Eosinophil-associated diseases often present with life-threatening manifestations and/or chronic organ damage. Currently available therapeutic options are limited to a few drugs that often have to be prescribed on a lifelong basis to keep eosinophil counts under control. In the past 10 years, treatment options and outcomes in patients with clonal eosinophilic and other eosinophilic disorders have improved substantially. Several new targeted therapies have emerged, addressing different aspects of eosinophil expansion and inflammation. In this review, we discuss available and currently tested agents as well as new strategies and drug targets relevant to both primary and secondary eosinophilic diseases, including allergic disorders.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Simon D, Simon HU. 1.  2007. Eosinophilic disorders. J. Allergy Clin. Immunol. 119:1291–300 [Google Scholar]
  2. Linch SN, Gold JA. 2.  2011. The role of eosinophils in non-parasitic infections. Endocr. Metab. Immune Disord. Drug Targets 11:165–72 [Google Scholar]
  3. Blanchard C, Rothenberg ME. 3.  2009. Biology of the eosinophil. Adv. Immunol. 101:81–121 [Google Scholar]
  4. Straumann A, Simon HU. 4.  2004. The physiological and pathophysiological roles of eosinophils in the gastrointestinal tract. Allergy 59:15–25 [Google Scholar]
  5. Jacobsen EA, Helmers RA, Lee JJ, Lee NA. 5.  2012. The expanding role(s) of eosinophils in health and disease. Blood 120:3882–90 [Google Scholar]
  6. Chu VT, Fröhlich A, Steinhauser G, Scheel T, Roch T. 6.  et al. 2011. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12:151–59 [Google Scholar]
  7. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA. 7.  et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–47 [Google Scholar]
  8. Ackerman SJ. 8.  2013. To be, or not to be, an eosinophil: that is the ???. Blood 122:621–23 [Google Scholar]
  9. Lopez AF, Begley CG, Williamson DJ, Warren DJ, Vadas MA, Sanderson CJ. 9.  1986. Murine eosinophil differentiation factor: an eosinophil-specific colony-stimulating factor with activity for human cells. J. Exp. Med. 163:1085–99 [Google Scholar]
  10. Metcalf D. 10.  1986. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67:257–67 [Google Scholar]
  11. Martinez-Moczygemba M, Huston DP. 11.  2003. Biology of common β receptor–signaling cytokines: IL-3, IL-5, and GM-CSF. J. Allergy Clin. Immunol. 112:653–65 [Google Scholar]
  12. Wilson TM, Maric I, Shukla J, Brown M, Santos C. 12.  et al. 2011. IL-5 receptor α levels in patients with marked eosinophilia or mastocytosis. J. Allergy Clin. Immunol. 128:1086–92 [Google Scholar]
  13. Simon HU, Blaser K. 13.  1995. Inhibition of programmed eosinophil death: a key pathogenic event for eosinophilia?. Immunol. Today 16:53–55 [Google Scholar]
  14. Geering B, Stoeckle C, Conus S, Simon HU. 14.  2013. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 34:398–409 [Google Scholar]
  15. Simon HU, Rothenberg ME, Bochner BS, Weller PF, Wardlaw AJ. 15.  et al. 2010. Refining the definition of hypereosinophilic syndrome. J. Allergy Clin. Immunol. 126:45–49 [Google Scholar]
  16. Valent P, Klion AD, Horny HP, Roufosse F, Gotlib J. 16.  et al. 2012. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 130:607–12 [Google Scholar]
  17. Valent P, Klion AD, Rosenwasser LJ, Arock M, Bochner BS. 17.  et al. 2012. ICON: eosinophil disorders. WAO J. 5:174–81 [Google Scholar]
  18. Gotlib J, Cools J. 18.  2008. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 22:1999–2010 [Google Scholar]
  19. Stoeckle C, Simon HU. 19.  2013. CD8+ T cells producing IL-3 and IL-5 in non-IgE-mediated eosinophilic diseases. Allergy 68:1622–25 [Google Scholar]
  20. Simon HU, Plötz SG, Dummer R, Blaser K. 20.  1999. Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N. Engl. J. Med. 341:1112–20 [Google Scholar]
  21. Simon HU, Plötz SG, Simon D, Dummer R, Blaser K. 21.  2001. Clinical and immunological features of patients with interleukin-5-producing T cell clones and eosinophilia. Int. Arch. Allergy Clin. Immunol. 124:242–45 [Google Scholar]
  22. Cross NC, Reiter A. 22.  2008. Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol. 119:199–206 [Google Scholar]
  23. Toffalini F, Kallin A, Vandenberghe P, Pierre P, Michaux L. 23.  et al. 2009. The fusion proteins TEL-PDGFRβ and FIP1L1-PDGFRα escape ubiquitination and degradation. Haematology 94:1085–93 [Google Scholar]
  24. Jackson CC, Medeiros LJ, Miranda RN. 24.  2010. 8p11 myeloproliferative syndrome: a review. Hum. Pathol. 41:461–76 [Google Scholar]
  25. Pardanani A, Reeder T, Li CY, Tefferi A. 25.  2003. Eosinophils are derived from the neoplastic clone in patients with systemic mastocytosis and eosinophilia. Leuk. Res. 27:883–85 [Google Scholar]
  26. Bacher U, Reiter A, Haferlach T, Mueller L, Schnittger S. 26.  et al. 2006. A combination of cytomorphology, cytogenetic analysis, fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction for establishing clonality in cases of persisting hypereosinophilia. Haematologica 91:817–20 [Google Scholar]
  27. Druker BJ. 27.  2008. Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–17 [Google Scholar]
  28. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD. 28.  et al. 2003. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 348:1201–14 [Google Scholar]
  29. Simon HU, Klion A. 29.  2012. Therapeutic approaches to patients with hypereosinophilic syndromes. Semin. Hematol. 49:160–70 [Google Scholar]
  30. Gotlib J. 30.  2012. World Health Organization-defined eosinophilic disorders: 2012 update of diagnosis, risk stratification, and management. Am. J. Hematol. 87:904–14 [Google Scholar]
  31. Klion AD, Robyn J, Maric I, Fu W, Schmid L. 31.  et al. 2007. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PGGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood 110:3552–56 [Google Scholar]
  32. Simon D, Salemi S, Yousefi S, Simon HU. 32.  2008. Primary resistance to imatinib in Fip1-like 1-platelet-derived growth factor receptor α-positive eosinophilic leukemia. J. Allergy Clin. Immunol. 121:1054–56 [Google Scholar]
  33. Salemi S, Yousefi S, Simon D, Schmid I, Moretti L. 33.  et al. 2009. A novel FIP1L1-PDGFRA mutant destabilizing the inactive conformation of the kinase domain in chronic eosinophilic leukemia/hypereosinophilic syndrome. Allergy 64:913–18 [Google Scholar]
  34. Frankfurt O, Licht JD. 34.  2013. Ponatinib: a step forward in overcoming resistance in chronic myeloid leukemia. Clin. Cancer Res. 19:5828–34 [Google Scholar]
  35. Lau A, Seiter K. 35.  2013. Second-line therapy for patients with chronic myeloid leukemia resistant to first-line imatinib. Clin. Lymphoma Myeloma Leuk. 14:186–96 [Google Scholar]
  36. Giles FJ, Abruzzese E, Rosti G, Kim DW, Bhatia R. 36.  et al. 2010. Nilotinib is active in chronic and accelerated phase chronic myeloid leukemia following failure of imatinib and dasatinib therapy. Leukemia 24:1299–301 [Google Scholar]
  37. Latagliata R, Breccia M, Castagnetti F, Stagno F, Luciano L. 37.  et al. 2011. Dasatinib is safe and effective in unselected chronic myeloid leukaemia elderly patients resistant/intolerant to imatinib. Leuk. Res. 35:1164–69 [Google Scholar]
  38. Syed YY, McCormack PL, Plosker GL. 38.  2014. Bosutinib: a review of its use in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. Biodrugs 28:107–20 [Google Scholar]
  39. Lierman E, Michaux L, Beullens E, Pierre P, Marynen P. 39.  et al. 2009. FIP1L1-PDGFRα D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRα T674I eosinophilic leukemia with single agent sorafenib. Leukemia 23:845–51 [Google Scholar]
  40. Metzgeroth G, Erben P, Martin H, Mousset S, Teichmann M. 40.  et al. 2012. Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 26:162–64 [Google Scholar]
  41. Remsing Rix LL, Rix U, Colinge J, Hantschel O, Bennett KL. 41.  et al. 2009. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23:477–85 [Google Scholar]
  42. Jin Y, Ding K, Li H, Xue M, Shi X. 42.  et al. 2014. Ponatinib efficiently kills imatinib-resistant chronic eosinophilic leukemia cells harboring gatekeeper mutant T674I FIP1L1-PDGFRα: roles of Mcl-1 and β-catenin. Mol. Cancer 13:17 [Google Scholar]
  43. Shen Y, Shi X, Pan J. 43.  2013. The conformational control inhibitor of tyrosine kinases DCC-2036 is effective for imatinib-resistant cells expressing T674I FIP1L1-PDGFRα. PLOS ONE 8:e73059 [Google Scholar]
  44. Chase A, Grand FH, Cross NCP. 44.  2007. Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 110:3729–34 [Google Scholar]
  45. Chen J, DeAngelo DJ, Kutok JL, Williams IR, Lee BH. 45.  et al. 2004. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc. Natl. Acad. Sci. USA 101:14479–84 [Google Scholar]
  46. Chase A, Bryant C, Score J, Cross NCP. 46.  2013. Ponatinib as targeted therapy for FGFR1 fusions associated with the 8p11 myeloproliferative syndrome. Haematology 98:103–6 [Google Scholar]
  47. Aichberger KJ, Herndlhofer S, Schernthaner GH, Schillinger M, Mitterbauer-Hohendanner G. 47.  et al. 2011. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am. J. Hematol. 86:533–39 [Google Scholar]
  48. Kim TD, Rea D, Schwarz M, Grille P, Nicolini FE. 48.  et al. 2013. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia 27:1316–21 [Google Scholar]
  49. Ustun C, DeRemer DL, Akin C. 49.  2011. Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk. Res. 35:1143–52 [Google Scholar]
  50. Gleixner KV, Peter B, Blatt K, Suppan V, Reiter A. 50.  et al. 2013. Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V. Haematologica 98:1450–57 [Google Scholar]
  51. Verstovsek S, Akin C, Manshouri T, Quintás-Cardama A, Huynh L. 51.  et al. 2006. Effects of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, on human mast cells bearing wild-type or mutated codon 816 c-kit. Leuk. Res. 30:1365–70 [Google Scholar]
  52. Klion A, Law MA, Noel P, Kim YJ, Haverty TP, Nutman TB. 52.  2004. Safety and efficacy of the monoclonal anti-interleukin-5 antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood 103:2939–41 [Google Scholar]
  53. Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK. 53.  et al. 2010. MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125:1344–53 [Google Scholar]
  54. Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R. 54.  et al. 2013. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol. 132:1086–96 [Google Scholar]
  55. Legrand F, Tomasevic N, Simakova O, Lee CCR, Wang Z. 55.  et al. 2014. The eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1): a novel therapeutic target for eosinophilic disorders. J. Allergy Clin. Immunol. 133:1439–47 [Google Scholar]
  56. Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS. 56.  2012. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther. 135:327–36 [Google Scholar]
  57. Nutku E, Aizawa H, Hudson SA, Bochner BS. 57.  2003. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101:5014–20 [Google Scholar]
  58. Zimmermann N, McBride ML, Yamada Y, Hudson SA, Jones C. 58.  et al. 2008. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy 63:1156–63 [Google Scholar]
  59. von Gunten S, Vogel M, Schaub A, Stadler BM, Miescher S. 59.  et al. 2007. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J. Allergy Clin. Immunol. 119:1005–11 [Google Scholar]
  60. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR. 60.  et al. 2009. Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells. J. Clin. Investig. 119:1109–23 [Google Scholar]
  61. Salemi S, Yousefi S, Constantinescu MA, Fey MF, Simon HU. 61.  2012. Autophagy is required for self-renewal and differentiation of adult human stem cells. Cell Res. 22:432–35 [Google Scholar]
  62. Goff DJ, Recart AC, Sadarangani A, Chun HJ, Barrett CL. 62.  et al. 2013. A pan-Bcl2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell 12:316–28 [Google Scholar]
  63. Gandhi V, Plunkett W, Cortes JE. 63.  2014. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin. Cancer Res. 20:1–6 [Google Scholar]
  64. Bose P, Park H, Al-Khafaji J, Grant S. 64.  2013. Strategies to circumvent the T315I gatekeeper mutation in the Bcr-Abl tyrosine kinase. Leuk. Res. Rep. 2:18–20 [Google Scholar]
  65. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L. 65.  et al. 2007. Small-molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc. Natl. Acad. Sci. USA 104:19512–17 [Google Scholar]
  66. Tolcher AW, Rodrigueza WV, Rasco DW, Patnaik A, Papadopoulos KP. 66.  et al. 2014. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 73:363–71 [Google Scholar]
  67. Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA. 67.  et al. 2012. Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 10:412–24 [Google Scholar]
  68. Dihlmann S, Siermann A, von Knebel Doeberitz M. 68.  2001. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate β-catenin/TCF-4 signaling. Oncogene 20:645–53 [Google Scholar]
  69. Zhang B, Strauss AC, Chu S, Li M, Ho Y. 69.  et al. 2010. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17:427–42 [Google Scholar]
  70. Li L, Wang L, Li L, Wang Z, Ho Y. 70.  et al. 2012. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21:266–81 [Google Scholar]
  71. Brooks CL, Gu W. 71.  2009. How does SIRT1 affect metabolism, senescence and cancer?. Nat. Rev. Cancer 9:123–28 [Google Scholar]
  72. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M. 72.  et al. 2012. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer 12:767–75 [Google Scholar]
  73. Florian S, Sonneck K, Hauswirth AW, Krauth MT, Schernthaner GH. 73.  et al. 2006. Detection of molecular targets on the surface of CD34+/CD38 stem cells in various myeloid malignancies. Leuk. Lymphoma 47:207–22 [Google Scholar]
  74. Weisberg E, Azab AK, Manley PW, Kung AL, Christie AL. 74.  et al. 2012. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26:985–90 [Google Scholar]
  75. Fruehauf S. 75.  2013. Current clinical indications for plerixafor. Transfus. Med. Hemother. 40:246–50 [Google Scholar]
  76. Huang MM, Zhu J. 76.  2012. The regulation of normal and leukemic hematopoietic stem cells by niches. Cancer Microenviron. 5:295–305 [Google Scholar]
  77. Nwajei F, Konopleva M. 77.  2013. The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv. Hematol. 2013:953982 [Google Scholar]
  78. Benito J, Shi Y, Szymanska B, Carol H, Boehm I. 78.  et al. 2011. Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated pro-drug PR-104. PLOS ONE 6:e23108 [Google Scholar]
  79. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S. 79.  et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–43 [Google Scholar]
  80. Bartlett JB, Dredge K, Dalgleish AG. 80.  2004. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 4:314–22 [Google Scholar]
  81. Simon HU, Yousefi S, Dommann-Scherrer CC, Zimmermann DR, Bauer S. 81.  et al. 1996. Expansion of cytokine-producing CD4CD8 T cells associated with abnormal Fas expression and hypereosinophilia. J. Exp. Med. 183:1071–82 [Google Scholar]
  82. Roufosse F, Schandene L, Sibille C, Willard-Gallo K, Kennes B. 82.  et al. 2000. Clonal Th2 lymphocytes in patients with the idiopathic hypereosinophilic syndrome. Br. J. Haematol. 109:540–48 [Google Scholar]
  83. Simon HU, Seelbach H, Ehmann R, Schmitz M. 83.  2003. Clinical and immunological effects of low-dose IFN-α treatment in patients with corticosteroid-resistant asthma. Allergy 58:1250–55 [Google Scholar]
  84. Plötz SG, Simon HU, Darsow U, Simon D, Vassina E. 84.  et al. 2003. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N. Engl. J. Med. 349:2334–39 [Google Scholar]
  85. Garrett JK, Jameson SC, Thomson B, Collins MH, Wagoner LE. 85.  et al. 2004. Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J. Allergy Clin. Immunol. 113:115–19 [Google Scholar]
  86. Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF. 86.  et al. 2008. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N. Engl. J. Med. 358:1215–28 [Google Scholar]
  87. Roufosse F, de Lavareille A, Schandené L, Cogan E, Georgelas A. 87.  et al. 2010. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J. Allergy Clin. Immunol. 126:828–35 [Google Scholar]
  88. Roufosse F, Kahn JE, Gleich GJ, Schwartz LB, Singh AD. 88.  et al. 2013. Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J. Allergy Clin. Immunol. 131:461–67 [Google Scholar]
  89. Stein LM, Villanueva JM, Buckmeier BK, Yamada Y, Filipovich AH. 89.  et al. 2008. Anti-IL-5 (mepolizumab) therapy reduces eosinophil activation ex vivo and increases IL-5 and IL-5 receptor levels. J. Allergy Clin. Immunol. 121:1473–83 [Google Scholar]
  90. Conus S, Straumann A, Bettler E, Simon HU. 90.  2010. Mepolizumab does not alter levels of eosinophils, T cells, and mast cells in the duodenal mucosa in eosinophilic esophagitis. J. Allergy Clin. Immunol. 126:175–77 [Google Scholar]
  91. Wechsler ME, Fulkerson PC, Bochner BS, Gauvreau GM, Gleich GJ. 91.  et al. 2012. Novel targeted therapies for eosinophilic disorders. J. Allergy Clin. Immunol. 130:563–71 [Google Scholar]
  92. Straumann A, Conus S, Grzonka P, Kita H, Kephart G. 92.  et al. 2010. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59:21–30 [Google Scholar]
  93. Busse WW, Katial R, Gossage D, Sari S, Wang B. 93.  et al. 2010. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor α antibody, in a phase I study of subjects with mild asthma. J. Allergy Clin. Immunol. 125:1237–44 [Google Scholar]
  94. Na HJ, Hamilton RG, Klion AD, Bochner BS. 94.  2012. Biomarkers of eosinophil involvement in allergic and eosinophilic diseases: review of phenotypic and serum markers including a novel assay to quantify levels of soluble Siglec-8. J. Immunol. Meth. 383:39–46 [Google Scholar]
  95. Verstovsek S, Tefferi A, Kantarjian H, Mashouri T, Luthra R. 95.  et al. 2009. Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin. Cancer Res. 15:368–73 [Google Scholar]
  96. Strati P, Cortes J, Faderl S, Kantarjian H, Verstovsek S. 96.  2013. Long-term follow-up of patients with hypereosinophilic syndrome treated with alemtuzumab, an anti-CD52 antibody. Clin. Lymphoma Myeloma Leuk. 13:287–91 [Google Scholar]
  97. Miller GT, Hochman PS, Meier W, Tozard R, Bixler S. 97.  et al. 1993. Specific interaction of lymphocyte function-associated antigen 3 with CD2 can inhibit T cell responses. J. Exp. Med. 178:211–22 [Google Scholar]
  98. Simon D, Wittwer J, Kostylina G, Büttiker U, Simon HU, Yawalkar N. 98.  2008. Alefacept (LFA-3/IgG fusion protein) treatment for atopic eczema. J. Allergy Clin. Immunol. 122:423–24 [Google Scholar]
  99. Ellis CN, Mordin MM, Adler EY. 99.  2003. Effects of alefacept on health-related quality of life in patients with psoriasis: results from a randomized, placebo-controlled phase II trial. Am. J. Clin. Dermatol. 4:131–39 [Google Scholar]
  100. Burks AW, Calderon MA, Casale T, Cox L, Demoly P. 100.  et al. 2013. Update on allergen immunotherapy: Academy of Allergy, Asthma and Immunology/European Academy of Allergy and Clinical Immunology/PRACTALL consensus report. J. Allergy Clin. Immunol. 131:1288–96 [Google Scholar]
  101. Barnes N, Menzies-Gow A, Mansur AH, Spencer D, Percival F. 101.  et al. 2013. Effectiveness of omalizumab in severe allergic asthma: a retrospective UK real-world study. J. Asthma 50:529–36 [Google Scholar]
  102. Hanania NA, Wenzel S, Rosén K, Hsieh HJ, Mosesova S. 102.  et al. 2013. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am. J. Respir. Crit. Care Med. 187:804–11 [Google Scholar]
  103. Bousquet J, Wenzel S, Holgate S, Lumry W, Freeman P, Fox H. 103.  2004. Predicting response to omalizumab, an anti-IgE antibody, in patients with allergic asthma. Chest 125:1378–86 [Google Scholar]
  104. Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N. 104.  et al. 2013. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J. Allergy Clin. Immunol. 131:110–16 [Google Scholar]
  105. Kaplan A, Ledford D, Ashby M, Canvin J, Zazzali JL. 105.  et al. 2013. Omalizumab in patients with symptomatic chronic idiopathic/spontaneous urticaria despite standard combination therapy. J. Allergy Clin. Immunol. 132:101–9 [Google Scholar]
  106. Cruz AA, Lima F, Sarinho E, Ayre G, Martin C, Fox H, Cooper PJ. 106.  2007. Safety of anti-immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infection. Clin. Exp. Allergy 37:197–207 [Google Scholar]
  107. Presta LG, Lahr SJ, Shields RL, Porter JP, Gorman CM. 107.  et al. 1993. Humanization of an antibody directed against IgE. J. Immunol. 151:2623–32 [Google Scholar]
  108. MacGlashan DW Jr, Bochner BS, Adelman DC, Jardieu PM, Togias A. 108.  et al. 1997. Down-regulation of FcεRI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J. Immunol. 158:1438–45 [Google Scholar]
  109. Noga O, Hanf G, Brachmann I, Klucken AC, Kleine-Tebbe J. 109.  et al. 2006. Effect of omalizumab treatment on peripheral eosinophil and T-lymphocyte function in patients with allergic asthma. J. Allergy Clin. Immunol. 117:1493–99 [Google Scholar]
  110. Plewako H, Arvidsson M, Petruson K, Oancea I, Holmberg K. 110.  et al. 2002. The effect of omalizumab on nasal allergic inflammation. J. Allergy Clin. Immunol. 110:68–71 [Google Scholar]
  111. Chan MA, Gigliotti NM, Dotson AL, Rosenwasser LJ. 111.  2013. Omalizumab may decrease IgE synthesis by targeting membrane IgE+ human B cells. Clin. Transl. Allergy 3:29 [Google Scholar]
  112. Iyengar SR, Hoyte EG, Loza A, Bonaccorso S, Chiang D. 112.  et al. 2013. Immunologic effects of omalizumab in children with severe refractory atopic dermatitis: a randomized, placebo-controlled clinical trial. Int. Arch. Allergy Immunol. 162:89–93 [Google Scholar]
  113. Kim B, Eggel A, Tarchevskaya SS, Vogel M, Prinz H. 113.  et al. 2012. Accelerated disassembly of IgE-receptor complexes by a disruptive macromolecular inhibitor. Nature 491:613–17 [Google Scholar]
  114. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ. 114.  et al. 2000. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–48 [Google Scholar]
  115. Kips JC, O'Connor BJ, Langley SJ, Woodcock A, Kerstjens HA. 115.  et al. 2003. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am. J. Respir. Crit. Care Med. 167:1655–59 [Google Scholar]
  116. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W. 116.  et al. 2009. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360:973–84 [Google Scholar]
  117. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A. 117.  et al. 2009. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360:985–93 [Google Scholar]
  118. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R. 118.  et al. 2012. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380:651–59 [Google Scholar]
  119. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F. 119.  et al. 2011. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 184:1125–32 [Google Scholar]
  120. Vaglio A, Buzio C, Zwerina J. 120.  2013. Eosinophilic granulomatosis with polyangiitis (Churg-Strauss): state of the art. Allergy 68:261–73 [Google Scholar]
  121. Kim S, Marigowda G, Oren E, Israel E, Wechsler ME. 121.  2010. Mepolizumab as a steroid-sparing treatment option in patients with Churg-Strauss syndrome. J. Allergy Clin. Immunol. 125:1336–43 [Google Scholar]
  122. Moosig F, Gross WL, Herrmann K, Bremer JP, Hellmich B. 122.  2011. Targeting interleukin-5 in refractory and relapsing Churg-Strauss syndrome. Ann. Intern. Med. 155:341–43 [Google Scholar]
  123. Herrmann K, Gross WL, Moosig F. 123.  2012. Extended follow-up after stopping mepolizumab in relapsing/refractory Churg-Strauss syndrome. Clin. Exp. Rheumatol. 30:Suppl. 70S62–65 [Google Scholar]
  124. Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H. 124.  et al. 2006. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J. Allergy Clin. Immunol. 118:1133–41 [Google Scholar]
  125. Assa'ad AH, Gupta SK, Collins MH, Thomson M, Heath AT. 125.  et al. 2011. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 141:1593–604 [Google Scholar]
  126. Spergel JM, Rothenberg ME, Collins MH, Furuta GT, Markowitz JE. 126.  et al. 2012. Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 129:456–63 [Google Scholar]
  127. Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A. 127.  et al. 2005. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60:693–96 [Google Scholar]
  128. Fulkerson PC, Fischetti CA, McBride M, Hassman LM, Hogan SP, Rothenberg ME. 128.  2006. A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc. Natl. Acad. Sci. USA 103:16418–23 [Google Scholar]
  129. Lampinen M, Waddell A, Ahrens R, Carlson M, Hogan SP. 129.  2013. CD14+CD33+ myeloid cell-CCL11-eosinophil signature in ulcerative colitis. J. Leukoc. Biol. 94:1061–70 [Google Scholar]
  130. Bahl A, Springthorpe B, Riley R. 130.  2010. Chemokine CCR3 antagonists. New Drugs and Targets for Asthma and COPD TT Hansel, PJ Barnes 153–59 Basel, Switz.: Karger [Google Scholar]
  131. Imaoka H, Campbell H, Babirad I, Watson RM, Mistry M. 131.  et al. 2011. TPI ASM8 reduces eosinophil progenitors in sputum after allergen challenge. Clin. Exp. Allergy 41:1740–46 [Google Scholar]
  132. Gauvreau GM, Pageau R, Séguin R, Carballo D, Gauthier J. 132.  et al. 2011. Dose-response effects of TPI ASM8 in asthmatics after allergen. Allergy 66:1242–48 [Google Scholar]
  133. Ziegler SF. 133.  2012. Thymic stromal lymphopoietin (TSLP) and allergic disease. J. Allergy Clin. Immunol. 130:845–52 [Google Scholar]
  134. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G. 134.  et al. 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3:673–80 [Google Scholar]
  135. Headley MB, Zhou B, Shih WX, Aye T, Comeau MR, Ziegler SF. 135.  2009. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses. J. Immunol. 182:1641–47 [Google Scholar]
  136. Straumann A, Aceves SS, Blanchard C, Collins MH, Furuta GT. 136.  et al. 2012. Pediatric and adult eosinophilic esophagitis: similarities and differences. Allergy 67:477–90 [Google Scholar]
  137. Morshed M, Yousefi S, Stöckle C, Simon HU, Simon D. 137.  2012. Thymic stromal lymphopoietin stimulates the formation of eosinophil extracellular traps. Allergy 67:1127–37 [Google Scholar]
  138. Noti M, Wojno ED, Kim BS, Siracusa MC, Giacomin PR. 138.  et al. 2013. Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat. Med. 19:1005–13 [Google Scholar]
  139. Gauvreau GM, O'Byrne PM, Boulet LP, Wang Y, Cockcroft D. 139.  et al. 2014. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med 370:2102–10 [Google Scholar]
  140. Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. 140.  2007. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370:1422–31 [Google Scholar]
  141. Tomkinson A, Tepper J, Morton M, Bowden A, Stevens L. 141.  et al. 2010. Inhaled versus subcutaneous effects of a dual IL-4/IL-13 antagonist in a monkey model of asthma. Allergy 65:69–77 [Google Scholar]
  142. Slager RE, Hawkins GA, Ampleford EJ, Bowden A, Stevens LE. 142.  et al. 2010. IL-4 receptor α polymorphisms are predictors of a pharmacogenetic response to a novel IL-4/IL-13 antagonist. J. Allergy Clin. Immunol. 126:875–78 [Google Scholar]
  143. Wenzel S, Ford L, Pearlman D, Spector S, Sher L. 143.  et al. 2013. Dupilumab in persistent asthma with elevated eosinophil levels. N. Engl. J. Med. 368:2455–66 [Google Scholar]
  144. Spiess C, Bevers J III, Jackman J, Chiang N, Nakamura G. 144.  et al. 2013. Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J. Biol. Chem. 288:26583–93 [Google Scholar]
  145. Agrawal S, Townley RG. 145.  2014. Role of periostin, FENO, IL-13, lebrikizumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma. Exp. Opin. Biol. Ther. 14:165–81 [Google Scholar]
  146. Scheerens H, Arron JR, Zheng Y, Putnam WS, Erickson RW. 146.  et al. 2014. The effects of lebrikizumab in patients with mild asthma following whole-lung allergen challenge. Clin. Exp. Allergy 44:38–46 [Google Scholar]
  147. Piper E, Brightling C, Niven R, Oh C, Faggioni R. 147.  et al. 2012. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur. Respir. J. 41:330–38 [Google Scholar]
  148. Arima M, Fukuda T. 148.  2011. Prostaglandin D2 and TH2 inflammation in the pathogenesis of bronchial asthma. Korean J. Intern. Med. 26:8–18 [Google Scholar]
  149. Spik I, Brénuchon C, Angéli V, Staumont D, Fleury S. 149.  et al. 2005. Activation of the prostaglandin D2 receptor DP2/CRTh2 increases allergic inflammation in mouse. J. Immunol. 174:3703–8 [Google Scholar]
  150. Satoh T, Moroi R, Aritake K, Urade Y, Kanai Y. 150.  et al. 2006. Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTh2 receptor. J. Immunol. 177:2621–29 [Google Scholar]
  151. Barnes N, Pavord I, Chuchalin A, Bell J, Hunter M. 151.  et al. 2012. A randomized, double-blind, placebo-controlled study of the CRTh2 antagonist OC000459 in moderate persistent asthma. Clin. Exp. Allergy 42:38–48 [Google Scholar]
  152. Straumann A, Hoesli S, Bussmann C, Stuck M, Perkins M. 152.  et al. 2013. Anti-eosinophil activity and clinical efficacy of the CRTh2 antagonist OC000459 in eosinophilic esophagitis. Allergy 68:375–85 [Google Scholar]
  153. Horak F, Zieglmayer P, Zieglmayer R, Lemell P, Collins LP. 153.  et al. 2012. The CRTh2 antagonist OC000459 reduces nasal and ocular symptoms in allergic subjects exposed to grass pollen, a randomised, placebo-controlled, double-blind trial. Allergy 67:1572–79 [Google Scholar]
  154. Fuhst R, Runge F, Buschmann J, Ernst H, Praechter C. 154.  et al. 2013. Toxicity profile of the GATA-3-specific DNAzyme hgd40 after inhalation exposure. Pulm. Pharmacol. Ther. 26:281–89 [Google Scholar]
  155. Sel S, Wegmann M, Dicke T, Sel S, Henke W. 155.  et al. 2008. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J. Allergy Clin. Immunol. 121:910–16 [Google Scholar]
  156. Simon D, Hösli S, Kostylina G, Yawalkar N, Simon HU. 156.  2008. Anti-CD20 (rituximab) treatment improves atopic eczema. J. Allergy Clin. Immunol. 121:122–28 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error