1932

Abstract

Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2′-substitutions in the furanose ring, such as 2′-fluoro, -methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2′-oxygen connects to the 4′-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021050
2019-01-06
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021050.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021050&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Zamecnik PC, Stephenson ML 1978. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. PNAS 75:280–84
    [Google Scholar]
  2. 2.  Stephenson ML, Zamecnik PC 1978. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. PNAS 75:285–88
    [Google Scholar]
  3. 3.  Deleavey GF, Damha MJ 2012. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19:937–54
    [Google Scholar]
  4. 4.  Khvorova A, Watts JK 2017. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35:238–48
    [Google Scholar]
  5. 5.  Sands H, Gorey-Feret LJ, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL 1994. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol. Pharmacol. 45:932–43
    [Google Scholar]
  6. 6.  Nimjee SM, White RR, Becker RC, Sullenger BA 2017. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol. 57:61–79
    [Google Scholar]
  7. 7.  Zhou J, Rossi J 2017. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16:181–202
    [Google Scholar]
  8. 8.  Singh V, Fedeles BI, Essigmann JM 2015. Role of tautomerism in RNA biochemistry. RNA 21:1–13
    [Google Scholar]
  9. 9.  Le Doan T, Perrouault L, Praseuth D, Habhoub N, Decout JL et al. 1987. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[α]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res 15:7749–60
    [Google Scholar]
  10. 10.  Moser HE, Dervan PB 1987. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238:645–50
    [Google Scholar]
  11. 11.  Herdewijn P 2000. Heterocyclic modifications of oligonucleotides and antisense technology. Antisense Nucleic Acid Drug Dev 10:297–310
    [Google Scholar]
  12. 12.  Terrazas M, Kool ET 2009. RNA major groove modifications improve siRNA stability and biological activity. Nucleic Acids Res 37:346–53
    [Google Scholar]
  13. 13.  Shukla S, Sumaria CS, Pradeepkumar PI 2010. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook. Chem. Med. Chem. 5:328–49
    [Google Scholar]
  14. 14.  Hassler MR, Turanov AA, Alterman JF, Haraszti RA, Coles AH et al. 2018. Comparison of partially and fully chemically-modified siRNA in conjugate-mediated delivery in vivo. Nucleic Acids Res 46:52185–96
    [Google Scholar]
  15. 15.  Wan WB, Seth PP 2016. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 59:9645–67
    [Google Scholar]
  16. 16.  Shibahara S, Mukai S, Nishihara T, Inoue H, Ohtsuka E, Morisawa H 1987. Site-directed cleavage of RNA. Nucleic Acids Res 15:4403–15
    [Google Scholar]
  17. 17.  Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D et al. 1993. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268:14514–22
    [Google Scholar]
  18. 18.  Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP 2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov 5:123–32
    [Google Scholar]
  19. 19.  Martin P 1995. Ein neuer Zugang zu 2′-O-Alkylribonucleosiden und Eigenschaften deren Oligonucleotide [New access to 2′-O-alkylated ribonucleotides and properties of 2′-O-alklylated oligoribonucleotides]. Helv. Chim. Acta 87:486–504
    [Google Scholar]
  20. 20.  Kawasaki AM, Casper MD, Freier SM, Lesnik EA, Zounes MC et al. 1993. Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem. 36:831–41
    [Google Scholar]
  21. 21.  Pallan PS, Greene EM, Jicman PA, Pandey RK, Manoharan M et al. 2011. Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Res 39:3482–95
    [Google Scholar]
  22. 22.  Manoharan M, Akinc A, Pandey RK, Qin J, Hadwiger P et al. 2011. Unique gene-silencing and structural properties of 2′-fluoro-modified siRNAs. Angew. Chem. Int. Ed. Engl. 50:2284–88
    [Google Scholar]
  23. 23.  Obika S, Nanbu D, Hari Y et al. 1997. Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3′-endo sugar puckering. Tetrahedon Lett 54:8735–38
    [Google Scholar]
  24. 24.  Koshkin A, Singh S, Nielsen P et al. 1998. Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedon 54:3607–30
    [Google Scholar]
  25. 25.  Lennox KA, Behlke MA 2011. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18:1111–20
    [Google Scholar]
  26. 26.  Pabon-Martinez YV, Xu Y, Villa A, Lundin KE, Geny S et al. 2017. LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Sci. Rep. 7:11043
    [Google Scholar]
  27. 27.  Prakash TP, Siwkowski A, Allerson CR, Migawa MT, Lee S et al. 2010. Antisense oligonucleotides containing conformationally constrained 2′,4′-(N-methoxy)aminomethylene and 2′,4′-aminooxymethylene and 2′-O,4′-C-aminomethylene bridged nucleoside analogues show improved potency in animal models. J. Med. Chem. 53:1636–50
    [Google Scholar]
  28. 28.  Seth PP, Siwkowski A, Allerson CR, Vasquez G, Lee S et al. 2009. Short antisense oligonucleotides with novel 2′-4′ conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J. Med. Chem. 52:10–13
    [Google Scholar]
  29. 29.  Mangos MM, Min KL, Viazovkina E, Galarneau A, Elzagheid MI et al. 2003. Efficient RNase H-directed cleavage of RNA promoted by antisense DNA or 2′F-ANA constructs containing acyclic nucleotide inserts. J. Am. Chem. Soc. 125:654–61
    [Google Scholar]
  30. 30.  Vaish N, Chen F, Seth S, Fosnaugh K, Liu Y et al. 2011. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res 39:1823–32
    [Google Scholar]
  31. 31.  Campbell MA, Wengel J 2011. Locked versus unlocked nucleic acids (LNA versus UNA): Contrasting structures work towards common therapeutic goals. Chem. Soc. Rev. 40:5680–89
    [Google Scholar]
  32. 32.  Christensen NK, Andersen AK, Schultz TR, Nielsen P 2003. Synthesis of hydroxymethyl branched [3.2.0]bicyclic nucleosides using a regioselective oxetane ring-formation. Org. Biomol. Chem. 1:3738–48
    [Google Scholar]
  33. 33.  Leumann CJ 2002. DNA analogues: from supramolecular principles to biological properties. Bioorg. Med. Chem. 10:841–54
    [Google Scholar]
  34. 34.  Murray S, Ittig D, Koller E, Berdeja A, Chappell A et al. 2012. TricycloDNA-modified oligo-2′-deoxyribonucleotides reduce scavenger receptor B1 mRNA in hepatic and extra-hepatic tissues—a comparative study of oligonucleotide length, design and chemistry. Nucleic Acids Res 40:6135–43
    [Google Scholar]
  35. 35.  Pallan PS, Ittig D, Heroux A, Wawrzak Z, Leumann CJ, Egli M 2008. Crystal structure of tricyclo-DNA: an unusual compensatory change of two adjacent backbone torsion angles. Chem. Commun. 21:7883–85
    [Google Scholar]
  36. 36.  Eder PS, DeVine RJ, Dagle JM, Walder JA 1991. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res. Dev. 1:141–51
    [Google Scholar]
  37. 37.  Juliano RL 2016. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44:6518–48
    [Google Scholar]
  38. 38.  Wojcik M, Cieslak M, Stec WJ, Goding JW, Koziolkiewicz M 2007. Nucleotide pyrophosphatase/phosphodiesterase 1 is responsible for degradation of antisense phosphorothioate oligonucleotides. Oligonucleotides 17:134–45
    [Google Scholar]
  39. 39.  Agrawal S, Temsamani J, Tang JY 1991. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. PNAS 88:7595–99
    [Google Scholar]
  40. 40.  Maliwal BP, Guthrie FE 1981. Interaction of insecticides with human serum albumin. Mol. Pharmacol. 20:138–44
    [Google Scholar]
  41. 41.  Liang XH, Shen W, Sun H, Kinberger GA, Prakash TP et al. 2016. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2′-modifications and enhances antisense activity. Nucleic Acids Res 44:3892–907
    [Google Scholar]
  42. 42.  Iannitti T, Morales-Medina JC, Palmieri B 2014. Phosphorothioate oligonucleotides: effectiveness and toxicity. Curr. Drug Targets 15:663–73
    [Google Scholar]
  43. 43.  Heidenreich O, Gryaznov S, Nerenberg M 1997. RNase H-independent antisense activity of oligonucleotide N3′→P5′ phosphoramidates. Nucleic Acids Res 25:776–80
    [Google Scholar]
  44. 44.  Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA 2004. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 32:5991–6000
    [Google Scholar]
  45. 45.  Summerton J, Weller D 1997. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid. Drug Dev. 7:187–95
    [Google Scholar]
  46. 46.  Egholm M, Christensen L, Dueholm KL, Buchardt O, Coull J, Nielsen PE 1995. Efficient pH-independent sequence-specific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res 23:217–22
    [Google Scholar]
  47. 47.  Moreno PM, Geny S, Pabon YV, Bergquist H, Zaghloul EM et al. 2013. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 41:3257–73
    [Google Scholar]
  48. 48.  Geny S, Moreno PM, Krzywkowski T, Gissberg O, Andersen NK et al. 2016. Next-generation bis-locked nucleic acids with stacking linker and 2′-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Res 44:2007–19
    [Google Scholar]
  49. 49.  Lundin KE, Gissberg O, Smith CI 2015. Oligonucleotide therapies: the past and the present. Hum. Gene Ther. 26:475–85
    [Google Scholar]
  50. 50.  Huggett B, Paisner K 2017. The commercial tipping point. Nat. Biotechnol. 35:708–9
    [Google Scholar]
  51. 51.  Walder JA, Walder RY 1995. Nucleic acid hybridization and amplification method for detection of specific sequences in which a complementary labeled nucleic acid probe is cleaved US Patent 5,403,711
    [Google Scholar]
  52. 52.  Bennett CF, Baker BF, Pham N, Swayze E, Geary RS 2017. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57:81–105
    [Google Scholar]
  53. 53.  Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ et al. 2010. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375:998–1006
    [Google Scholar]
  54. 54.  Ajufo E, Rader DJ 2018. New therapeutic approaches for familial hypercholesterolemia. Annu. Rev. Med. 69:113–31
    [Google Scholar]
  55. 55.  Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W et al. 2017. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N. Engl. J. Med. 377:222–32
    [Google Scholar]
  56. 56.  Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C et al. 2017. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N. Engl. J. Med. 377:211–21
    [Google Scholar]
  57. 57.  Dominski Z, Kole R 1993. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. PNAS 90:8673–77
    [Google Scholar]
  58. 58.  Taylor JK, Zhang QQ, Wyatt JR, Dean NM 1999. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 17:1097–100
    [Google Scholar]
  59. 59.  Rocha CS, Wiklander OP, Larsson L, Moreno PM, Parini P et al. 2015. RNA therapeutics inactivate PCSK9 by inducing a unique intracellular retention form. J. Mol. Cell Cardiol. 82:186–93
    [Google Scholar]
  60. 60.  Goemans N, Mercuri E, Belousova E, Komaki H, Dubrovsky A et al. 2018. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul. Disord. 28:4–15
    [Google Scholar]
  61. 61.  Lim KR, Maruyama R, Yokota T 2017. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Dev. Ther. 11:533–45
    [Google Scholar]
  62. 62.  Stein CA 2016. Eteplirsen approved for Duchenne muscular dystrophy: The FDA faces a difficult choice. Mol. Ther. 24:1884–85
    [Google Scholar]
  63. 63.  Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K et al. 2015. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 21:270–75
    [Google Scholar]
  64. 64.  Relizani K, Griffith G, Echevarria L, Zarrouki F, Facchinetti P et al. 2017. Efficacy and safety profile of tricyclo-DNA antisense oligonucleotides in Duchenne muscular dystrophy mouse model. Mol. Ther. Nucleic Acids 8:144–57
    [Google Scholar]
  65. 65.  Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL et al. 2017. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377:1723–32
    [Google Scholar]
  66. 66.  Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C et al. 2018. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378:625–35
    [Google Scholar]
  67. 67.  Ionis Pharm 2018. IONIS-HTT Rx (RG6042) top-line data demonstrate significant reductions of disease-causing mutant huntingtin protein in people with Huntington's disease Rep., Ionis Pharm Carlsbad, CA: http://ir.ionispharma.com/node/23401/pdf
    [Google Scholar]
  68. 68.  Beigel JH, Voell J, Munoz P, Kumar P, Brooks KM et al. 2018. Safety, tolerability, and pharmacokinetics of radavirsen (AVI-7100), an antisense oligonucleotide targeting influenza a M1/M2 translation. Br. J. Clin. Pharmacol. 84:25–34
    [Google Scholar]
  69. 69.  Lee RC, Feinbaum RL, Ambros V 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. . Cell 75:843–54
    [Google Scholar]
  70. 70.  Wightman B, Ha I, Ruvkun G 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–62
    [Google Scholar]
  71. 71.  Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C et al. 2014. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56:104–15
    [Google Scholar]
  72. 72.  Hildebrandt-Eriksen E, Bagger Y, Knudsen TB, Petri A, Persson R et al. 2009. A unique therapy for HCV inhibits microRNA-122 in humans and results in HCV RNA suppression in chronically infected chimpanzees: results from primate and first-in-human studies. Hepatology 50:228A
    [Google Scholar]
  73. 73.  Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M et al. 2013. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368:1685–94
    [Google Scholar]
  74. 74.  van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A et al. 2014. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antivir. Res. 111:53–59
    [Google Scholar]
  75. 75.  van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S et al. 2016. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 43:102–13
    [Google Scholar]
  76. 76.  Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK et al. 2017. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig. New Drugs 35:180–88
    [Google Scholar]
  77. 77.  van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ et al. 2017. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18:1386–96
    [Google Scholar]
  78. 78.  Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. . Nature 391:806–11
    [Google Scholar]
  79. 79.  Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–98
    [Google Scholar]
  80. 80.  Braasch DA, Jensen S, Liu Y, Kaur K, Arar K et al. 2003. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–75
    [Google Scholar]
  81. 81.  Garber K 2016. Alnylam terminates revusiran program, stock plunges. Nat. Biotechnol. 34:1213–14
    [Google Scholar]
  82. 82.  Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M et al. 2018. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:11–21
    [Google Scholar]
  83. 83.  Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ et al. 2018. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:22–31
    [Google Scholar]
  84. 84.  Buxbaum JN 2018. Oligonucleotide drugs for transthyretin amyloidosis. N. Engl. J. Med. 379:82–85
    [Google Scholar]
  85. 85.  Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A et al. 2017. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376:41–51
    [Google Scholar]
  86. 86.  Schmidt C 2011. RNAi momentum fizzles as pharma shifts priorities. Nat. Biotechnol. 29:93–94
    [Google Scholar]
  87. 87.  Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM et al. 2015. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N. Engl. J. Med. 372:1987–95
    [Google Scholar]
  88. 88.  Che AJ, Knight TF Jr 2010. Engineering a family of synthetic splicing ribozymes. Nucleic Acids Res 38:2748–55
    [Google Scholar]
  89. 89.  Norris V, Krylov SN, Agarwal PK, White GJ 2017. Synthetic, switchable enzymes. J. Mol. Microbiol. Biotechnol. 27:117–27
    [Google Scholar]
  90. 90.  Etzel M, Morl M 2017. Synthetic riboswitches: from plug and pray toward plug and play. Biochemistry 56:1181–98
    [Google Scholar]
  91. 91.  Hoogsteen K 1963. The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Cryst 16:907–16
    [Google Scholar]
  92. 92.  Dahmen V, Pomplun E, Kriehuber R 2016. Iodine-125-labeled DNA-triplex-forming oligonucleotides reveal increased cyto- and genotoxic effectiveness compared to phosphorus-32. Int. J. Radiat. Biol. 92:679–85
    [Google Scholar]
  93. 93.  Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P et al. 2016. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nat. Commun. 7:13304
    [Google Scholar]
  94. 94.  Ge R, Heinonen JE, Svahn MG, Mohamed AJ, Lundin KE, Smith CI 2007. Zorro locked nucleic acid induces sequence-specific gene silencing. FASEB J 21:1902–14
    [Google Scholar]
  95. 95.  Zaghloul EM, Madsen AS, Moreno PM, Oprea II, El-Andaloussi S et al. 2011. Optimizing anti-gene oligonucleotide ‘Zorro-LNA’ for improved strand invasion into duplex DNA. Nucleic Acids Res 39:1142–54
    [Google Scholar]
  96. 96.  Bergquist H, Rocha CS, Alvarez-Asencio R, Nguyen CH, Rutland MW et al. 2016. Disruption of higher order DNA structures in Friedreich's ataxia (GAA)n repeats by PNA or LNA targeting. PLOS ONE 11:e0165788
    [Google Scholar]
  97. 97.  Zaghloul EM, Gissberg O, Moreno PMD, Siggens L, Hallbrink M et al. 2017. CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Res 45:5153–69
    [Google Scholar]
  98. 98.  Mirkin SM 2007. Expandable DNA repeats and human disease. Nature 447:932–40
    [Google Scholar]
  99. 99.  Zain R, Sun JS 2003. Do natural DNA triple-helical structures occur and function in vivo?. Cell Mol. Life Sci. 60:862–70
    [Google Scholar]
  100. 100.  Iyer RR, Pluciennik A, Napierala M, Wells RD 2015. DNA triplet repeat expansion and mismatch repair. Annu. Rev. Biochem. 84:199–226
    [Google Scholar]
  101. 101.  Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–7
    [Google Scholar]
  102. 102.  Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  103. 103.  Sander JD, Joung JK 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–55
    [Google Scholar]
  104. 104.  Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33:985–89
    [Google Scholar]
  105. 105.  Kelley ML, Strezoska Z, He K, Vermeulen A, Smith A 2016. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing. J. Biotechnol. 233:74–83
    [Google Scholar]
  106. 106.  Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW 2015. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. PNAS 112:E7110–17
    [Google Scholar]
  107. 107.  Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD et al. 2018. Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46:792–803
    [Google Scholar]
  108. 108.  Yin H, Song CQ, Suresh S, Wu Q, Walsh S et al. 2017. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35:1179–87
    [Google Scholar]
  109. 109.  Krieg AM 2012. CpG still rocks! Update on an accidental drug. Nucleic Acid Ther 22:77–89
    [Google Scholar]
  110. 110.  Shirota H, Tross D, Klinman DM 2015. CpG oligonucleotides as cancer vaccine adjuvants. Vaccines 3:390–407
    [Google Scholar]
  111. 111.  Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T et al. 2014. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514:372–75
    [Google Scholar]
  112. 112.  Hornung V, Ellegast J, Kim S, Brzozka K, Jung A et al. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–97
    [Google Scholar]
  113. 113.  Williams BA, Lin L, Lindsay SM, Chaput JC 2009. Evolution of a histone H4-K16 acetyl-specific DNA aptamer. J. Am. Chem. Soc. 131:6330–31
    [Google Scholar]
  114. 114.  Zhang A, Chang D, Zhang Z, Li F, Li W et al. 2017. In vitro selection of DNA aptamers that binds geniposide. Molecules 22:3383
    [Google Scholar]
  115. 115.  Pan Q, Wang Q, Sun X, Xia X, Wu S et al. 2014. Aptamer against mannose-capped lipoarabinomannan inhibits virulent Mycobacterium tuberculosis infection in mice and rhesus monkeys. Mol. Ther. 22:940–51
    [Google Scholar]
  116. 116.  Jaffrey SR 2018. RNA-based fluorescent biosensors for detecting metabolites in vitro and in living cells. Adv. Pharmacol. 82:187–203
    [Google Scholar]
  117. 117.  Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR 2004. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med 351:2805–16
    [Google Scholar]
  118. 118.  Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR et al. 2004. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat. Biotechnol. 22:1423–28
    [Google Scholar]
  119. 119.  Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL et al. 2002. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94
    [Google Scholar]
  120. 120.  Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z et al. 2016. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet 387:349–56
    [Google Scholar]
  121. 121.  Ludwig H, Weisel K, Petrucci MT, Leleu X, Cafro AM et al. 2017. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a phase IIa study. Leukemia 31:997–1000
    [Google Scholar]
  122. 122.  Vater A, Sahlmann J, Kroger N, Zollner S, Lioznov M et al. 2013. Hematopoietic stem and progenitor cell mobilization in mice and humans by a first-in-class mirror-image oligonucleotide inhibitor of CXCL12. Clin. Pharmacol. Ther. 94:150–57
    [Google Scholar]
  123. 123.  Haraldsson B, Nystrom J, Deen WM 2008. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88:451–87
    [Google Scholar]
  124. 124.  Volk DE, Lokesh GLR 2017. Development of phosphorothioate DNA and DNA thioaptamers. Biomedicines 5:341
    [Google Scholar]
  125. 125.  Hecker M, Wagner AH 2017. Transcription factor decoy technology: a therapeutic update. Biochem. Pharmacol. 144:29–34
    [Google Scholar]
  126. 126.  Mann MJ, Whittemore AD, Donaldson MC, Belkin M, Conte MS et al. 1999. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT single-centre, randomised, controlled trial. Lancet 354:1493–98
    [Google Scholar]
  127. 127.  Cogoi S, Zorzet S, Rapozzi V, Geci I, Pedersen EB, Xodo LE 2013. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res 41:4049–64
    [Google Scholar]
  128. 128.  Dirin M, Winkler J 2013. Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides. Expert Opin. Biol. Ther. 13:875–88
    [Google Scholar]
  129. 129.  Eckstein F 2000. Phosphorothioate oligodeoxynucleotides: What is their origin and what is unique about them?. Antisense Nucleic Acid Drug Dev 10:117–21
    [Google Scholar]
  130. 130.  Stawinski J, Stromberg R, Zain R 1992. Stereospecific oxidation and oxidative coupling of H-phosphonate and H-phosphonothioate diesters. Tetrahedron Lett 33:3185–88
    [Google Scholar]
  131. 131.  Almer H, Stawinski J, Stromberg R 1996. Solid support synthesis of all-Rp-oligo(ribonucleoside phosphorothioate)s. Nucleic Acids Res 24:3811–20
    [Google Scholar]
  132. 132.  Stec WJ, Grajkowski A, Koziolkiewicz M, Uznanski B 1991. Novel route to oligo(deoxyribonucleoside phosphorothioates). Stereocontrolled synthesis of P-chiral oligo(deoxyribonucleoside phosphoro-thioates). Nucleic Acids Res 19:5883–88
    [Google Scholar]
  133. 133.  Knouse KW, deGruyter JN, Schmidt MA, Zheng B, Vantourout JC et al. 2018. Unlocking P(V): reagents for chiral phosphorothioate synthesis. Science 361:1234–38
    [Google Scholar]
  134. 134.  Disterer P 2018. Phosphorothioate stereochemistry in therapeutic oligonucleotides Rep., Oligonucleotide Ther. Soc San Diego, CA: https://www.oligotherapeutics.org/phosphorothioate-stereochemistry-oligonucleotides/
    [Google Scholar]
  135. 135.  Geary RS, Watanabe TA, Truong L, Freier S, Lesnik EA et al. 2001. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J. Pharmacol. Exp. Ther. 296:890–97
    [Google Scholar]
  136. 136.  Yu RZ, Kim TW, Hong A, Watanabe TA, Gaus HJ, Geary RS 2007. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab. Dispos. 35:460–68
    [Google Scholar]
  137. 137.  Amantana A, Iversen PL 2005. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr. Opin. Pharmacol. 5:550–55
    [Google Scholar]
  138. 138.  Tseng YC, Mozumdar S, Huang L 2009. Lipid-based systemic delivery of siRNA. Adv. Drug Deliv. Rev. 61:721–31
    [Google Scholar]
  139. 139.  Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K et al. 2017. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res 45:10969–77
    [Google Scholar]
  140. 140.  Monia BP, Johnston JF, Sasmor H, Cummins LL 1996. Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras. J. Biol. . Chem 271:14533–40
    [Google Scholar]
  141. 141.  Cummins LL, Owens SR, Risen LM, Lesnik EA, Freier SM et al. 1995. Characterization of fully 2′-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 23:2019–24
    [Google Scholar]
  142. 142.  Renneberg D, Bouliong E, Reber U, Schümperli D, Leumann CJ 2002. Antisense properties of tricyclo-DNA. Nucleic Acids Res. 30:2751–57
    [Google Scholar]
  143. 143.  Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA 2013. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol. Ther. Nucleic Acids 2:e117
    [Google Scholar]
  144. 144.  Mukherjee A, Vasquez KM 2011. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 93:1197–208
    [Google Scholar]
  145. 145.  Feng JY 2018. Addressing the selectivity and toxicity of antiviral nucleosides. Antivir. Chem. Chemother. 26:1–8
    [Google Scholar]
  146. 146.  Henry SP, Seguin R, Cavagnaro J, Berman C, Tepper J, Kornbrust D 2016. Considerations for the characterization and interpretation of results related to alternative complement activation in monkeys associated with oligonucleotide-based therapeutics. Nucleic Acid Ther 26:210–15
    [Google Scholar]
  147. 147.  Crooke ST, Baker BF, Witztum JL, Kwoh TJ, Pham NC et al. 2017. The effects of 2′-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid Ther 27:121–29
    [Google Scholar]
  148. 148.  Narayanan P, Shen L, Curtis BR, Bourdon MA, Nolan JP et al. 2018. Investigation into the mechanism(s) that leads to platelet decreases in cynomolgus monkeys during administration of ISIS 104838, a 2′-MOE-modified antisense oligonucleotide. Toxicol Sci 164:613–26
    [Google Scholar]
  149. 149.  Krieg AM 2006. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5:471–84
    [Google Scholar]
  150. 150.  Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH, Crooke ST 2018. Acute hepatotoxicity of 2′ fluoro-modified 5–10–5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res 46:2204–17
    [Google Scholar]
  151. 151.  Liang XH, Sun H, Shen W, Crooke ST 2015. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res 43:2927–45
    [Google Scholar]
  152. 152.  Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T et al. 2016. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 44:2093–109
    [Google Scholar]
  153. 153.  Hagedorn PH, Yakimov V, Ottosen S, Kammler S, Nielsen NF et al. 2013. Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern. Nucleic Acid Ther 23:302–10
    [Google Scholar]
  154. 154.  Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K et al. 2006. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–41
    [Google Scholar]
  155. 155.  Valdmanis PN, Gu S, Chu K, Jin L, Zhang F et al. 2016. RNA interference-induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. Nat. Med. 22:557–62
    [Google Scholar]
  156. 156.  Crooke ST, Wang S, Vickers TA, Shen W, Liang XH 2017. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol. 35:230–37
    [Google Scholar]
  157. 157.  Kabat EA, Landow H, Moore DH 1942. Electrophoretic patterns of concentrated cerebrospinal fluid. Proc. Soc. Exp. Biol. Med. 49:260–63
    [Google Scholar]
  158. 158.  Khorkova O, Wahlestedt C 2017. Oligonucleotide therapies for disorders of the nervous system. Nat. Biotechnol. 35:249–63
    [Google Scholar]
  159. 159.  Nikan M, Osborn MF, Coles AH, Godinho BM, Hall LM et al. 2016. Docosahexaenoic acid conjugation enhances distribution and safety of siRNA upon local administration in mouse brain. Mol. Ther. Nucleic Acids 5:e344
    [Google Scholar]
  160. 160.  Bestas B, Moreno PM, Blomberg KE, Mohammad DK, Saleh AF et al. 2014. Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model. J. Clin. Investig. 124:4067–81
    [Google Scholar]
  161. 161.  Lehto T, Castillo Alvarez A, Gauck S, Gait MJ, Coursindel T et al. 2014. Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Res 42:3207–17
    [Google Scholar]
  162. 162.  Stockert RJ 1995. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol. Rev. 75:591–609
    [Google Scholar]
  163. 163.  Westerlind U, Westman J, Tornquist E, Smith CI, Oscarson S et al. 2004. Ligands of the asialoglycoprotein receptor for targeted gene delivery, part 1: synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine. Glycoconj. J. 21:227–41
    [Google Scholar]
  164. 164.  Miller CM, Tanowitz M, Donner AJ, Prakash TP, Swayze EE et al. 2018. Receptor-mediated uptake of phosphorothioate antisense oligonucleotides in different cell types of the liver. Nucleic Acid Ther 28:3119–27
    [Google Scholar]
  165. 165.  Kariko K, Buckstein M, Ni H, Weissman D 2005. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–75
    [Google Scholar]
  166. 166.  Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C 2006. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 36:3256–67
    [Google Scholar]
  167. 167.  Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I 2007. 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol. Ther. 15:1663–69
    [Google Scholar]
  168. 168.  Eberle F, Giessler K, Deck C, Heeg K, Peter M et al. 2008. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J. Immunol. 180:3229–37
    [Google Scholar]
  169. 169.  Schlee M, Hartmann G 2016. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16:566–80
    [Google Scholar]
  170. 170.  Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–45
    [Google Scholar]
  171. 171.  Sioud M 2006. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur. J. Immunol. 36:1222–30
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021050
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021050
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error