1932

Abstract

Device-based neuromodulation of brain circuits is emerging as a promising new approach in the study and treatment of psychiatric disorders. This work presents recent advances in the development of tools for identifying neurocircuits as therapeutic targets and in tools for modulating neurocircuits. We review clinical evidence for the therapeutic efficacy of circuit modulation with a range of brain stimulation approaches, including subthreshold, subconvulsive, convulsive, and neurosurgical techniques. We further discuss strategies for enhancing the precision and efficacy of neuromodulatory techniques. Finally, we survey cutting-edge research in therapeutic circuit modulation using novel paradigms and next-generation devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023253
2020-01-06
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010919-023253.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023253&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sha Z, Wager TD, Mechelli A, He Y 2019. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85:379–88
    [Google Scholar]
  2. 2. 
    Gordon JA. 2016. On being a circuit psychiatrist. Nat. Neurosci. 19:1385–86
    [Google Scholar]
  3. 3. 
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS et al. 2010. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167:748–51
    [Google Scholar]
  4. 4. 
    Ivleva EI, Clementz BA, Dutcher AM, Arnold SJM, Jeon-Slaughter H et al. 2017. Brain structure biomarkers in the psychosis biotypes: findings from the bipolar-schizophrenia network for intermediate phenotypes. Biol. Psychiatry 82:26–39
    [Google Scholar]
  5. 5. 
    Koroshetz W, Gordon J, Adams A, Beckel-Mitchener A, Churchill J et al. 2018. The state of the NIH BRAIN Initiative. J. Neurosci. 38:6427–38
    [Google Scholar]
  6. 6. 
    Linden DE. 2012. The challenges and promise of neuroimaging in psychiatry. Neuron 73:8–22
    [Google Scholar]
  7. 7. 
    O'Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE et al. 2007. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol. Psychiatry 62:1208–16
    [Google Scholar]
  8. 8. 
    Schultz DH, Ito T, Solomyak LI, Chen RH 2019. Global connectivity of the fronto-parietal cognitive control network is related to depression symptoms in the general population. Netw. Neurosci. 3:107–23
    [Google Scholar]
  9. 9. 
    Strauman TJ, Detloff AM, Sestokas R, Smith DV, Goetz EL et al. 2013. What shall I be, what must I be: neural correlates of personal goal activation. Front. Integr. Neurosci. 6:123
    [Google Scholar]
  10. 10. 
    Fales CL, Barch DM, Rundle MM, Mintun MA, Mathews J et al. 2009. Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression. J. Affect. Disord. 112:206–11
    [Google Scholar]
  11. 11. 
    Wagner G, Sinsel E, Sobanski T, Köhler S, Marinou V et al. 2006. Cortical inefficiency in patients with unipolar depression: an event-related fMRI study with the Stroop task. Biol. Psychiatry 59:958–65
    [Google Scholar]
  12. 12. 
    Henriques JB, Davidson RJ. 1991. Left frontal hypoactivation in depression. J. Abnorm. Psychol. 100:535–45
    [Google Scholar]
  13. 13. 
    Erk S, Mikschl A, Stier S, Ciaramidaro A, Gapp V et al. 2010. Acute and sustained effects of cognitive emotion regulation in major depression. J. Neurosci. 30:15726–34
    [Google Scholar]
  14. 14. 
    Drevets WC, Price JL, Simpson JR Jr., Todd RD, Reich T et al. 1997. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386:824–27
    [Google Scholar]
  15. 15. 
    Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL et al. 2000. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat. Neurosci. 3:1049–56
    [Google Scholar]
  16. 16. 
    Botteron KN, Raichle ME, Drevets WC, Heath AC, Todd RD 2002. Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol. Psychiatry 51:342–44
    [Google Scholar]
  17. 17. 
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D et al. 2005. Deep brain stimulation for treatment-resistant depression. Neuron 45:651–60
    [Google Scholar]
  18. 18. 
    Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM 2011. The subcallosal cingulate gyrus in the context of major depression. Biol. Psychiatry 69:301–8
    [Google Scholar]
  19. 19. 
    Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA et al. 2017. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry 4:839–49
    [Google Scholar]
  20. 20. 
    Riva-Posse P, Choi K, Holtzheimer PE, Crowell AL, Garlow SJ et al. 2018. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23:843–49
    [Google Scholar]
  21. 21. 
    Sani OG, Yang Y, Lee MB, Dawes HE, Chang EF, Shanechi MM 2018. Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36:954–61
    [Google Scholar]
  22. 22. 
    Kirkby LA, Luongo FJ, Lee MB, Nahum M, Van Vleet TM et al. 2018. An amygdala-hippocampus subnetwork that encodes variation in human mood. Cell 175:1688–700
    [Google Scholar]
  23. 23. 
    Cole MW, Pathak S, Schneider W 2010. Identifying the brain's most globally connected regions. Neuroimage 49:3132–48
    [Google Scholar]
  24. 24. 
    Williams LM. 2016. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3:472–80
    [Google Scholar]
  25. 25. 
    Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F et al. 2017. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23:28–38
    [Google Scholar]
  26. 26. 
    Grosenick L, Shi TC, Gunning FM, Dubin MJ, Downar J, Liston C 2019. Functional and optogenetic approaches to discovering stable subtype-specific circuit mechanisms in depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4:554–66
    [Google Scholar]
  27. 27. 
    Dunlop BW, Mayberg HS. 2014. Neuroimaging-based biomarkers for treatment selection in major depressive disorder. Dialogues Clin. Neurosci. 16:479–90
    [Google Scholar]
  28. 28. 
    Weigand A, Horn A, Caballero R, Cooke D, Stern AP et al. 2018. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol. Psychiatry 84:28–37
    [Google Scholar]
  29. 29. 
    Isserles M, Daskalakis ZJ, George MS, Blumberger DM, Sackeim HA, Shahaf G 2018. Simple electroencephalographic treatment-emergent marker can predict repetitive transcranial magnetic stimulation antidepressant response—a feasibility study. J. ECT 34:274–82
    [Google Scholar]
  30. 30. 
    Leuchter AF, Cook IA, Gilmer WS, Marangell LB, Burgoyne KS et al. 2009. Effectiveness of a quantitative electroencephalographic biomarker for predicting differential response or remission with escitalopram and bupropion in major depressive disorder. Psychiatry Res 169:132–38
    [Google Scholar]
  31. 31. 
    Widge AS, Bilge MT, Montana R, Chang W, Rodriguez CI et al. 2019. Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am. J. Psychiatry 176:44–56
    [Google Scholar]
  32. 32. 
    Goetz SM, Deng ZD. 2017. The development and modeling of devices and paradigms for transcranial magnetic stimulation. Int. Rev. Psychiatry 29:115–45
    [Google Scholar]
  33. 33. 
    Millan MJ. 2009. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics 6:53–77
    [Google Scholar]
  34. 34. 
    Zarate CA Jr, Mathews DC, Furey ML. 2013. Human biomarkers of rapid antidepressant effects. Biol. Psychiatry 73:1142–55
    [Google Scholar]
  35. 35. 
    Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW et al. 2006. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163:1905–17
    [Google Scholar]
  36. 36. 
    Warden D, Rush AJ, Trivedi MH, Fava M, Wisniewski SR 2007. The STAR*D Project results: a comprehensive review of findings. Curr. Psychiatry Rep. 9:449–59
    [Google Scholar]
  37. 37. 
    Krystal AD, Pizzagalli DA, Mathew SJ, Sanacora G, Keefe R et al. 2018. The first implementation of the NIMH FAST-FAIL approach to psychiatric drug development. Nat. Rev. Drug Discov. 18:82–84
    [Google Scholar]
  38. 38. 
    Yang Y, Kircher T, Straube B 2014. The neural correlates of cognitive behavioral therapy: recent progress in the investigation of patients with panic disorder. Behav. Res. Ther. 62:88–96
    [Google Scholar]
  39. 39. 
    Freyer T, Klöppel S, Tüscher O, Kordon A, Zurowski B et al. 2011. Frontostriatal activation in patients with obsessive-compulsive disorder before and after cognitive behavioral therapy. Psychol. Med. 41:207–16
    [Google Scholar]
  40. 40. 
    Seminowicz DA, Shpaner M, Keaser ML, Krauthamer GM, Mantegna J et al. 2013. Cognitive-behavioral therapy increases prefrontal cortex gray matter in patients with chronic pain. J. Pain 14:1573–84
    [Google Scholar]
  41. 41. 
    Månsson KN, Carlbring P, Frick A, Engman J, Olsson CJ et al. 2013. Altered neural correlates of affective processing after internet-delivered cognitive behavior therapy for social anxiety disorder. Psychiatry Res 214:229–37
    [Google Scholar]
  42. 42. 
    Kircher T, Arolt V, Jansen A, Pyka M, Reinhardt I et al. 2013. Effect of cognitive-behavioral therapy on neural correlates of fear conditioning in panic disorder. Biol. Psychiatry 73:93–101
    [Google Scholar]
  43. 43. 
    Feusner JD, Moody T, Lai TM, Sheen C, Khalsa S et al. 2015. Brain connectivity and prediction of relapse after cognitive-behavioral therapy in obsessive-compulsive disorder. Front. Psychiatry 6:74
    [Google Scholar]
  44. 44. 
    Dunlop BW, Rajendra JK, Craighead WE, Kelley ME, McGrath CL et al. 2017. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am. J. Psychiatry 174:533–45
    [Google Scholar]
  45. 45. 
    Goldin PR, Ziv M, Jazaieri H, Hahn K, Heimberg R, Gross JJ 2013. Impact of cognitive behavioral therapy for social anxiety disorder on the neural dynamics of cognitive reappraisal of negative self-beliefs: randomized clinical trial. JAMA Psychiatry 70:1048–56
    [Google Scholar]
  46. 46. 
    Lee JLC, Nader K, Schiller D 2017. An update on memory reconsolidation updating. Trends Cogn. Sci. 21:531–45
    [Google Scholar]
  47. 47. 
    Beckers T, Kindt M. 2017. Memory reconsolidation interference as an emerging treatment for emotional disorders: strengths, limitations, challenges, and opportunities. Annu. Rev. Clin. Psychol. 13:99–121
    [Google Scholar]
  48. 48. 
    Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ 2016. CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Neurobiol. Learn. Mem. 128:103–9
    [Google Scholar]
  49. 49. 
    Duvarci S, Nader K, LeDoux JE 2008. De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala. Learn. Mem. 15:747–55
    [Google Scholar]
  50. 50. 
    Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ 2015. Contextual information drives the reconsolidation-dependent updating of retrieved fear memories. Neuropsychopharmacology 40:3044–52
    [Google Scholar]
  51. 51. 
    Nader K, Schafe GE, Le Doux JE 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–26
    [Google Scholar]
  52. 52. 
    Lopez J, Gamache K, Schneider R, Nader K 2015. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J. Neurosci. 35:2465–75
    [Google Scholar]
  53. 53. 
    Jarome TJ, Helmstetter FJ. 2014. Protein degradation and protein synthesis in long-term memory formation. Front. Mol. Neurosci. 7:61
    [Google Scholar]
  54. 54. 
    Johnson DC, Casey BJ. 2015. Extinction during memory reconsolidation blocks recovery of fear in adolescents. Sci. Rep. 5:8863
    [Google Scholar]
  55. 55. 
    Björkstrand J, Agren T, Frick A, Engman J, Larsson EM et al. 2015. Disruption of memory reconsolidation erases a fear memory trace in the human amygdala: an 18-month follow-up. PLOS ONE 10:e0129393
    [Google Scholar]
  56. 56. 
    Björkstrand J, Agren T, Ahs F, Frick A, Larsson EM et al. 2016. Disrupting reconsolidation attenuates long-term fear memory in the human amygdala and facilitates approach behavior. Curr. Biol. 26:2690–95
    [Google Scholar]
  57. 57. 
    Schwabe L, Nader K, Pruessner JC 2014. Reconsolidation of human memory: brain mechanisms and clinical relevance. Biol. Psychiatry 76:274–80
    [Google Scholar]
  58. 58. 
    Karabanov AN, Saturnino GB, Thielscher A, Siebner HR 2019. Can transcranial electrical stimulation localize brain function?. Front. Psychol. 10:213
    [Google Scholar]
  59. 59. 
    Hanlon CA, Dowdle LT, Henderson JS 2018. Modulating neural circuits with transcranial magnetic stimulation: implications for addiction treatment development. Pharmacol. Rev. 70:661–83
    [Google Scholar]
  60. 60. 
    Sackeim HA, Dillingham EM, Prudic J, Cooper T, McCall WV et al. 2009. Effect of concomitant pharmacotherapy on electroconvulsive therapy outcomes: short-term efficacy and adverse effects. Arch. Gen. Psychiatry 66:729–37
    [Google Scholar]
  61. 61. 
    Vuksan Cusa B, Klepac N, Jaksic N, Bradas Z, Bozicevic M et al. 2018. The effects of electroconvulsive therapy augmentation of antipsychotic treatment on cognitive functions in patients with treatment-resistant schizophrenia. J. ECT 34:31–34
    [Google Scholar]
  62. 62. 
    Petrides G, Malur C, Braga RJ, Bailine SH, Schooler NR et al. 2015. Electroconvulsive therapy augmentation in clozapine-resistant schizophrenia: a prospective, randomized study. Am. J. Psychiatry 172:152–58
    [Google Scholar]
  63. 63. 
    Brunoni AR, Valiengo L, Baccaro A, Zanao TA, de Oliveira JF et al. 2013. The sertraline versus electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry 70:383–91
    [Google Scholar]
  64. 64. 
    Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A et al. 2015.. TMS and drugs revisited 2014. Clin. Neurophysiol. 126:1847–68
    [Google Scholar]
  65. 65. 
    Luber B, Steffener J, Tucker A, Habeck C, Peterchev AV et al. 2013. Extended remediation of sleep deprived-induced working memory deficits using fMRI-guided transcranial magnetic stimulation. Sleep 36:857–71
    [Google Scholar]
  66. 66. 
    Luber BM, Davis S, Bernhardt E, Neacsiu A, Kwapil L et al. 2017. Using neuroimaging to individualize TMS treatment for depression: toward a new paradigm for imaging-guided intervention. Neuroimage 148:1–7
    [Google Scholar]
  67. 67. 
    Neacsiu AD, Luber BM, Davis SW, Bernhardt E, Strauman TJ, Lisanby SH 2018. On the concurrent use of self-system therapy and functional magnetic resonance imaging-guided transcranial magnetic stimulation as treatment for depression. J. ECT 34:266–73
    [Google Scholar]
  68. 68. 
    Sathappan AV, Luber BM, Lisanby SH 2019. The dynamic duo: combining noninvasive brain stimulation with cognitive interventions. Prog. Neuropsychopharmacol. Biol. Psychiatry 89:347–60
    [Google Scholar]
  69. 69. 
    Nord CL, Halahakoon DC, Limbachya T, Charpentier C, Lally N et al. 2019. Neural predictors of treatment response to brain stimulation and psychological therapy in depression: a double-blind randomized controlled trial. Neuropsychopharmacology 44:91613–1622
    [Google Scholar]
  70. 70. 
    Wagner T, Valero-Cabre A, Pascual-Leone A 2007. Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9:527–65
    [Google Scholar]
  71. 71. 
    Stevens CF. 1978. Interactions between intrinsic membrane protein and electric field. An approach to studying nerve excitability. Biophys. J. 22:295–306
    [Google Scholar]
  72. 72. 
    McIntyre CC, Grill WM, Sherman DL, Thakor NV 2004. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J. Neurophysiol. 91:1457–69
    [Google Scholar]
  73. 73. 
    Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE et al. 2004. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J. Physiol. 557:175–90
    [Google Scholar]
  74. 74. 
    Rahman A, Reato D, Arlotti M, Gasca F, Datta A et al. 2013. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J. Physiol. 59:2563–78
    [Google Scholar]
  75. 75. 
    Mueller JK, Grigsby EM, Prevosto V, Petraglia FW III, Rao H et al. 2014. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nat. Neurosci. 17:1130–36
    [Google Scholar]
  76. 76. 
    Esser SK, Hill SL, Tononi G 2005. Modeling the effects of transcranial magnetic stimulation on cortical circuits. J. Neurophysiol. 94:622–39
    [Google Scholar]
  77. 77. 
    Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D et al. 2016. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 127:3425–54
    [Google Scholar]
  78. 78. 
    Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J 2011. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 21:1176–85
    [Google Scholar]
  79. 79. 
    Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS et al. 2017. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin. Neurophysiol. 128:843–57
    [Google Scholar]
  80. 80. 
    Hamidi M, Slagter HA, Tononi G, Postle BR 2009. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Front. Integr. Neurosci. 3:14
    [Google Scholar]
  81. 81. 
    Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G 2005. Breakdown of cortical effective connectivity during sleep. Science 309:2228–32
    [Google Scholar]
  82. 82. 
    Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R et al. 2007. Triggering sleep slow waves by transcranial magnetic stimulation. PNAS 104:8496–501
    [Google Scholar]
  83. 83. 
    Luber B, Lisanby SH. 2014. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage 85:961–70
    [Google Scholar]
  84. 84. 
    Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S 2012. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLOS ONE 7:e32508
    [Google Scholar]
  85. 85. 
    Zheng J, Anderson KL, Leal SL, Shestyuk A, Gulsen G et al. 2017. Amygdala-hippocampal dynamics during salient information processing. Nat. Commun. 8:14413
    [Google Scholar]
  86. 86. 
    Pell GS, Roth Y, Zangen A 2011. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog. Neurobiol. 93:59–98
    [Google Scholar]
  87. 87. 
    Bikson M, Brunoni AR, Charvet LE, Clark VP, Cohen LG et al. 2018. Rigor and reproducibility in research with transcranial electrical stimulation: an NIMH-sponsored workshop. Brain Stimul 11:465–80
    [Google Scholar]
  88. 88. 
    Thut G, Pascual-Leone A. 2010. A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr 22:219–32
    [Google Scholar]
  89. 89. 
    Hoogendam JM, Ramakers GM, Di Lazzaro V 2010. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3:95–118
    [Google Scholar]
  90. 90. 
    Siebner HR, Bergmann TO, Bestmann S, Massimini M, Johansen-Berg H et al. 2009. Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2:58–80
    [Google Scholar]
  91. 91. 
    Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME et al. 2014. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345:1054–57
    [Google Scholar]
  92. 92. 
    Bliss TV, Collingridge GL. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39
    [Google Scholar]
  93. 93. 
    Kronberg G, Bridi M, Abel T, Bikson M, Parra LC 2017. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul 10:51–58
    [Google Scholar]
  94. 94. 
    Lafon B, Rahman A, Bikson M, Parra LC 2018. Direct current stimulation alters neuronal input/output function. Brain Stimul 10:36–45
    [Google Scholar]
  95. 95. 
    Ogiue-Ikeda M, Kawato S, Ueno S 2003. The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res 993:222–26
    [Google Scholar]
  96. 96. 
    Aydin-Abidin S, Trippe J, Funke K, Eysel UT, Benali A 2008. High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp. Brain Res. 188:249–61
    [Google Scholar]
  97. 97. 
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC 2005. Theta burst stimulation of the human motor cortex. Neuron 45:201–6
    [Google Scholar]
  98. 98. 
    Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD et al. 2008. Consensus: Motor cortex plasticity protocols. Brain Stimul 1:164–82
    [Google Scholar]
  99. 99. 
    Fregni F, Boggio PS, Nitsche MA, Marcolin MA, Rigonatti SP, Pascual-Leone A 2006. Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 8:203–4
    [Google Scholar]
  100. 100. 
    Boggio PS, Rigonatti SP, Ribeiro RB, Myczkowski ML, Nitsche MA et al. 2008. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int. J. Neuropsychopharmacol. 11:249–54
    [Google Scholar]
  101. 101. 
    Loo CK, Alonzo A, Martin D, Mitchell PB, Galvez V, Sachdev P 2012. Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br. J. Psychiatry 200:52–59
    [Google Scholar]
  102. 102. 
    Kalu UG, Sexton CE, Loo CK, Ebmeier KP 2012. Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychol. Med. 42:1791–800
    [Google Scholar]
  103. 103. 
    Loo CK, Husain MM, McDonald WM, Aaronson S, O'Reardon JP et al. 2018. International randomized-controlled trial of transcranial direct current stimulation in depression. Brain Stimul 11:125–33
    [Google Scholar]
  104. 104. 
    Fonteneau C, Mondino M, Arns M, Baeken C, Bikson M et al. 2019. Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul 12:668–73
    [Google Scholar]
  105. 105. 
    Alexander ML, Alagapan S, Lugo CE, Mellin JM, Lustenberger C et al. 2019. Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl. Psychiatry 9:106
    [Google Scholar]
  106. 106. 
    Asamoah B, Khatoun A, Mc Laughlin M 2019. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat. Commun. 10:266
    [Google Scholar]
  107. 107. 
    Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC 2019. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. PNAS 116:5747–55
    [Google Scholar]
  108. 108. 
    Lafon B, Henin S, Huang Y, Friedman D, Melloni L et al. 2017. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat. Commun. 8:1199
    [Google Scholar]
  109. 109. 
    Rohan ML, Yamamoto RT, Ravichandran CT, Cayetano KR, Morales OG et al. 2014. Rapid mood-elevating effects of low field magnetic stimulation in depression. Biol. Psychiatry 76:186–93
    [Google Scholar]
  110. 110. 
    Wang B, Shen MR, Deng ZD, Smith JE, Tharayil JJ et al. 2018. Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation. J. Neural Eng. 15:036022
    [Google Scholar]
  111. 111. 
    Fava M, Freeman MP, Flynn M, Hoeppner BB, Shelton R et al. 2018. Double-blind, proof-of-concept (POC) trial of Low-Field Magnetic Stimulation (LFMS) augmentation of antidepressant therapy in treatment-resistant depression (TRD). Brain Stimul 11:75–84
    [Google Scholar]
  112. 112. 
    Dubin MJ, Ilieva IP, Deng ZD, Thomas J, Albright A et al. 2019. A double-blind pilot dosing study of low field magnetic stimulation (LFMS) for treatment-resistant depression (TRD). J. Affect. Disord. 249:286–93
    [Google Scholar]
  113. 113. 
    Leuchter AF, Cook IA, Feifel D, Goethe JW, Husain M et al. 2015. Efficacy and safety of low-field synchronized transcranial magnetic stimulation (sTMS) for treatment of major depression. Brain Stimul 8:787–94
    [Google Scholar]
  114. 114. 
    Cook IA, Wilson AC, Corlier J, Leuchter AF 2019. Brain activity and clinical outcomes in adults with depression treated with synchronized transcranial magnetic stimulation: an exploratory study. Neuromodulation In press. https://doi.org/10.1111/ner.12914
    [Crossref] [Google Scholar]
  115. 115. 
    Philip NS, Nelson BG, Frohlich F, Lim KO, Widge AS, Carpenter LL 2017. Low-intensity transcranial current stimulation in psychiatry. Am. J. Psychiatry 174:628–39
    [Google Scholar]
  116. 116. 
    Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R et al. 2014. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatry 76:517–26
    [Google Scholar]
  117. 117. 
    Carmi L, Alyagon U, Barnea-Ygael N, Zohar J, Dar R, Zangen A 2018. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimul 11:158–65
    [Google Scholar]
  118. 118. 
    Deng ZD, Lisanby SH, Peterchev AV 2013. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6:1–13
    [Google Scholar]
  119. 119. 
    Koponen LM, Nieminen JO, Ilmoniemi RJ 2018. Multi-locus transcranial magnetic stimulation—theory and implementation. Brain Stimul 11:849–55
    [Google Scholar]
  120. 120. 
    FDA (Food Drug Admin.) 2018. Neurological devices; Reclassification of electroconvulsive therapy devices; effective date of requirement for premarket approval for electroconvulsive therapy devices for certain specified intended uses FDA Rule 83 FR 66103, Food Drug Admin Silver Spring, MD:
    [Google Scholar]
  121. 121. 
    Husain MM, Rush AJ, Fink M, Knapp R, Petrides G et al. 2004. Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. J. Clin. Psychiatry 65:485–91
    [Google Scholar]
  122. 122. 
    Kellner CH. 2015. Brain stimulation with ECT: neuroscience insights from an old treatment. Psychiatric Times Jan. 22. https://www.psychiatrictimes.com/electroconvulsive-therapy/brain-stimulation-ect-neuroscience-insights-old-treatment
    [Google Scholar]
  123. 123. 
    Sackeim HA, Decina P, Prohovnik I, Malitz S, Resor SR 1983. Anticonvulsant and antidepressant properties of electroconvulsive therapy: a proposed mechanism of action. Biol. Psychiatry 18:1301–10
    [Google Scholar]
  124. 124. 
    Bouckaert F, Sienaert P, Obbels J, Dols A, Vandenbulcke M et al. 2014. ECT: its brain enabling effects—a review of electroconvulsive therapy-induced structural brain plasticity. J. ECT 30:143–151
    [Google Scholar]
  125. 125. 
    Suppes T, Webb A, Carmody T, Gordon E, Gutierrez-Esteinou R et al. 1996. Is postictal electrical silence a predictor of response to electroconvulsive therapy?. J. Affect. Disord. 41:55–58
    [Google Scholar]
  126. 126. 
    Casarotto S, Canali P, Rosanova M, Pigorini A, Fecchio M et al. 2013. Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and electroencephalography. Brain Topogr 26:326–37
    [Google Scholar]
  127. 127. 
    Oltedal L, Narr KL, Abbott CC, Anand A, Argyelan M et al. 2018. Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol. Psychiatry 84:574–81
    [Google Scholar]
  128. 128. 
    Deng ZD, Lisanby SH, Peterchev AV 2011. Electric field strength and focality in electroconvulsive therapy and magnetic seizure therapy: a finite element simulation study. J. Neural Eng. 8:016007
    [Google Scholar]
  129. 129. 
    Lisanby SH, Luber B, Schlaepfer TE, Sackeim HA 2003. Safety and feasibility of magnetic seizure therapy (MST) in major depression: randomized within-subject comparison with electroconvulsive therapy. Neuropsychopharmacology 28:1852–65
    [Google Scholar]
  130. 130. 
    Moscrip TD, Terrace HS, Sackeim HA, Lisanby SH 2006. Randomized controlled trial of the cognitive side-effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS). Int. J. Neuropsychopharmacol. 9:1–11
    [Google Scholar]
  131. 131. 
    Kirov G, Ebmeier KP, Scott AI, Atkins M, Khalid N et al. 2008. Quick recovery of orientation after magnetic seizure therapy for major depressive disorder. Br. J. Psychiatry 193:152–55
    [Google Scholar]
  132. 132. 
    Kosel M, Frick C, Lisanby SH, Fisch HU, Schlaepfer TE 2003. Magnetic seizure therapy improves mood in refractory major depression. Neuropsychopharmacology 28:2045–48
    [Google Scholar]
  133. 133. 
    Hoy KE, Thomson RH, Cherk M, Yap KS, Daskalakis ZJ, Fitzgerald PB 2013. Effect of magnetic seizure therapy on regional brain glucose metabolism in major depression. Psychiatry Res 211:169–75
    [Google Scholar]
  134. 134. 
    Malone DA Jr., Dougherty DD, Rezai AR, Carpenter LL, Friehs GM et al. 2009. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 65:267–75
    [Google Scholar]
  135. 135. 
    Bari AA, Mikell CB, Abosch A, Ben-Haim S, Buchanan RJ et al. 2018. Charting the road forward in psychiatric neurosurgery: proceedings of the 2016 American Society for Stereotactic and Functional Neurosurgery workshop on neuromodulation for psychiatric disorders. J. Neurol. Neurosurg. Psychiatry 89:886–96
    [Google Scholar]
  136. 136. 
    Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK et al. 2005. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol. Psychiatry 58:347–54
    [Google Scholar]
  137. 137. 
    Marangell LB, Rush AJ, George MS, Sackeim HA, Johnson CR et al. 2002. Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biol. Psychiatry 51:280–87
    [Google Scholar]
  138. 138. 
    Aaronson ST, Carpenter LL, Conway CR, Reimherr FW, Lisanby SH et al. 2013. Vagus nerve stimulation therapy randomized to different amounts of electrical charge for treatment-resistant depression: acute and chronic effects. Brain Stimul 6:631–40
    [Google Scholar]
  139. 139. 
    O'Reardon JP, Cristancho P, Peshek AD 2006. Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond. Psychiatry 3:54–63
    [Google Scholar]
  140. 140. 
    Nahas Z, Marangell LB, Husain MM, Rush AJ, Sackeim HA et al. 2005. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J. Clin. Psychiatry 66:1097–104
    [Google Scholar]
  141. 141. 
    Bajbouj M, Gallinat J, Lang UE, Hellen F, Vesper J et al. 2007. Motor cortex excitability after vagus nerve stimulation in major depression. J. Clin. Psychopharmacol. 27:156–159
    [Google Scholar]
  142. 142. 
    Kong J, Fang J, Park J, Li S, Rong P 2018. Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front. Psychiatry 9:20
    [Google Scholar]
  143. 143. 
    Kopell BH, Halverson J, Butson CR, Dickinson M, Bobholz J et al. 2011. Epidural cortical stimulation of the left dorsolateral prefrontal cortex for refractory major depressive disorder. Neurosurgery 69:1015–29
    [Google Scholar]
  144. 144. 
    Williams LM. 2017. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress. Anxiety 34:9–24
    [Google Scholar]
  145. 145. 
    Nahas Z, Anderson BS, Borckardt J, Arana AB, George MS et al. 2010. Bilateral epidural prefrontal cortical stimulation for treatment-resistant depression. Biol. Psychiatry 67:101–9
    [Google Scholar]
  146. 146. 
    Heller L, van Hulsteyn DB 1992. Brain stimulation using electromagnetic sources: theoretical aspects. Biophys. J. 63:129–38
    [Google Scholar]
  147. 147. 
    Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A et al. 2017. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169:1029–41
    [Google Scholar]
  148. 148. 
    Vöröslakos M, Takeuchi Y, Brinyiczki K, Zombori T, Oliva A et al. 2018. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 9:483
    [Google Scholar]
  149. 149. 
    Wang B, Aberra AS, Grill WM, Peterchev AV 2018. Computational exploration of stimulation mechanism of temporally interfering electric fields Paper presented at the Carolina Neurostimulation Conference Chapel Hill, NC: May 21–23
    [Google Scholar]
  150. 150. 
    Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK 2018. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep. 8:10007
    [Google Scholar]
  151. 151. 
    Tyler WJ, Lani SW, Hwang GM 2018. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol. 50:222–31
    [Google Scholar]
  152. 152. 
    Legon W, Sato TF, Opitz A, Mueller J, Barbour A et al. 2014. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 17:322–29
    [Google Scholar]
  153. 153. 
    Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C et al. 2019. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 101:61109–16.e5
    [Google Scholar]
  154. 154. 
    Verhagen L, Gallea C, Folloni D, Constans C, Jensen DE et al. 2019. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 8:e40541
    [Google Scholar]
  155. 155. 
    Airan RD, Meyer RA, Ellens NP, Rhodes KR, Farahani K et al. 2017. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett 17:652–59
    [Google Scholar]
  156. 156. 
    Wang JB, Aryal M, Zhong Q, Vyas DB, Airan RD 2018. Noninvasive ultrasonic drug uncaging maps whole-brain functional networks. Neuron 100:728–38
    [Google Scholar]
  157. 157. 
    Zrenner C, Desideri D, Belardinelli P, Ziemann U 2018. Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex. Brain Stimul 11:374–89
    [Google Scholar]
  158. 158. 
    Widge AS, Malone DA Jr., Dougherty DD 2018. Closing the loop on deep brain stimulation for treatment-resistant depression. Front. Neurosci. 12:175
    [Google Scholar]
  159. 159. 
    Leuchter AF, Hunter AM, Krantz DE, Cook IA 2015. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments. Ann. N. Y. Acad. Sci. 1344:78–91
    [Google Scholar]
  160. 160. 
    Deng ZD, McClintock SM, Oey NE, Luber B, Lisanby SH 2015. Neuromodulation for mood and memory: from the engineering bench to the patient bedside. Curr. Opin. Neurobiol. 30:38–43
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023253
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023253
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error