1932

Abstract

Adverse drug reactions (ADRs) are a significant health care burden. Immune-mediated adverse drug reactions (IM-ADRs) are responsible for one-fifth of ADRs but contribute a disproportionately high amount of that burden due to their severity. Variation in human leukocyte antigen () genes has emerged as a potential preprescription screening strategy for the prevention of previously unpredictable IM-ADRs. Immunopharmacogenomics combines the disciplines of immunogenomics and pharmacogenomics and focuses on the effects of immune-specific variation on drug disposition and IM-ADRs. In this review, we present the latest evidence for HLA associations with IM-ADRs, ongoing research into biological mechanisms of IM-ADRs, and the translation of clinical actionable biomarkers for IM-ADRs, with a focus on T cell–mediated ADRs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021818
2019-01-06
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021818.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021818&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Johnson JA, Bootman JL 1995. Drug-related morbidity and mortality: a cost-of-illness model. Arch. Intern. Med. 155:1949–56
    [Google Scholar]
  2. 2.  Bond CA, Raehl CL 2006. Adverse drug reactions in United States hospitals. Pharmacotherapy 26:601–8
    [Google Scholar]
  3. 3.  Lazarou J, Pomeranz BH, Corey PN 1998. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279:1200–5
    [Google Scholar]
  4. 4.  Pavlos R, Mallal S, Ostrov D, Buus S, Metushi I et al. 2015. T cell-mediated hypersensitivity reactions to drugs. Annu. Rev. Med. 66:439–54
    [Google Scholar]
  5. 5.  Redwood AJ, Pavlos RK, White KD, Phillips EJ 2018. HLAs: key regulators of T-cell-mediated drug hypersensitivity. HLA 91:3–16
    [Google Scholar]
  6. 6.  Karnes JH, Bastarache L, Shaffer CM, Gaudieri S, Xu Y et al. 2017. Phenome-wide scanning identifies multiple diseases and disease severity phenotypes associated with HLA variants. Sci. Transl. Med. 9:389eaai8708
    [Google Scholar]
  7. 7.  Nakamura Y 2015. The current and future applications of immunopharmacogenomics. Clin. Adv. Hematol. Oncol. 13:815–17
    [Google Scholar]
  8. 8.  McNeil BD, Pundir P, Meeker S, Han L, Undem BJ et al. 2015. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519:237–41
    [Google Scholar]
  9. 9.  Khan DA 2012. Cutaneous drug reactions. J. Allergy Clin. Immunol. 130:1225–e6
    [Google Scholar]
  10. 10.  Pirmohamed M, Aithal GP, Behr E, Daly A, Roden D 2011. The Phenotype Standardization Project: improving pharmacogenetic studies of serious adverse drug reactions. Clin. Pharmacol. Ther. 89:784–85
    [Google Scholar]
  11. 11.  Sun J, Liu J, Gong QL, Ding GZ, Ma LW et al. 2014. Stevens-Johnson syndrome and toxic epidermal necrolysis: a multi-aspect comparative 7-year study from the People's Republic of China. Drug Des. Devel. Ther. 8:2539–47
    [Google Scholar]
  12. 12.  Su P, Aw CW 2014. Severe cutaneous adverse reactions in a local hospital setting: a 5-year retrospective study. Int. J. Dermatol. 53:1339–45
    [Google Scholar]
  13. 13.  Lehloenya RJ, Kgokolo M 2014. Clinical presentations of severe cutaneous drug reactions in HIV-infected Africans. Dermatol. Clin. 32:227–35
    [Google Scholar]
  14. 14.  Pavlos R, Mallal S, Ostrov D, Pompeu Y, Phillips E 2014. Fever, rash, and systemic symptoms: understanding the role of virus and HLA in severe cutaneous drug allergy. J. Allergy Clin. Immunol. Pract. 2:21–33
    [Google Scholar]
  15. 15.  Roujeau JC, Stern RS 1994. Severe adverse cutaneous reactions to drugs. N. Engl. J. Med. 331:1272–85
    [Google Scholar]
  16. 16.  Zimmermann S, Sekula P, Venhoff M, Motschall E, Knaus J et al. 2017. Systemic immunomodulating therapies for Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol 153:514–22
    [Google Scholar]
  17. 17.  Mittmann N, Knowles SR, Koo M, Shear NH, Rachlis A, Rourke SB 2012. Incidence of toxic epidermal necrolysis and Stevens-Johnson syndrome in an HIV cohort: an observational, retrospective case series study. Am. J. Clin. Dermatol. 13:49–54
    [Google Scholar]
  18. 18.  Bastuji-Garin S, Fouchard N, Bertocchi M, Roujeau JC, Revuz J, Wolkenstein P 2000. SCORTEN: a severity-of-illness score for toxic epidermal necrolysis. J. Investig. Dermatol. 115:149–53
    [Google Scholar]
  19. 19.  White KD, Abe R, Ardern-Jones M, Beachkofsky T, Bouchard C et al. 2018. SJS/TEN 2017: building multidisciplinary networks to drive science and translation. J. Allergy Clin. Immunol. Pract. 6:38–69
    [Google Scholar]
  20. 20.  Yacoub MR, Berti A, Campochiaro C, Tombetti E, Ramirez GA et al. 2016. Drug induced exfoliative dermatitis: state of the art. Clin. Mol. Allergy 14:9
    [Google Scholar]
  21. 21.  Su SC, Hung SI, Fan WL, Dao RL, Chung WH 2016. Severe cutaneous adverse reactions: the pharmacogenomics from research to clinical implementation. Int. J. Mol. Sci. 17:111890
    [Google Scholar]
  22. 22.  Chung WH, Hung SI, Yang JY, Su SC, Huang SP et al. 2008. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat. Med. 14:1343–50
    [Google Scholar]
  23. 23.  Wang CW, Yang LY, Chen CB, Ho HC, Hung SI et al. 2018. Randomized, controlled trial of TNF-α antagonist in CTL-mediated severe cutaneous adverse reactions. J. Clin. Investig. 128:3985–96
    [Google Scholar]
  24. 24.  Kirchhof MG, Miliszewski MA, Sikora S, Papp A, Dutz JP 2014. Retrospective review of Stevens-Johnson syndrome/toxic epidermal necrolysis treatment comparing intravenous immunoglobulin with cyclosporine. J. Am. Acad. Dermatol. 71:941–47
    [Google Scholar]
  25. 25.  Gonzalez-Herrada C, Rodriguez-Martin S, Cachafeiro L, Lerma V, Gonzalez O et al. 2017. Cyclosporine use in epidermal necrolysis is associated with an important mortality reduction: evidence from three different approaches. J. Investig. Dermatol. 137:2092–100
    [Google Scholar]
  26. 26.  Chen YC, Chiu HC, Chu CY 2010. Drug reaction with eosinophilia and systemic symptoms: a retrospective study of 60 cases. Arch. Dermatol. 146:1373–79
    [Google Scholar]
  27. 27.  Shiohara T, Kano Y, Takahashi R, Ishida T, Mizukawa Y 2012. Drug-induced hypersensitivity syndrome: recent advances in the diagnosis, pathogenesis and management. Chem. Immunol. Allergy 97:122–38
    [Google Scholar]
  28. 28.  Minegaki Y, Higashida Y, Ogawa M, Miyachi Y, Fujii H, Kabashima K 2013. Drug-induced hypersensitivity syndrome complicated with concurrent fulminant type 1 diabetes mellitus and Hashimoto's thyroiditis. Int. J. Dermatol. 52:355–57
    [Google Scholar]
  29. 29.  Cutrell AG, Hernandez JE, Fleming JW, Edwards MT, Moore MA et al. 2004. Updated clinical risk factor analysis of suspected hypersensitivity reactions to abacavir. Ann. Pharmacother. 38:2171–72
    [Google Scholar]
  30. 30.  Ostapowicz G, Fontana RJ, Schiodt FV, Larson A, Davern TJ et al. 2002. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 137:947–54
    [Google Scholar]
  31. 31.  Russo MW, Galanko JA, Shrestha R, Fried MW, Watkins P 2004. Liver transplantation for acute liver failure from drug induced liver injury in the United States. Liver Transpl 10:1018–23
    [Google Scholar]
  32. 32.  Chen PL, Shih SR, Wang PW, Lin YC, Chu CC et al. 2015. Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study. Nat. Commun. 6:7633
    [Google Scholar]
  33. 33.  Moreau JF, Watson RS, Hartman ME, Linde-Zwirble WT, Ferris LK 2014. Epidemiology of ophthalmologic disease associated with erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis in hospitalized children in the United States. Pediatr. Dermatol. 31:163–68
    [Google Scholar]
  34. 34.  Sokumbi O, Wetter DA 2012. Clinical features, diagnosis, and treatment of erythema multiforme: a review for the practicing dermatologist. Int. J. Dermatol. 51:889–902
    [Google Scholar]
  35. 35.  Finkelstein Y, Soon GS, Acuna P, George M, Pope E et al. 2011. Recurrence and outcomes of Stevens-Johnson syndrome and toxic epidermal necrolysis in children. Pediatrics 128:723–28
    [Google Scholar]
  36. 36.  Olson D, Abbott J, Lin C, Prok L, Dominguez SR 2017. Characterization of children with recurrent episodes of Stevens Johnson syndrome. J. Pediatr. Infect. Dis. Soc. 6:e140–43
    [Google Scholar]
  37. 37.  Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F et al. 2016. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54:139–48
    [Google Scholar]
  38. 38.  Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J et al. 2016. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375:1749–55
    [Google Scholar]
  39. 39.  Sanlorenzo M, Vujic I, Daud A, Algazi A, Gubens M et al. 2015. Pembrolizumab cutaneous adverse events and their association with disease progression. JAMA Dermatol 151:1206–12
    [Google Scholar]
  40. 40.  Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SG 2013. The IMGT/HLA database. Nucleic Acids Res 41:D1222–27
    [Google Scholar]
  41. 41.  Nepom GT, Erlich H 1991. MHC class-II molecules and autoimmunity. Annu. Rev. Immunol. 9:493–525
    [Google Scholar]
  42. 42.  MacArthur J, Bowler E, Cerezo M, Gil L, Hall P et al. 2017. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D896–901
    [Google Scholar]
  43. 43.  Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I et al. 2009. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41:816–19
    [Google Scholar]
  44. 44.  Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF et al. 2007. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 8:186–95
    [Google Scholar]
  45. 45.  Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL et al. 2002. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359:1121–22
    [Google Scholar]
  46. 46.  Mallal S, Nolan D, Witt C, Masel G, Martin AM et al. 2002. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359:727–32
    [Google Scholar]
  47. 47.  Mallal S, Phillips E, Carosi G, Molina JM, Workman C et al. 2008. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 358:568–79
    [Google Scholar]
  48. 48.  Martin MA, Klein TE, Dong BJ, Pirmohamed M, Haas DW, Kroetz DL 2012. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clin. Pharmacol. Ther. 91:734–38
    [Google Scholar]
  49. 49.  Churchill D, Waters L, Ahmed N, Angus B, Boffito M et al. 2016. British HIV Association guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy 2015. HIV Med 17:Suppl. 4s2–104
    [Google Scholar]
  50. 50.  Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC et al. 2004. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428:486
    [Google Scholar]
  51. 51.  Phillips EJ, Chung WH, Mockenhaupt M, Roujeau JC, Mallal SA 2011. Drug hypersensitivity: pharmacogenetics and clinical syndromes. J. Allergy Clin. Immunol. 127:S60–66
    [Google Scholar]
  52. 52.  Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M et al. 2010. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 51:2461–65
    [Google Scholar]
  53. 53.  Hung SI, Chung WH, Liu ZS, Chen CH, Hsih MS et al. 2010. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11:349–56
    [Google Scholar]
  54. 54.  McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D et al. 2011. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364:1134–43
    [Google Scholar]
  55. 55.  Genin E, Chen DP, Hung SI, Sekula P, Schumacher M et al. 2014. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J 14:281–88
    [Google Scholar]
  56. 56.  Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M et al. 2011. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum. Mol. Genet. 20:1034–41
    [Google Scholar]
  57. 57.  Phillips EJ, Sukasem C, Whirl-Carrillo M, Muller DJ, Dunnenberger HM et al. 2018. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin. Pharmacol. Ther. 103:4574–81
    [Google Scholar]
  58. 58.  Hung SI, Chung WH, Liou LB, Chu CC, Lin M et al. 2005. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. PNAS 102:4134–39
    [Google Scholar]
  59. 59.  Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin. Pharmacol. Ther. 93:153–58
    [Google Scholar]
  60. 60.  Carroll MB, Smith DM, Shaak TL 2017. Genomic sequencing of uric acid metabolizing and clearing genes in relationship to xanthine oxidase inhibitor dose. Rheumatol. Int. 37:445–53
    [Google Scholar]
  61. 61.  Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N 2011. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med. Genet. 12:118
    [Google Scholar]
  62. 62.  Hautekeete ML, Horsmans Y, van Waeyenberge C, Demanet C, Henrion J et al. 1999. HLA association of amoxicillin-clavulanate–induced hepatitis. Gastroenterology 117:1181–86
    [Google Scholar]
  63. 63.  O'Donohue J, Oien KA, Donaldson P, Underhill J, Clare M et al. 2000. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 47:717–20
    [Google Scholar]
  64. 64.  Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP et al. 2011. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141:338–47
    [Google Scholar]
  65. 65.  Cheung CL, Sing CW, Tang CSM, Cheng VKF, Pirmohamed M et al. 2016. HLA-B*38:02:01 predicts carbimazole/methimazole-induced agranulocytosis. Clin. Pharmacol. Ther. 99:555–61
    [Google Scholar]
  66. 66.  He Y, Zheng J, Zhang Q, Hou P, Zhu F et al. 2017. Association of HLA-B and HLA-DRB1 polymorphisms with antithyroid drug-induced agranulocytosis in a Han population from northern China. Sci. Rep. 7:11950
    [Google Scholar]
  67. 67.  Zhang F-R, Liu H, Irwanto A, Fu X-A, Li Y et al. 2013. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N. Engl. J. Med. 369:1620–28
    [Google Scholar]
  68. 68.  Chen WT, Wang CW, Lu CW, Chen CB, Lee HE et al. 2018. The function of HLA-B*13:01 involved in the pathomechanism of dapsone-induced severe cutaneous adverse reactions. J. Investig. Dermatol. 138:1546–54
    [Google Scholar]
  69. 69.  Peter JG, Lehloenya R, Dlamini S, Risma K, White KD et al. 2017. Severe delayed cutaneous and systemic reactions to drugs: a global perspective on the science and art of current practice. J. Allergy Clin. Immunol. Pract. 5:547–63
    [Google Scholar]
  70. 70.  Tang S, Xie M, Cao N, Ding S 2016. Patient-specific induced pluripotent stem cells for disease modeling and phenotypic drug discovery. J. Med. Chem. 59:2–15
    [Google Scholar]
  71. 71.  Gonzalez-de-Olano D, Morgado JM, Juarez-Guerrero R, Sanchez-Munoz L, Letellez-Fernandez J et al. 2016. Positive basophil activation test following anaphylaxis to pertuzumab and successful treatment with rapid desensitization. J. Allergy Clin. Immunol. Pract. 4:338–40
    [Google Scholar]
  72. 72.  Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S et al. 2014. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin. Pharmacol. Ther. 96:542–48
    [Google Scholar]
  73. 73.  Chung WH, Chang WC, Lee YS, Wu YY, Yang CH et al. 2014. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA 312:525–34
    [Google Scholar]
  74. 74.  Yuan J, Guo S, Hall D, Cammett AM, Jayadev S et al. 2011. Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS 25:1271–80
    [Google Scholar]
  75. 75.  Carr DF, Bourgeois S, Chaponda M, Takeshita LY, Morris AP et al. 2017. Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population. J. Antimicrob. Chemother. 72:1152–62
    [Google Scholar]
  76. 76.  Schneider-Hohendorf T, Gorlich D, Savola P, Kelkka T, Mustjoki S et al. 2018. Sex bias in MHC I-associated shaping of the adaptive immune system. PNAS 115:92168–73
    [Google Scholar]
  77. 77.  Fan WL, Shiao MS, Hui RC, Su SC, Wang CW et al. 2017. HLA association with drug-induced adverse reactions. J. Immunol. Res. 2017:3186328
    [Google Scholar]
  78. 78.  Leslie S, Donnelly P, McVean G 2008. A statistical method for predicting classical HLA alleles from SNP data. Am. J. Hum. Genet. 82:48–56
    [Google Scholar]
  79. 79.  Karnes JH, Shaffer CM, Bastarache L, Gaudieri S, Glazer AM et al. 2017. Comparison of HLA allelic imputation programs. PLOS ONE 12:e0172444
    [Google Scholar]
  80. 80.  Pichler WJ 2003. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 139:683–93
    [Google Scholar]
  81. 81.  Pichler WJ, Beeler A, Keller M, Lerch M, Posadas S et al. 2006. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol. Int. 55:17–25
    [Google Scholar]
  82. 82.  Ostrov DA, Grant BJ, Pompeu YA, Sidney J, Harndahl M et al. 2012. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. PNAS 109:9959–64
    [Google Scholar]
  83. 83.  Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z et al. 2012. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486:554–58
    [Google Scholar]
  84. 84.  Nassif A, Bensussan A, Boumsell L, Deniaud A, Moslehi H et al. 2004. Toxic epidermal necrolysis: Effector cells are drug-specific cytotoxic T cells. J. Allergy Clin. Immunol. 114:1209–15
    [Google Scholar]
  85. 85.  Leyva L, Torres MJ, Posadas S, Blanca M, Besso G et al. 2000. Anticonvulsant-induced toxic epidermal necrolysis: monitoring the immunologic response. J. Allergy Clin. Immunol. 105:157–65
    [Google Scholar]
  86. 86.  Garcia-Doval I, LeCleach L, Bocquet H, Otero XL, Roujeau JC 2000. Toxic epidermal necrolysis and Stevens-Johnson syndrome: Does early withdrawal of causative drugs decrease the risk of death?. Arch. Dermatol. 136:3323–27
    [Google Scholar]
  87. 87.  Chessman D, Kostenko L, Lethborg T, Purcell AW, Williamson NA et al. 2008. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28:822–32
    [Google Scholar]
  88. 88.  Naisbitt DJ, Farrell J, Wong G, Depta JP, Dodd CC et al. 2003. Characterization of drug-specific T cells in lamotrigine hypersensitivity. J. Allergy Clin. Immunol. 111:1393–403
    [Google Scholar]
  89. 89.  Morito H, Ogawa K, Fukumoto T, Kobayashi N, Morii T et al. 2014. Increased ratio of FoxP3+ regulatory T cells/CD3+ T cells in skin lesions in drug-induced hypersensitivity syndrome/drug rash with eosinophilia and systemic symptoms. Clin. Exp. Dermatol. 39:284–91
    [Google Scholar]
  90. 90.  Shiohara T, Ushigome Y, Kano Y, Takahashi R 2015. Crucial role of viral reactivation in the development of severe drug eruptions: a comprehensive review. Clin. Rev. Allergy Immunol. 49:192–202
    [Google Scholar]
  91. 91.  Pavlos R, White KD, Wanjalla C, Mallal SA, Phillips EJ 2017. Severe delayed drug reactions: role of genetics and viral infections. Immunol. Allergy Clin. North Am. 37:785–815
    [Google Scholar]
  92. 92.  Cookson H, Creamer D, Walsh S 2013. Thyroid dysfunction in drug reaction with eosinophilia and systemic symptoms (DRESS): an unusual manifestation of systemic drug hypersensitivity. Br. J. Dermatol. 168:1130–32
    [Google Scholar]
  93. 93.  Sultanova A, Cistjakovs M, Gravelsina S, Chapenko S, Roga S et al. 2017. Association of active human herpesvirus-6 (HHV-6) infection with autoimmune thyroid gland diseases. Clin. Microbiol. Infect. 23:150.e1–50.e5
    [Google Scholar]
  94. 94.  Welsh RM, Che JW, Brehm MA, Selin LK 2010. Heterologous immunity between viruses. Immunol. Rev. 235:244–66
    [Google Scholar]
  95. 95.  Lucas A, Lucas M, Strhyn A, Keane NM, McKinnon E et al. 2015. Abacavir-reactive memory T cells are present in drug naive individuals. PLOS ONE 10:e0117160
    [Google Scholar]
  96. 96.  Pichler W, Yawalkar N, Schmid S, Helbling A 2002. Pathogenesis of drug-induced exanthems. Allergy 57:884–93
    [Google Scholar]
  97. 97.  Wei CY, Chung WH, Huang HW, Chen YT, Hung SI 2012. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J. Allergy Clin. Immunol. 129:1562–69.e5
    [Google Scholar]
  98. 98.  Yang CW, Hung SI, Juo CG, Lin YP, Fang WH et al. 2007. HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens-Johnson syndrome. J. Allergy Clin. Immunol. 120:870–77
    [Google Scholar]
  99. 99.  Pavlos R, McKinnon EJ, Ostrov DA, Peters B, Buus S et al. 2017. Shared peptide binding of HLA Class I and II alleles associate with cutaneous nevirapine hypersensitivity and identify novel risk alleles. Sci. Rep. 7:8653
    [Google Scholar]
  100. 100.  Rudolph MG, Stanfield RL, Wilson IA 2006. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24:419–66
    [Google Scholar]
  101. 101.  Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ et al. 2009. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114:4099–107
    [Google Scholar]
  102. 102.  Cohen GB, Islam SA, Noble MS, Lau C, Brander C et al. 2002. Clonotype tracking of TCR repertoires during chronic virus infections. Virology 304:474–84
    [Google Scholar]
  103. 103.  Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ et al. 2008. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358:2698–703
    [Google Scholar]
  104. 104.  Ko TM, Chung WH, Wei CY, Shih HY, Chen JK et al. 2011. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J. Allergy Clin. Immunol. 128:1266–76.e11
    [Google Scholar]
  105. 105.  Ko TM, Chen YT 2012. T-cell receptor and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: understanding a hypersensitivity reaction. Expert Rev. Clin. Immunol. 8:467–77
    [Google Scholar]
  106. 106.  Chung WH, Pan RY, Chu MT, Chin SW, Huang YL et al. 2015. Oxypurinol-specific T cells possess preferential TCR clonotypes and express granulysin in allopurinol-induced severe cutaneous adverse reactions. J. Investig. Dermatol. 135:2237–48
    [Google Scholar]
  107. 107.  Muraro A, Lemanske RF Jr, Castells M, Torres MJ, Khan D et al. 2017. Precision medicine in allergic disease—food allergy, drug allergy, and anaphylaxis—PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology. Allergy 72:1006–21
    [Google Scholar]
  108. 108.  Empedrad R, Darter AL, Earl HS, Gruchalla RS 2003. Nonirritating intradermal skin test concentrations for commonly prescribed antibiotics. J. Allergy Clin. Immunol. 112:629–30
    [Google Scholar]
  109. 109.  Leckband SG, Kelsoe JR, Dunnenberger HM, George AL Jr, Tran E et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and carbamazepine dosing. Clin. Pharmacol. Ther. 94:324–28
    [Google Scholar]
  110. 110.  Saag M, Balu R, Phillips E, Brachman P, Martorell C et al. 2008. High sensitivity of human leukocyte antigen-B*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin. Infect. Dis. 46:1111–18
    [Google Scholar]
  111. 111.  Gonzalez-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH et al. 2015. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res 43:D784–88
    [Google Scholar]
  112. 112.  Yip VL, Alfirevic A, Pirmohamed M 2015. Genetics of immune-mediated adverse drug reactions: a comprehensive and clinical review. Clin. Rev. Allergy Immunol. 48:165–75
    [Google Scholar]
  113. 113.  Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK et al. 2012. 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. (Hoboken) 64:1431–46
    [Google Scholar]
  114. 114.  Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF et al. 2011. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364:1126–33
    [Google Scholar]
  115. 115.  Chen Z, Liew D, Kwan P 2014. Effects of a HLA-B*15:02 screening policy on antiepileptic drug use and severe skin reactions. Neurology 83:2077–84
    [Google Scholar]
  116. 116.  Ko TM, Tsai CY, Chen SY, Chen KS, Yu KH et al. 2015. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study. BMJ 351:h4848
    [Google Scholar]
  117. 117.  Man CBL, Kwan P, Baum L, Yu E, Lau KM et al. 2007. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48:1015–18
    [Google Scholar]
  118. 118.  Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T et al. 2008. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 49:2087–91
    [Google Scholar]
  119. 119.  Chang C-C, Too C-L, Murad S, Hussein SH 2011. Association of HLA-B*1502 allele with carbamazepine-induced toxic epidermal necrolysis and Stevens–Johnson syndrome in the multi-ethnic Malaysian population. Int. J. Dermatol. 50:221–24
    [Google Scholar]
  120. 120.  Wang Q, Zhou J-Q, Zhou L-M, Chen Z-Y, Fang Z-Y et al. 2011. Association between HLA-B*1502 allele and carbamazepine-induced severe cutaneous adverse reactions in Han people of southern China mainland. Seizure 20:446–48
    [Google Scholar]
  121. 121.  Ferrell PB Jr, McLeod HL 2008. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 9:1543–46
    [Google Scholar]
  122. 122.  Kim S-H, Lee KW, Song W-J, Kim S-H, Jee Y-K et al. 2011. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res 97:190–97
    [Google Scholar]
  123. 123.  Mehta TY, Prajapati LM, Mittal B, Joshi CG, Sheth JJ et al. 2009. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J. Dermatol. Venereol. Leprol. 75:579–82
    [Google Scholar]
  124. 124.  Alfirevic A, Jorgensen AL, Williamson PR, Chadwick DW, Park BK, Pirmohamed M 2006. HLA-B locus in Caucasian patients with carbamazepine hypersensitivity. Pharmacogenomics 7:813–18
    [Google Scholar]
  125. 125.  Lu N, Rai SK, Terkeltaub R, Kim SC, Menendez ME, Choi HK 2016. Racial disparities in the risk of Stevens-Johnson Syndrome and toxic epidermal necrolysis as urate-lowering drug adverse events in the United States. Semin. Arthritis Rheum. 46:253–58
    [Google Scholar]
  126. 126.  Jutkowitz E, Dubreuil M, Lu N, Kuntz KM, Choi HK 2017. The cost-effectiveness of HLA-B*5801 screening to guide initial urate-lowering therapy for gout in the United States. Semin. Arthritis Rheum. 46:594–600
    [Google Scholar]
  127. 127.  Thomas M, Hopkins C, Duffy E, Lee D, Loulergue P et al. 2017. Association of the HLA-B*53:01 allele with drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome during treatment of HIV infection with raltegravir. Clin. Infect. Dis. 64:1198–203
    [Google Scholar]
  128. 128.  Norman PJ, Hollenbach JA, Nemat-Gorgani N, Guethlein LA, Hilton HG et al. 2013. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLOS Genet 9:e1003938
    [Google Scholar]
  129. 129.  Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM et al. 2016. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin. Pharmacol. Ther. 99:36–37
    [Google Scholar]
  130. 130.  Mrazek DA, Lerman C 2011. Facilitating clinical implementation of pharmacogenomics. JAMA 306:304–5
    [Google Scholar]
  131. 131.  Karnes JH, Van Driest S, Bowton EA, Weeke PE, Mosley JD et al. 2014. Using systems approaches to address challenges for clinical implementation of pharmacogenomics. Wiley Interdiscip Rev. Syst. Biol. Med. 6:125–35
    [Google Scholar]
  132. 132.  Johnson JA 2013. Pharmacogenetics in clinical practice: How far have we come and where are we going?. Pharmacogenomics 14:835–43
    [Google Scholar]
  133. 133.  Khoury MJ, Coates RJ, Evans JP 2010. Evidence-based classification of recommendations on use of genomic tests in clinical practice: dealing with insufficient evidence. Genet. Med. 12:680–83
    [Google Scholar]
  134. 134.  Dong D, Sung C, Finkelstein EA 2012. Cost-effectiveness of HLA-B*1502 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology 79:1259–67
    [Google Scholar]
  135. 135.  Dong D, Tan-Koi WC, Teng GG, Finkelstein E, Sung C 2015. Cost-effectiveness analysis of genotyping for HLA-B*5801 and an enhanced safety program in gout patients starting allopurinol in Singapore. Pharmacogenomics 16:1781–93
    [Google Scholar]
  136. 136.  Toh DS, Tan LL, Aw DC, Pang SM, Lim SH et al. 2014. Building pharmacogenetics into a pharmacovigilance program in Singapore: using serious skin rash as a pilot study. Pharmacogenomics J 14:316–21
    [Google Scholar]
  137. 137.  Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL et al. 2002. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359:1121–22
    [Google Scholar]
  138. 138.  Tassaneeyakul W, Jantararoungtong T, Chen P, Lin P-Y, Tiamkao S et al. 2009. Strong association between HLA-B*5801 and allopurinol-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet. Genom. 19:704–9
    [Google Scholar]
  139. 139.  Chan SH, Tan T 1989. HLA and allopurinol drug eruption. Dermatol. Sinica 179:32–33
    [Google Scholar]
  140. 140.  Hung S-I, Chung W-H, Liou L-B, Chu C-C, Lin M et al. 2005. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. PNAS 102:4134–39
    [Google Scholar]
  141. 141.  Lonjou C, Borot N, Sekula P, Ledger N, Thomas L et al. 2008. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet. Genom. 18:299–107
    [Google Scholar]
  142. 142.  Génin E, Schumacher M, Roujeau J-C, Naldi L, Liss Y et al. 2011. Genome-wide association study of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe. Orphanet. J. Rare Dis. 6:52
    [Google Scholar]
  143. 143.  Kang H-R, Jee YK, Kim Y-S, Lee CH, Jung J-W et al. 2011. Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet. Genom. 21:303–7
    [Google Scholar]
  144. 144.  Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N 2011. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med. Genet. 12:118
    [Google Scholar]
  145. 145.  Sukasem C, Jantararoungtong T, Kuntawong P, Puangpetch A, Koomdee N et al. 2016. HLA-B*58:01 for allopurinol-induced cutaneous adverse drug reactions: implication for clinical interpretation in Thailand. Front. Pharmacol. 7:186
    [Google Scholar]
  146. 146.  Hung S-I, Chung W-H, Jee S-H, Chen W-C, Chang Y-T et al. 2006. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genom. 16:297–306
    [Google Scholar]
  147. 147.  Tassaneeyakul W, Tiamkao S, Jantararoungtong T, Chen P, Lin S-Y et al. 2010. Association between HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in a Thai population. Epilepsia 51:926–30
    [Google Scholar]
  148. 148.  Wu XT, Hu FY, An DM, Yan B, Jiang X et al. 2010. Association between carbamazepine-induced cutaneous adverse drug reactions and the HLA-B*1502 allele among patients in central China. Epilepsy Behav 19:405–8
    [Google Scholar]
  149. 149.  Then SM, Rani ZZ, Raymond AA, Ratnaningrum S, Jamal R 2011. Frequency of the HLA-B*1502 allele contributing to carbamazepine-induced hypersensitivity reactions in a cohort of Malaysian epilepsy patients. Asian Pac. J. Allergy Immunol. 29:290–93
    [Google Scholar]
  150. 150.  Zhang Y, Wang J, Zhao L-M, Peng W, Shen G-Q et al. 2011. Strong association between HLA-B*1502 and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in mainland Han Chinese patients. Eur. J. Clin. Pharmacol. 67:885
    [Google Scholar]
  151. 151.  Kulkantrakorn K, Tassaneeyakul W, Tiamkao S, Jantararoungtong T, Prabmechai N et al. 2012. HLA-B*1502 strongly predicts carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in Thai patients with neuropathic pain. Pain Pract 12:202–8
    [Google Scholar]
  152. 152.  McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D et al. 2011. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364:1134–43
    [Google Scholar]
  153. 153.  Niihara H, Kakamu T, Fujita Y, Kaneko S, Morita E 2012. HLA-A31 strongly associates with carbamazepine-induced adverse drug reactions but not with carbamazepine-induced lymphocyte proliferation in a Japanese population. J. Dermatol. 39:594–601
    [Google Scholar]
  154. 154.  Hallberg P, Eriksson N, Ibanez L, Bondon-Guitton E, Kreutz R et al. 2016. Genetic variants associated with antithyroid drug-induced agranulocytosis: a genome-wide association study in a European population. Lancet Diabetes Endocrinol 4:507–16
    [Google Scholar]
  155. 155.  Keane NM, Pavlos RK, McKinnon E, Lucas A, Rive C et al. 2014. HLA Class I restricted CD8+ and Class II restricted CD4+ T cells are implicated in the pathogenesis of nevirapine hypersensitivity. AIDS 28:1891–901
    [Google Scholar]
  156. 156.  Lin L-C, Lai P-C, Yang S-F, Yang R-C 2009. Oxcarbazepine-induced Stevens-Johnson syndrome: a case report. Kaohsiung J. Med. Sci 25:82–86
    [Google Scholar]
  157. 157.  Hung SI, Chung WH, Liu ZS, Chen CH, Hsih MS et al. 2010. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11:349–56
    [Google Scholar]
  158. 158.  Chen CB, Hsiao YH, Wu T, Hsih MS, Tassaneeyakul W et al. 2017. Risk and association of HLA with oxcarbazepine-induced cutaneous adverse reactions in Asians. Neurology 88:78–86
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021818
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021818
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error