1932

Abstract

The transcription factor nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) is a central regulator of redox, metabolic, and protein homeostasis that intersects with many other signaling cascades. Although the understanding of the complex nature of NRF2 signaling continues to grow, there is only one therapeutic targeting NRF2 for clinical use, dimethyl fumarate, used for the treatment of multiple sclerosis. The discovery of new therapies is confounded by the fact that NRF2 levels vary significantly depending on physiological and pathological context. Thus, properly timed and targeted manipulation of the NRF2 pathway is critical in creating effective therapeutic regimens. In this review, we summarize the regulation and downstream targets of NRF2. Furthermore, we discuss the role of NRF2 in cancer, neurodegeneration, and diabetes as well as cardiovascular, kidney, and liver disease, with a special emphasis on NRF2-based therapeutics, including those that have made it into clinical trials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021856
2019-01-06
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021856.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021856&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM et al. 2015. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic. Biol. Med. 88:108–46
    [Google Scholar]
  2. 2.  Wattenberg LW 1978. Inhibitors of chemical carcinogenesis. Adv. Cancer Res. 26:197–226
    [Google Scholar]
  3. 3.  Benson AM, Batzinger RP, Ou SY, Bueding E, Cha YN, Talalay P 1978. Elevation of hepatic glutathione S-transferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants. Cancer Res 38:4486–95
    [Google Scholar]
  4. 4.  Mignotte V, Eleouet JF, Raich N, Romeo PH 1989. Cis- and trans-acting elements involved in the regulation of the erythroid promoter of the human porphobilinogen deaminase gene. PNAS 86:6548–52
    [Google Scholar]
  5. 5.  Chan JY, Han XL, Kan YW 1993. Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. PNAS 90:11371–75
    [Google Scholar]
  6. 6.  Moi P, Chan K, Asunis I, Cao A, Kan YW 1994. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. PNAS 91:9926–30
    [Google Scholar]
  7. 7.  Kobayashi A, Ito E, Toki T, Kogame K, Takahashi S et al. 1999. Molecular cloning and functional characterization of a new Cap'n'collar family transcription factor Nrf3. J. Biol. Chem. 274:6443–52
    [Google Scholar]
  8. 8.  Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H et al. 1996. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol. Cell. Biol. 16:6083–95
    [Google Scholar]
  9. 9.  Muto A, Hoshino H, Madisen L, Yanai N, Obinata M et al. 1998. Identification of Bach2 as a B-cell-specific partner for small Maf proteins that negatively regulate the immunoglobulin heavy chain gene 3′ enhancer. EMBO J 17:5734–43
    [Google Scholar]
  10. 10.  Rushmore TH, Pickett CB 1990. Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J. Biol. Chem. 265:14648–53
    [Google Scholar]
  11. 11.  Prestera T, Holtzclaw WD, Zhang Y, Talalay P 1993. Chemical and molecular regulation of enzymes that detoxify carcinogens. PNAS 90:2965–69
    [Google Scholar]
  12. 12.  Itoh K, Igarashi K, Hayashi N, Nishizawa M, Yamamoto M 1995. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol. Cell. Biol. 15:4184–93
    [Google Scholar]
  13. 13.  Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K et al. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313–22
    [Google Scholar]
  14. 14.  Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K et al. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86
    [Google Scholar]
  15. 15.  Chan K, Lu R, Chang JC, Kan YW 1996. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. PNAS 93:13943–48
    [Google Scholar]
  16. 16.  Ramos-Gomez M, Kwak MK, Dolan PM, Itoh K, Yamamoto M et al. 2001. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. PNAS 98:3410–15
    [Google Scholar]
  17. 17.  Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N et al. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. PNAS 99:11908–13
    [Google Scholar]
  18. 18.  Zhang DD, Hannink M 2003. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23:8137–51
    [Google Scholar]
  19. 19.  Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M 2004. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24:10941–53
    [Google Scholar]
  20. 20.  Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y et al. 2004. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24:7130–39
    [Google Scholar]
  21. 21.  McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD 2004. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279:31556–67
    [Google Scholar]
  22. 22.  Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A 2011. SCF/β-TrCP promotes glycogen synthase kinase-3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell. Biol. 31:1121–33
    [Google Scholar]
  23. 23.  Singh A, Misra V, Thimmulappa RK, Lee H, Ames S et al. 2006. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLOS Med 3:e420
    [Google Scholar]
  24. 24.  Wang X-J, Sun Z, Villeneuve NF, Zhang S, Zhao F et al. 2008. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–43
    [Google Scholar]
  25. 25.  Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A et al. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12:213–23
    [Google Scholar]
  26. 26.  Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T et al. 2010. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell. Biol. 30:3275–85
    [Google Scholar]
  27. 27.  Harder B, Jiang T, Wu T, Tao S, Rojo de la Vega M et al. 2015. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem. Soc. Trans. 43:680–86
    [Google Scholar]
  28. 28.  Hayes JD, Dinkova-Kostova AT 2014. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39:199–218
    [Google Scholar]
  29. 29.  Jung KA, Choi BH, Nam CW, Song M, Kim ST et al. 2013. Identification of aldo-keto reductases as NRF2-target marker genes in human cells. Toxicol. Lett. 218:39–49
    [Google Scholar]
  30. 30.  Alnouti Y, Klaassen CD 2008. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol. Sci. 101:51–64
    [Google Scholar]
  31. 31.  Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI et al. 2002. Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem. J. 365:405–16
    [Google Scholar]
  32. 32.  Yueh MF, Tukey RH 2007. Nrf2-Keap1 signaling pathway regulates human UGT1A1 expression in vitro and in transgenic UGT1 mice. J. Biol. Chem. 282:8749–58
    [Google Scholar]
  33. 33.  Nakamura A, Nakajima M, Higashi E, Yamanaka H, Yokoi T 2008. Genetic polymorphisms in the 5′-flanking region of human UDP-glucuronosyltransferase 2B7 affect the Nrf2-dependent transcriptional regulation. Pharmacogenet. Genom. 18:709–20
    [Google Scholar]
  34. 34.  Maher JM, Dieter MZ, Aleksunes LM, Slitt AL, Guo G et al. 2007. Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology 46:1597–610
    [Google Scholar]
  35. 35.  Singh A, Wu H, Zhang P, Happel C, Ma J, Biswal S 2010. Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol. Cancer Ther. 9:2365–76
    [Google Scholar]
  36. 36.  Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML et al. 2016. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12:1902–16
    [Google Scholar]
  37. 37.  Bendavit G, Aboulkassim T, Hilmi K, Shah S, Batist G 2016. Nrf2 transcription factor can directly regulate mTOR: linking cytoprotective gene expression to a major metabolic regulator that generates redox activity. J. Biol. Chem. 291:25476–88
    [Google Scholar]
  38. 38.  Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW 2003. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 23:8786–94
    [Google Scholar]
  39. 39.  Jang J, Wang Y, Kim HS, Lalli MA, Kosik KS 2014. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 32:2616–25
    [Google Scholar]
  40. 40.  Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S 2002. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62:5196–203
    [Google Scholar]
  41. 41.  Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T et al. 2012. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79
    [Google Scholar]
  42. 42.  Paek J, Lo JY, Narasimhan SD, Nguyen TN, Glover-Cutter K et al. 2012. Mitochondrial SKN-1/Nrf mediates a conserved starvation response. Cell Metab 16:526–37
    [Google Scholar]
  43. 43.  Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K et al. 2012. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res. Treat. 132:175–87
    [Google Scholar]
  44. 44.  Jayakumar S, Pal D, Sandur SK 2015. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells. Mutat. Res. 779:33–45
    [Google Scholar]
  45. 45.  Niture SK, Jaiswal AK 2012. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J. Biol. Chem. 287:9873–86
    [Google Scholar]
  46. 46.  Niture SK, Jaiswal AK 2013. Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic. Biol. Med. 57:119–31
    [Google Scholar]
  47. 47.  Wakabayashi N, Shin S, Slocum SL, Agoston ES, Wakabayashi J et al. 2010. Regulation of Notch1 signaling by Nrf2: implications for tissue regeneration. Sci. Signal. 3:ra52
    [Google Scholar]
  48. 48.  Wakabayashi N, Skoko JJ, Chartoumpekis DV, Kimura S, Slocum SL et al. 2014. Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol. Cell. Biol. 34:653–63
    [Google Scholar]
  49. 49.  Matsushita N, Sogawa K, Ema M, Yoshida A, Fujii-Kuriyama Y 1993. A factor binding to the xenobiotic responsive element (XRE) of P-4501A1 gene consists of at least two helix-loop-helix proteins, Ah receptor and Arnt. J. Biol. Chem. 268:21002–6
    [Google Scholar]
  50. 50.  Yeager RL, Reisman SA, Aleksunes LM, Klaassen CD 2009. Introducing the “TCDD-inducible AhR-Nrf2 gene battery. .” Toxicol. Sci. 111:238–46
    [Google Scholar]
  51. 51.  Nioi P, Hayes JD 2004. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat. Res. 555:149–71
    [Google Scholar]
  52. 52.  Miao W, Hu L, Scrivens PJ, Batist G 2005. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J. Biol. Chem. 280:20340–48
    [Google Scholar]
  53. 53.  Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH et al. 2007. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol. Cell. Biol. 27:7188–97
    [Google Scholar]
  54. 54.  Liu GH, Qu J, Shen X 2008. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim. Biophys. Acta 1783:713–27
    [Google Scholar]
  55. 55.  Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C 2001. Nuclear factor-κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem. 276:32008–15
    [Google Scholar]
  56. 56.  Ahmad R, Raina D, Meyer C, Kharbanda S, Kufe D 2006. Triterpenoid CDDO-Me blocks the NF-κB pathway by direct inhibition of IKKβ on Cys-179. J. Biol. Chem. 281:35764–69
    [Google Scholar]
  57. 57.  Singh S, Aggarwal BB 1995. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J. Biol. Chem 270:24995–5000. Erratum. 1995 J. Biol. Chem 270:30235–35b
    [Google Scholar]
  58. 58.  Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M et al. 2006. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Investig. 116:984–95
    [Google Scholar]
  59. 59.  Lee DF, Kuo HP, Liu M, Chou CK, Xia W et al. 2009. KEAP1 E3 ligase-mediated downregulation of NF-κB signaling by targeting IKKβ. Mol. Cell 36:131–40
    [Google Scholar]
  60. 60.  Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW 2010. When NRF2 talks, who's listening?. Antioxid. Redox Signal. 13:1649–63
    [Google Scholar]
  61. 61.  Faraonio R, Vergara P, Di Marzo D, Pierantoni MG, Napolitano M et al. 2006. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 281:39776–84
    [Google Scholar]
  62. 62.  You A, Nam CW, Wakabayashi N, Yamamoto M, Kensler TW, Kwak MK 2011. Transcription factor Nrf2 maintains the basal expression of Mdm2: an implication of the regulation of p53 signaling by Nrf2. Arch. Biochem. Biophys. 507:356–64
    [Google Scholar]
  63. 63.  Chen W, Sun Z, Wang XJ, Jiang T, Huang Z et al. 2009. Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response. Mol. Cell 34:663–73
    [Google Scholar]
  64. 64.  Iida K, Itoh K, Maher JM, Kumagai Y, Oyasu R et al. 2007. Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis. Carcinogenesis 28:2398–403
    [Google Scholar]
  65. 65.  Joo MS, Kim WD, Lee KY, Kim JH, Koo JH, Kim SG 2016. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol. Cell. Biol. 36:1931–42
    [Google Scholar]
  66. 66.  Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A 2006. Glycogen synthase kinase-3β inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J. Biol. Chem. 281:14841–51
    [Google Scholar]
  67. 67.  Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD 2006. S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol. Cell 24:185–97
    [Google Scholar]
  68. 68.  Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J et al. 2013. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51:618–31
    [Google Scholar]
  69. 69.  Guo Y, Yu S, Zhang C, Kong AN 2015. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic. Biol. Med. 88:337–49
    [Google Scholar]
  70. 70.  Kang KA, Piao MJ, Kim KC, Kang HK, Chang WY et al. 2014. Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis 5:e1183
    [Google Scholar]
  71. 71.  Khor TO, Fuentes F, Shu L, Paredes-Gonzalez X, Yang AY et al. 2014. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev. Res. 7:1186–97
    [Google Scholar]
  72. 72.  Kawai Y, Garduno L, Theodore M, Yang J, Arinze IJ 2011. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J. Biol. Chem. 286:7629–40
    [Google Scholar]
  73. 73.  Liu X, Li H, Liu L, Lu Y, Gao Y et al. 2016. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response. Biochim. Biophys. Acta 1863:2093–103
    [Google Scholar]
  74. 74.  Huang HC, Nguyen T, Pickett CB 2002. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 277:42769–74
    [Google Scholar]
  75. 75.  Sun Z, Huang Z, Zhang DD 2009. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLOS ONE 4:e6588
    [Google Scholar]
  76. 76.  Malloy MT, McIntosh DJ, Walters TS, Flores A, Goodwin JS, Arinze IJ 2013. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: implications for degradation of NRF2 in the nucleus. J. Biol. Chem. 288:14569–83
    [Google Scholar]
  77. 77.  He X, Lai Q, Chen C, Li N, Sun F et al. 2018. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function. Diabetologia 61:881–95
    [Google Scholar]
  78. 78.  Kensler TW, Wakabayashi N, Biswal S 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47:89–116
    [Google Scholar]
  79. 79.  Jaramillo MC, Zhang DD 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179–91
    [Google Scholar]
  80. 80.  Rojo de la Vega M, Dodson M, Chapman E, Zhang DD 2016. NRF2-targeted therapeutics: new targets and modes of NRF2 regulation. Curr. Opin. Toxicol. 1:62–70
    [Google Scholar]
  81. 81.  Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M et al. 2006. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21:689–700
    [Google Scholar]
  82. 82.  Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501
    [Google Scholar]
  83. 83.  Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D et al. 2010. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–73
    [Google Scholar]
  84. 84.  Cancer Genome Atlas Res. Netw 2012. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–25
    [Google Scholar]
  85. 85.  Martinez VD, Vucic EA, Thu KL, Pikor LA, Lam S, Lam WL 2015. Disruption of KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex components by multiple genetic mechanisms: association with poor prognosis in head and neck cancer. Head Neck 37:727–34
    [Google Scholar]
  86. 86.  Martinez VD, Vucic EA, Pikor LA, Thu KL, Hubaux R, Lam WL 2013. Frequent concerted genetic mechanisms disrupt multiple components of the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in thyroid cancer. Mol. Cancer 12:124
    [Google Scholar]
  87. 87.  Li QK, Singh A, Biswal S, Askin F, Gabrielson E 2011. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. J. Hum. Genet. 56:230–34
    [Google Scholar]
  88. 88.  Nioi P, Nguyen T 2007. A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem. Biophys. Res. Commun. 362:816–21
    [Google Scholar]
  89. 89.  Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T et al. 2008. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135:1358–6868 e1–4
    [Google Scholar]
  90. 90.  Ooi A, Dykema K, Ansari A, Petillo D, Snider J et al. 2013. CUL3 and NRF2 mutations confer an NRF2 activation phenotype in a sporadic form of papillary renal cell carcinoma. Cancer Res 73:2044–51
    [Google Scholar]
  91. 91.  Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y et al. 2013. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45:860–67
    [Google Scholar]
  92. 92.  Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S et al. 2011. Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res 71:5081–89
    [Google Scholar]
  93. 93.  Wong TF, Yoshinaga K, Monma Y, Ito K, Niikura H et al. 2011. Association of Keap1 and Nrf2 genetic mutations and polymorphisms with endometrioid endometrial adenocarcinoma survival. Int. J. Gynecol. Cancer 21:1428–35
    [Google Scholar]
  94. 94.  Wang R, An J, Ji F, Jiao H, Sun H, Zhou D 2008. Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res. Commun. 373:151–54
    [Google Scholar]
  95. 95.  Barbano R, Muscarella LA, Pasculli B, Valori VM, Fontana A et al. 2013. Aberrant Keap1 methylation in breast cancer and association with clinicopathological features. Epigenetics 8:105–12
    [Google Scholar]
  96. 96.  Muscarella LA, Barbano R, D'Angelo V, Copetti M, Coco M et al. 2011. Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome. Epigenetics 6:317–25
    [Google Scholar]
  97. 97.  Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P et al. 2010. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9:336–46
    [Google Scholar]
  98. 98.  Hanada N, Takahata T, Zhou Q, Ye X, Sun R et al. 2012. Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer 12:66
    [Google Scholar]
  99. 99.  Fabrizio FP, Costantini M, Copetti M, la Torre A, Sparaneo A et al. 2017. Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma. Oncotarget 8:11187–98
    [Google Scholar]
  100. 100.  Ooi A, Wong JC, Petillo D, Roossien D, Perrier-Trudova V et al. 2011. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20:511–23
    [Google Scholar]
  101. 101.  Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R et al. 2008. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. PNAS 105:13568–73
    [Google Scholar]
  102. 102.  Kim YR, Oh JE, Kim MS, Kang MR, Park SW et al. 2010. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol. 220:446–51
    [Google Scholar]
  103. 103.  Goldstein LD, Lee J, Gnad F, Klijn C, Schaub A et al. 2016. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep 16:2605–17
    [Google Scholar]
  104. 104.  Martinez VD, Vucic EA, Thu KL, Pikor LA, Hubaux R, Lam WL 2014. Unique pattern of component gene disruption in the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in serous ovarian cancer. BioMed Res. Int. 2014:159459
    [Google Scholar]
  105. 105.  Ren D, Villeneuve NF, Jiang T, Wu T, Lau A et al. 2011. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. PNAS 108:1433–38
    [Google Scholar]
  106. 106.  Vartanian S, Ma TP, Lee J, Haverty PM, Kirkpatrick DS et al. 2016. Application of mass spectrometry profiling to establish brusatol as an inhibitor of global protein synthesis. Mol. Cell Proteom. 15:1220–31
    [Google Scholar]
  107. 107.  Harder B, Tian W, La Clair JJ, Tan AC, Ooi A et al. 2017. Brusatol overcomes chemoresistance through inhibition of protein translation. Mol. Carcinog. 56:1493–500
    [Google Scholar]
  108. 108.  Tsuchida K, Tsujita T, Hayashi M, Ojima A et al. 2017. Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic. Biol. Med. 103:236–47
    [Google Scholar]
  109. 109.  Bollong MJ, Yun H, Sherwood L, Woods AK, Lairson LL, Schultz PG 2015. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem. Biol. 10:2193–98
    [Google Scholar]
  110. 110.  Singh A, Venkannagari S, Oh KH, Zhang Y-Q, Rohde JM et al. 2016. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem. Biol. 11:3214–25
    [Google Scholar]
  111. 111.  Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M et al. 2013. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:4825–35
    [Google Scholar]
  112. 112.  Manna A, De Sarkar S, De S, Bauri AK, Chattopadhyay S, Chatterjee M 2015. The variable chemotherapeutic response of Malabaricone-A in leukemic and solid tumor cell lines depends on the degree of redox imbalance. Phytomedicine 22:713–23
    [Google Scholar]
  113. 113.  Limonciel A, Jennings P 2014. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins 6:371–79
    [Google Scholar]
  114. 114.  Zhong Y, Zhang F, Sun Z, Zhou W, Li ZY et al. 2013. Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol. Carcinog. 52:824–34
    [Google Scholar]
  115. 115.  Namani A, Li Y, Wang XJ, Tang X 2014. Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. Biochim. Biophys. Acta 1843:1875–85
    [Google Scholar]
  116. 116.  Corenblum MJ, Ray S, Remley QW, Long M, Harder B et al. 2016. Reduced Nrf2 expression mediates the decline in neural stem cell function during a critical middle-age period. Aging Cell 15:725–36
    [Google Scholar]
  117. 117.  Zhang H, Davies KJ, Forman HJ 2015. Oxidative stress response and Nrf2 signaling in aging. Free Radic. Biol. Med. 88:314–36
    [Google Scholar]
  118. 118.  Johnson DA, Johnson JA 2015. Nrf2–a therapeutic target for the treatment of neurodegenerative diseases. Free Radic. Biol. Med. 88:253–67
    [Google Scholar]
  119. 119.  Sarlette A, Krampfl K, Grothe C, Neuhoff N, Dengler R, Petri S 2008. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 67:1055–62
    [Google Scholar]
  120. 120.  Dumont M, Wille E, Calingasan NY, Tampellini D, Williams C et al. 2009. Triterpenoid CDDO-methylamide improves memory and decreases amyloid plaques in a transgenic mouse model of Alzheimer's disease. J. Neurochem. 109:502–12
    [Google Scholar]
  121. 121.  Zhou Y, Xie N, Li L, Zou Y, Zhang X, Dong M 2014. Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice. Int. J. Neuropsychopharmacol. 17:635–44
    [Google Scholar]
  122. 122.  Zhang R, Miao QW, Zhu CX, Zhao Y, Liu L et al. 2015. Sulforaphane ameliorates neurobehavioral deficits and protects the brain from amyloid β deposits and peroxidation in mice with Alzheimer-like lesions. Am. J. Alzheimer's Dis. Other Demen. 30:183–91
    [Google Scholar]
  123. 123.  Yu L, Wang S, Chen X, Yang H, Li X et al. 2015. Orientin alleviates cognitive deficits and oxidative stress in Aβ1-42-induced mouse model of Alzheimer's disease. Life Sci 121:104–9
    [Google Scholar]
  124. 124.  Chen C, Li X, Gao P, Tu Y, Zhao M et al. 2015. Baicalin attenuates alzheimer-like pathological changes and memory deficits induced by amyloid β1–42 protein. Metab. Brain Dis. 30:537–44
    [Google Scholar]
  125. 125.  Burton NC, Kensler TW, Guilarte TR 2006. In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology 27:1094–100
    [Google Scholar]
  126. 126.  Kaidery NA, Banerjee R, Yang L, Smirnova NA, Hushpulian DM et al. 2013. Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson's disease. Antioxid. Redox Signal. 18:139–57
    [Google Scholar]
  127. 127.  Pareek TK, Belkadi A, Kesavapany S, Zaremba A, Loh SL et al. 2011. Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. Sci. Rep. 1:201
    [Google Scholar]
  128. 128.  Li B, Cui W, Liu J, Li R, Liu Q et al. 2013. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp. Neurol. 250:239–49
    [Google Scholar]
  129. 129.  Liu N, Kan QC, Zhang XJ, Xv YM, Zhang S et al. 2014. Upregulation of immunomodulatory molecules by matrine treatment in experimental autoimmune encephalomyelitis. Exp. Mol. Pathol. 97:470–76
    [Google Scholar]
  130. 130.  Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, Spencer CM, Shetty A et al. 2016. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. PNAS 113:4777–82
    [Google Scholar]
  131. 131.  Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK et al. 2011. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60:3055–66
    [Google Scholar]
  132. 132.  Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H et al. 2013. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol. Cell. Biol. 33:2996–3010
    [Google Scholar]
  133. 133.  Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM et al. 2009. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur. J. Pharmacol. 620:138–44
    [Google Scholar]
  134. 134.  Yu Z, Shao W, Chiang Y, Foltz W, Zhang Z et al. 2011. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia 54:922–34 Erratum. 2011 Diabetologia 54:989
    [Google Scholar]
  135. 135.  Saha PK, Reddy VT, Konopleva M, Andreeff M, Chan L 2010. The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic-acid methyl ester has potent anti-diabetic effects in diet-induced diabetic mice and Leprdb/db mice. J. Biol. Chem. 285:40581–92
    [Google Scholar]
  136. 136.  He HJ, Wang GY, Gao Y, Ling WH, Yu ZW, Jin TR 2012. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes 3:94–104
    [Google Scholar]
  137. 137.  Xu J, Kulkarni SR, Donepudi AC, More VR, Slitt AL 2012. Enhanced Nrf2 activity worsens insulin resistance, impairs lipid accumulation in adipose tissue, and increases hepatic steatosis in leptin-deficient mice. Diabetes 61:3208–18
    [Google Scholar]
  138. 138.  More VR, Xu J, Shimpi PC, Belgrave C, Luyendyk JP et al. 2013. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding. Free Radic. Biol. Med. 61:85–94
    [Google Scholar]
  139. 139.  de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M et al. 2013. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369:2492–503
    [Google Scholar]
  140. 140.  Zhang DD 2013. Bardoxolone brings Nrf2-based therapies to light. Antioxid. Redox Signal. 19:517–18
    [Google Scholar]
  141. 141.  Zhou S, Sun W, Zhang Z, Zheng Y 2014. The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxid. Med. Cell Longev. 2014:260429
    [Google Scholar]
  142. 142.  Rajasekaran NS, Varadharaj S, Khanderao GD, Davidson CJ, Kannan S et al. 2011. Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxid. Redox Signal. 14:957–71
    [Google Scholar]
  143. 143.  Nezu M, Suzuki N, Yamamoto M 2017. Targeting the KEAP1-NRF2 system to prevent kidney disease progression. Am. J. Nephrol. 45:473–83
    [Google Scholar]
  144. 144.  Tang W, Jiang YF, Ponnusamy M, Diallo M 2014. Role of Nrf2 in chronic liver disease. World J. Gastroenterol. 20:13079–87
    [Google Scholar]
  145. 145.  Wise RA, Holbrook JT, Criner G, Sethi S, Rayapudi S et al. 2016. Lack of effect of oral sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLOS ONE 11:e0163716 Erratum. 2017. PLOS ONE 12 e0175077
    [Google Scholar]
  146. 146.  Duran CG, Burbank AJ, Mills KH, Duckworth HR, Aleman MM et al. 2016. A proof-of-concept clinical study examining the NRF2 activator sulforaphane against neutrophilic airway inflammation. Respir. Res. 17:89
    [Google Scholar]
  147. 147.  Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB et al. 2014. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev. Res. 7:813–23
    [Google Scholar]
  148. 148.  Doss JF, Jonassaint JC, Garrett ME, Ashley-Koch AE, Telen MJ, Chi JT 2016. Phase 1 study of a sulforaphane-containing broccoli sprout homogenate for sickle cell disease. PLOS ONE 11:e0152895
    [Google Scholar]
  149. 149.  Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T et al. 2015. An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clin. Psychopharmacol. Neurosci. 13:62–67
    [Google Scholar]
  150. 150.  Lastres-Becker I, Garcia-Yague AJ, Scannevin RH, Casarejos MJ, Kugler S et al. 2016. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson's disease. Antioxid. Redox Signal. 25:61–77
    [Google Scholar]
  151. 151.  Owusu-Ansah A, Ihunnah CA, Walker AL, Ofori-Acquah SF 2016. Inflammatory targets of therapy in sickle cell disease. Transl. Res. 167:281–97
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021856
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021856
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error