and the GABAA-α1 receptor modulator zolpidem, alone or combined with ethanol, on motor performance in the rat. Neuropsychopharmacology 36:848–56 [Google Scholar]
  84. Ramirez AD, Gotter AL, Fox SV, Tannenbaum PL, Yao L. 84.  et al. 2013. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators. Front. Neurosci. 7:254 [Google Scholar]
  85. Chen Q, de Lecea L, Hu Z, Gao D. 85.  2015. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med. Res. Rev 35:152–97 [Google Scholar]
  86. Urrestarazu E, Iriarte J. 86.  2016. Clinical management of sleep disturbances in Alzheimer's disease: current and emerging strategies. Nat. Sci. Sleep 8:21–33 [Google Scholar]
  87. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP. 87.  et al. 2009. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005–7 [Google Scholar]
  88. Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR. 88.  et al. 2012. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer's disease pathology. Sci. Transl. Med. 4:150ra122 [Google Scholar]
  89. Ju YES, Lucey BP, Holtzman DM. 89.  2014. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat. Rev. Neurol. 10:115–19 [Google Scholar]
  90. Roh JH, Jiang H, Finn MB, Stewart FR, Mahan TE. 90.  et al. 2014. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer's disease. J. Exp. Med. 211:2487–96 [Google Scholar]
  91. Spira AP, Gamaldo AA, An Y, Wu MN, Simonsick EM. 91.  et al. 2013. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol 70:1537–43 [Google Scholar]
  92. Ju YES, Holtzman DM. 92.  2013. Sleep evaluation by actigraphy for patients with Alzheimer disease—reply. JAMA Neurol 70:1074–75 [Google Scholar]
  93. Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA. 93.  2014. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol 71:971–77 [Google Scholar]
  94. Liguori C, Romigi A, Nuccetelli M, Zannino S, Sancesario G. 94.  et al. 2014. Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol 71:1498–505 [Google Scholar]
  95. Adler CH, Thorpy MJ. 95.  2005. Sleep issues in Parkinson's disease. Neurology 64:S12–20 [Google Scholar]
  96. Pushpanathan ME, Loftus AM, Thomas MG, Gasson N, Bucks RS. 96.  2016. The relationship between sleep and cognition in Parkinson's disease: a meta-analysis. Sleep Med. Rev 26:21–32 [Google Scholar]
  97. Boeve BF, Silber MH, Ferman TJ. 97.  2004. REM sleep behavior disorder in Parkinson's disease and dementia with Lewy bodies. J. Geriatr. Psychiatry Neurol. 17:146–57 [Google Scholar]
  98. Gjerstad MD, Boeve B, Wentzel-Larsen T, Aarsland D, Larsen JP. 98.  2008. Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson's disease over time. J. Neurol. Neurosurg. Psychiatry 79:387–91 [Google Scholar]
  99. Fronczek R, Overeem S, Lee SYY, Hegeman IM, van Pelt J. 99.  et al. 2007. Hypocretin (orexin) loss in Parkinson's disease. Brain 130:1577–85 [Google Scholar]
  100. Thannickal TC, Lai YY, Siegel JM. 100.  2007. Hypocretin (orexin) cell loss in Parkinson's disease. Brain 130:1586–95 [Google Scholar]
  101. Asai H, Hirano M, Furiya Y, Udaka F, Morikawa M. 101.  et al. 2009. Cerebrospinal fluid-orexin levels and sleep attacks in four patients with Parkinson's disease. Clin. Neurol. Neurosurg. 111:341–44 [Google Scholar]
  102. Drouot X, Moutereau S, Nguyen JP, Lefaucheur JP, Creange A. 102.  et al. 2003. Low levels of ventricular CSF orexin/hypocretin in advanced PD. Neurology 61:540–43 [Google Scholar]
  103. Overeem S, van Hilten JJ, Ripley B, Mignot E, Nishino S, Lammers GJ. 103.  2002. Normal hypocretin-1 levels in Parkinson's disease patients with excessive daytime sleepiness. Neurology 58:498–99 [Google Scholar]
  104. Ripley B, Overeem S, Fujiki N, Nevsimalova S, Uchino M. 104.  et al. 2001. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 57:2253–58 [Google Scholar]
  105. Yasui K, Inoue Y, Kanbayashi T, Nomura T, Kusumi M, Nakashima K. 105.  2006. CSF orexin levels of Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration. J. Neurol. Sci. 250:120–23 [Google Scholar]
  106. Baumann C, Ferini-Strambi L, Waldvogel D, Werth E, Bassetti CL. 106.  2005. Parkinsonism with excessive daytime sleepiness—a narcolepsy-like disorder?. J. Neurol. 252:139–45 [Google Scholar]
  107. Compta Y, Santamaria J, Ratti L, Tolosa E, Iranzo A. 107.  et al. 2009. Cerebrospinal hypocretin, daytime sleepiness and sleep architecture in Parkinson's disease dementia. Brain 132:3308–17 [Google Scholar]
  108. Johnson PL, Truitt W, Fitz SD, Minick PE, Dietrich A. 108.  et al. 2010. A key role for orexin in panic anxiety. Nat. Med. 16:111–15 [Google Scholar]
  109. Johnson PL, Samuels BC, Fitz SD, Lightman SL, Lowry CA, Shekhar A. 109.  2012. Activation of the orexin 1 receptor is a critical component of CO2-mediated anxiety and hypertension but not bradycardia. Neuropsychopharmacology 37:1911–22 [Google Scholar]
  110. Bonaventure P, Yun S, Johnson PL, Shekhar A, Fitz SD. 110.  et al. 2015. A selective orexin-1 receptor antagonist attenuates stress-induced hyperarousal without hypnotic effects. J. Pharmacol. Exp. Ther. 352:590–601 [Google Scholar]
  111. Johnson PL, Federici LM, Fitz SD, Renger JJ, Shireman B. 111.  et al. 2015. Orexin 1 and 2 receptor involvement in CO2-induced panic-associated behavior and autonomic responses. Depress. Anxiety 32:671–83 [Google Scholar]
  112. Furlong TM, Vianna DML, Liu L, Carrive P. 112.  2009. Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal. Eur. J. Neurosci. 30:1603–14 [Google Scholar]
  113. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ. 113.  et al. 2004. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci. 24:11439–48 [Google Scholar]
  114. Ida T, Nakahara K, Murakami T, Hanada R, Nakazato M, Murakami N. 114.  2000. Possible involvement of orexin in the stress reaction in rats. Biochem. Biophys. Res. Commun. 270:318–23 [Google Scholar]
  115. Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M. 115.  et al. 2003. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. Regul. Integr. Comp Physiol. 285:R581–93 [Google Scholar]
  116. Smith PM, Connolly BC, Ferguson AV. 116.  2002. Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure. Brain Res 950:261–67 [Google Scholar]
  117. Smith PM, Samson WK, Ferguson AV. 117.  2007. Cardiovascular actions of orexin-A in the rat subfornical organ. J. Neuroendocrinol. 19:7–13 [Google Scholar]
  118. Beig MI, Dampney BW, Carrive P. 118.  2015. Both Ox1r and Ox2r orexin receptors contribute to the cardiovascular and locomotor components of the novelty stress response in the rat. Neuropharmacology 89:146–56 [Google Scholar]
  119. Strawn JR, Pyne-Geithman GJ, Ekhator NN, Horn PS, Uhde TW. 119.  et al. 2010. Low cerebrospinal fluid and plasma orexin-A (hypocretin-1) concentrations in combat-related posttraumatic stress disorder. Psychoneuroendocrinology 35:1001–7 [Google Scholar]
  120. Aston-Jones G, Smith RJ, Moorman DE, Richardson KA. 120.  2009. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56:Suppl. 1112–21 [Google Scholar]
  121. Plaza-Zabala A, Martín-García E, de Lecea L, Maldonado R, Berrendero F. 121.  2010. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J. Neurosci. 30:2300–10 [Google Scholar]
  122. Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. 122.  2006. The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol. 148:752–59 [Google Scholar]
  123. España RA, Melchior JR, Roberts DCS, Jones SR. 123.  2011. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology 214:415–26 [Google Scholar]
  124. Smith RJ, See RE, Aston-Jones G. 124.  2009. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur. J. Neurosci. 30:493–503 [Google Scholar]
  125. Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A. 125.  et al. 2005. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. PNAS 102:19168–73 [Google Scholar]
  126. Georgescu D, Zachariou V, Barrot M, Mieda M, Willie JT. 126.  et al. 2003. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23:3106–11 [Google Scholar]
  127. Jupp B, Krivdic B, Krstew E, Lawrence AJ. 127.  2011. The orexin1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res 1391:54–59 [Google Scholar]
  128. Smith RJ, Aston-Jones G. 128.  2012. Orexin/hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur. J. Neurosci. 35:798–804 [Google Scholar]
  129. Schmeichel BE, Barbier E, Misra KK, Contet C, Schlosburg JE. 129.  et al. 2015. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats. Neuropsychopharmacology 40:1123–29 [Google Scholar]
  130. 130. Eolas Ther., Inc. 2015. Eolas Therapeutics and AstraZeneca partner to develop orexin-1 receptor antagonist for multiple indications News Release, June 30. http://www.prnewswire.com/news-releases/eolas-therapeutics-and-astrazeneca-partner-to-develop-orexin-1-receptor-antagonist-for-multiple-indications-300106505.html
  131. Bartsch T, Levy MJ, Knight YE, Goadsby PJ. 131.  2004. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 109:367–78 [Google Scholar]
  132. Holland PR, Akerman S, Goadsby PJ. 132.  2006. Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur. J. Neurosci. 24:2825–33 [Google Scholar]
  133. Cady RJ, Denson JE, Sullivan LQ, Durham PL. 133.  2014. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization. Neuroscience 269:79–92 [Google Scholar]
  134. Chabi A, Zhang Y, Jackson S, Cady R, Lines C. 134.  et al. 2015. Randomized controlled trial of the orexin receptor antagonist filorexant for migraine prophylaxis. Cephalalgia 35:379–88 [Google Scholar]
  135. Ito N, Yabe T, Gamo Y, Nagai T, Oikawa T. 135.  et al. 2008. I.c.v. administration of orexin-A induces an antidepressive-like effect through hippocampal cell proliferation. Neuroscience 157:720–32 [Google Scholar]
  136. Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S. 136.  2011. Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 61:336–46 [Google Scholar]
  137. Scott MM, Marcus JN, Pettersen A, Birnbaum SG, Mochizuki T. 137.  et al. 2011. Hcrtr1 and 2 signaling differentially regulates depression-like behaviors. Behav. Brain Res. 222:289–94 [Google Scholar]
  138. Brundin L, Bjorkqvist M, Petersen A, Traskman-Bendz L. 138.  2007. Reduced orexin levels in the cerebrospinal fluid of suicidal patients with major depressive disorder. Eur. Neuropsychopharmacol. 17:573–79 [Google Scholar]
  139. Brundin L, Petersen A, Bjorkqvist M, Traskman-Bendz L. 139.  2007. Orexin and psychiatric symptoms in suicide attempters. J. Affect. Disord. 100:259–63 [Google Scholar]
  140. Brundin L, Bjorkqvist M, Traskman-Bendz L, Petersen A. 140.  2009. Increased orexin levels in the cerebrospinal fluid the first year after a suicide attempt. J. Affect. Disord. 113:179–82 [Google Scholar]
  141. Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H. 141.  et al. 2007. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat. Med. 13:150–55 [Google Scholar]
  142. Di Fabio R, Pellacani A, Faedo S, Roth A, Piccoli L. 142.  et al. 2011. Discovery process and pharmacological characterization of a novel dual orexin 1 and orexin 2 receptor antagonist useful for treatment of sleep disorders. Bioorg. Med. Chem. Lett 21:5562–67 [Google Scholar]
  143. Cox CD, Breslin MJ, Whitman DB, Schreier JD, McGaughey GB. 143.  et al. 2010. Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methy l-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J. Med. Chem 53:5320–32 [Google Scholar]
  144. Yoshida Y, Naoe Y, Terauchi T, Ozaki F, Doko T. 144.  et al. 2015. Discovery of (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarbo-xamide (E2006): a potent and efficacious oral orexin receptor antagonist. J. Med. Chem 58:4648–64 [Google Scholar]
  145. Boss C, Roch-Brisbare C, Steiner MA, Treiber A, Dietrich H. 145.  et al. 2014. Structure-activity relationship, biological, and pharmacological characterization of the proline sulfonamide ACT-462206: a potent, brain-penetrant dual orexin 1/orexin 2 receptor antagonist. ChemMedChem 9:2486–96 [Google Scholar]
  146. Letavic MA, Bonaventure P, Carruthers NI, Dugovic C, Koudriakova T. 146.  et al. 2015. Novel octahydropyrrolo[3,4-c]pyrroles are selective orexin-2 antagonists: SAR leading to a clinical candidate. J. Med. Chem 58:5620–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error