1932

Abstract

Toluene intoxication constitutes a persistent public health problem worldwide. While most organs can be damaged, the brain is a primary target whether exposure is accidental, occupational, or recreational. Interventions to prevent/revert brain damage by toluene are curtailed by the scarce information on the molecular targets and mechanisms mediating toluene's brain toxicity and the common exposure to other neurotoxins and/or coexistence of neurological/psychiatric disorders. We examine () the physicochemical properties of toluene that allow this inhalant to primarily target the lipid-rich brain; () the cell types targeted by toluene (neurons, different types of glia), while considering a cerebrovascular component; and () putative molecular mechanisms by which toluene may modify receptor function while analyzing structural features that allow toluene to directly interact with membrane lipids or specific proteins. This information constitutes a stepping stone to design pharmacotherapies that counteract toluene brain intoxication.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-012924-010532
2025-01-23
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-012924-010532.html?itemId=/content/journals/10.1146/annurev-pharmtox-012924-010532&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Brouette T, Anton R. 2001.. Clinical review of inhalants. . Am. J. Addict. 10:(1):7994
    [Crossref] [Google Scholar]
  2. 2.
    Perron BE, Howard MO. 2009.. Adolescent inhalant use, abuse, and dependence. . Addiction 104::118592
    [Crossref] [Google Scholar]
  3. 3.
    Howard MO, Bowen SE, Garland EL, Perron BE, Vaughn MG. 2011.. Inhalant use and inhalant use disorders in the United States. . Addict. Sci. Clin. Pract. 6:(1):1831
    [Google Scholar]
  4. 4.
    Filley CM. 2013.. Toluene abuse and white matter: a model of toxic leukoencephalopathy. . Psychiatr. Clin. N. Am. 36:(2):293302
    [Crossref] [Google Scholar]
  5. 5.
    Gummin DD, Mowry JB, Beuhler MC, Spyker DA, Bronstein AC, et al. 2021.. 2020 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 38th Annual Report. . Clin. Toxicol. 59:(12):1282501
    [Crossref] [Google Scholar]
  6. 6.
    Davidson CJ, Hannigan JH, Bowen SE. 2021.. Effects of inhaled combined Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): toward an environmental exposure model. . Environ. Toxicol. Pharmacol. 81::103518
    [Crossref] [Google Scholar]
  7. 7.
    Wollin KM, Damm G, Foth H, Freyberger A, Gebel T, et al. 2020.. Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production. . Arch. Toxicol. 94:(4):9671016
    [Crossref] [Google Scholar]
  8. 8.
    Balster RL. 1987.. Abuse potential evaluation of inhalants. . Drug Alcohol Depend. 19:(1):715
    [Crossref] [Google Scholar]
  9. 9.
    Braunscheidel KM, Wayman WN, Okas MP, Woodward JJ. 2020.. Self-administration of toluene vapor in rats. . Front. Neurosci. 14::880
    [Crossref] [Google Scholar]
  10. 10.
    Johnson EO, Schütz CG, Anthony JC, Ensminger ME. 1995.. Inhalants to heroin: a prospective analysis from adolescence to adulthood. . Drug Alcohol Depend. 40:(2):15964
    [Crossref] [Google Scholar]
  11. 11.
    SAMHSA (Subst. Abuse Ment. Health Serv. Adm.). 2006.. Results from the 2005 National Survey on Drug Use and Health: national findings. DHHS Publ. SMA 06-4194 , SAMHSA, Dep. Heath Hum. Serv., Rockville, MD:
    [Google Scholar]
  12. 12.
    Garland EL, Howard MO. 2011.. Adverse consequences of acute inhalant intoxication. . Exp. Clin. Psychopharmacol. 19:(2):13444
    [Crossref] [Google Scholar]
  13. 13.
    Filley CM, Halliday W, Kleinschmidt-DeMasters BK. 2004.. The effects of toluene on the central nervous system. . J. Neuropathol. Exp. Neurol. 63:(1):112
    [Crossref] [Google Scholar]
  14. 14.
    Lubman DI, Yücel M, Hall WD. 2007.. Substance use and the adolescent brain: a toxic combination?. J. Psychopharmacol. 21:(8):79294
    [Crossref] [Google Scholar]
  15. 15.
    CDC (Cent. Dis. Control Prev.). 2014.. Medical management guidelines for toluene. Guidel. , CDC, Atlanta, GA:. https://wwwn.cdc.gov/TSP/MMG/MMGDetails.aspx?mmgid=157&toxid=29
    [Google Scholar]
  16. 16.
    Woodward JJ, Braunscheidel KM. 2023.. The effects of the inhalant toluene on cognitive function and behavioral flexibility: a review of recent findings. . Addict. Neurosci. 5::100059
    [Crossref] [Google Scholar]
  17. 17.
    Aydin K, Sencer S, Demir T, Ogelb K, Tunaci A, Minareci O. 2002.. Cranial MR findings in chronic toluene abuse by inhalation. . AJNR Am. J. Neuroradiol. 23:(7):117379
    [Google Scholar]
  18. 18.
    Gupta SR, Palmer CA, Curé JK, Balos LL, Lincoff NS, Kline LB. 2011.. Toluene optic neurotoxicity: magnetic resonance imaging and pathologic features. . Hum. Pathol. 42:(2):29598
    [Crossref] [Google Scholar]
  19. 19.
    Tormoehlen LM, Tekulve KJ, Nañagas KA. 2014.. Hydrocarbon toxicity: a review. . Clin. Toxicol. 52:(5):47989
    [Crossref] [Google Scholar]
  20. 20.
    Lau YH, Mawardi AS, Zain NR, Viswanathan S. 2021.. Toluene-induced leukodystrophy from glue sniffing. . Pract. Neurol. 21:(5):43941
    [Crossref] [Google Scholar]
  21. 21.
    Yücel M, Takagi M, Walterfang M, Lubman DI. 2008.. Toluene misuse and long-term harms: a systematic review of the neuropsychological and neuroimaging literature. . Neurosci. Biobehav. Rev. 32:(5):91026
    [Crossref] [Google Scholar]
  22. 22.
    Pierce CH, Dills RL, Morgan MS, Vicini P, Kalman DA. 1998.. Biological monitoring of controlled toluene exposure. . Int. Arch. Occup. Environ. Health 71:(7):43344
    [Crossref] [Google Scholar]
  23. 23.
    Døssing M, Aelum JB, Hansen SH, Lundqvist GR, Andersen NT. 1983.. Urinary hippuric acid and orthocresol excretion in man during experimental exposure to toluene. . Br. J. Ind. Med. 40:(4):47073
    [Google Scholar]
  24. 24.
    Truchon G, Tardif R, Brodeur J. 1999.. o-Cresol: a good indicator of exposure to low levels of toluene. . Appl. Occup. Environ. Hyg. 14:(10):67781
    [Crossref] [Google Scholar]
  25. 25.
    Aydin K, Sencer S, Ogel K, Genchellac H, Demir T, Minareci O. 2003.. Single-voxel proton MR spectroscopy in toluene abuse. . Magn. Reson. Imaging 21:(7):77785
    [Crossref] [Google Scholar]
  26. 26.
    Zhang Z, Moreno A. 2014.. “ Toilet cake” encephalopathy. . J. Addict. Med. 8:(6):47475
    [Crossref] [Google Scholar]
  27. 27.
    Rosenberg NL, Kleinschmidt-DeMasters BK, Davis KA, Dreisbach JN, Hormes JT, Filley CM. 1988.. Toluene abuse causes diffuse central nervous system white matter changes. . Ann. Neurol. 23::61114
    [Crossref] [Google Scholar]
  28. 28.
    Marulanda N, Colegial C. 2005.. Neurotoxicity of solvents in brain of glue abusers. . Environ. Toxicol. Pharmacol. 19:(3):67175
    [Crossref] [Google Scholar]
  29. 29.
    Shah NR, Tavana S, Opoku A, Martin D. 2022.. Toxic and metabolic leukoencephalopathies in emergency department patients: a primer for the radiologist. . Emerg. Radiol. 29:(3):54555
    [Crossref] [Google Scholar]
  30. 30.
    Hsu CC, Haacke EM, Heyn C, Kato K, Watkins TW, Krings T. 2019.. “ Pseudo” T1-weighted appearance of the brain on FLAIR: unmasking the extent of gray matter involvement on susceptibility-weighted imaging in chronic toluene abuse. . Neuroradiology 61:(1):1315
    [Crossref] [Google Scholar]
  31. 31.
    Aydin K, Kircan S, Sarwar S, Okur O, Balaban E. 2009.. Smaller gray matter volumes in frontal and parietal cortices of solvent abusers correlate with cognitive deficits. . AJNR Am. J. Neuroradiol. 30:(10):192228
    [Crossref] [Google Scholar]
  32. 32.
    Fornazzari L, Pollanen MS, Myers V, Wolf A. 2003.. Solvent abuse-related toluene leukoencephalopathy. . J. Clin. Forensic Med. 10:(2):9395
    [Crossref] [Google Scholar]
  33. 33.
    Bowen SE, Batis JC, Paez-Martinez N, Cruz SL. 2006.. The last decade of solvent research in animal models of abuse: mechanistic and behavioral studies. . Neurotoxicol. Teratol. 28:(6):63647
    [Crossref] [Google Scholar]
  34. 34.
    Chen HH, Lin YR, Chan MH. 2011.. Toluene exposure during brain growth spurt and adolescence produces differential effects on N-methyl-d-aspartate receptor-mediated currents in rat hippocampus. . Toxicol. Lett. 205:(3):33640
    [Crossref] [Google Scholar]
  35. 35.
    Zhvania MG, Chilachava LR, Japaridze NJ, Gelazonia LK, Lordkipanidze TG. 2012.. Immediate and persisting effect of toluene chronic exposure on hippocampal cell loss in adolescent and adult rats. . Brain Res. Bull. 87:(2–3):18792
    [Crossref] [Google Scholar]
  36. 36.
    Meyer-Baron M, Blaszkewicz M, Henke H, Knapp G, Muttray A, et al. 2008.. The impact of solvent mixtures on neurobehavioral performance: conclusions from epidemiological data. . Neurotoxicology 29:(3):34960
    [Crossref] [Google Scholar]
  37. 37.
    Baslow MH. 2002.. Evidence supporting a role for N-acetyl-l-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. . Neurochem. Int. 40:(4):295300
    [Crossref] [Google Scholar]
  38. 38.
    Baslow MH. 2003.. N-acetylaspartate in the vertebrate brain: metabolism and function. . Neurochem. Res. 28:(6):94153
    [Crossref] [Google Scholar]
  39. 39.
    Ladefoged O, Strange P, Møller A, Lam HR, Ostergaard G, et al. 1991.. Irreversible effects in rats of toluene (inhalation) exposure for six months. . Pharmacol. Toxicol. 68:(5):38490
    [Crossref] [Google Scholar]
  40. 40.
    Thomas M, Jankovic J. 2004.. Neurodegenerative disease and iron storage in the brain. . Curr. Opin. Neurol. 17:(4):43742
    [Crossref] [Google Scholar]
  41. 41.
    Mills E, Dong XP, Wang F, Xu H. 2010.. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. . Future Med. Chem. 2:(1):5164
    [Crossref] [Google Scholar]
  42. 42.
    Reiter RJ, Manchester LC, Tan DX. 2010.. Neurotoxins: free radical mechanisms and melatonin protection. . Curr. Neuropharmacol. 8:(3):194210
    [Crossref] [Google Scholar]
  43. 43.
    Mattia CJ, Ali SF, Bondy SC. 1993.. Toluene-induced oxidative stress in several brain regions and other organs. . Mol. Chem. Neuropathol. 18:(3):31328
    [Crossref] [Google Scholar]
  44. 44.
    Hansson E, von Euler G, Fuxe K, Hansson T. 1998.. Toluene induces changes in the morphology of astroglia and neurons in striatal primary cell cultures. . Toxicology 49:(1):15563
    [Crossref] [Google Scholar]
  45. 45.
    Petroff OAC, Errante LD, Kim JH, Spencer DD. 2003.. N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. . Neurology 60:(10):164651
    [Crossref] [Google Scholar]
  46. 46.
    Demir M, Cicek M, Eser N, Yoldaş A, Sısman T. 2017.. Effects of acute toluene toxicity on different regions of rabbit brain. . Anal. Cell. Pathol. 2017::2805370
    [Crossref] [Google Scholar]
  47. 47.
    Zhang D, Hu X, Qian L, O'Callaghan JP, Hong JS. 2010.. Astrogliosis in CNS pathologies: Is there a role for microglia?. Mol. Neurobiol. 41:(2–3):23241
    [Crossref] [Google Scholar]
  48. 48.
    Pekny M, Nilsson M. 2005.. Astrocyte activation and reactive gliosis. . Glia 50:(4):42734
    [Crossref] [Google Scholar]
  49. 49.
    Svenson DW, Davidson CJ, Thakur C, Bowen SE. 2022.. Acute exposure to abuse-like concentrations of toluene induces inflammation in mouse lungs and brain. . J. Appl. Toxicol. 42:(7):116877
    [Crossref] [Google Scholar]
  50. 50.
    Gotohda T, Tokunaga I, Kubo S, Morita K, Kitamura O, Eguchi A. 2000.. Effect of toluene inhalation on astrocytes and neurotrophic factor in rat brain. . Forensic Sci. Int. 113:(1–3):23338
    [Crossref] [Google Scholar]
  51. 51.
    Fukui K, Utsumi H, Tamada Y, Nakajima T, Ibata Y. 1996.. Selective increase in astrocytic elements in the rat dentate gyrus after chronic toluene exposure studied by GFAP immunocytochemistry and electron microscopy. . Neurosci. Lett. 203:(2):8588
    [Crossref] [Google Scholar]
  52. 52.
    Bachtell RK, Jones JD, Heinzerling KG, Beardsley PM, Comer SD. 2017.. Glial and neuroinflammatory targets for treating substance use disorders. . Drug Alcohol Depend. 180::15670
    [Crossref] [Google Scholar]
  53. 53.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, et al. 2017.. Neurotoxic reactive astrocytes are induced by activated microglia. . Nature 541:(7638):48187
    [Crossref] [Google Scholar]
  54. 54.
    Iovino L, Tremblay ME, Civiero L. 2020.. Glutamate-induced excitotoxicity in Parkinson's disease: the role of glial cells. . J. Pharmacol. Sci. 144:(3):15164
    [Crossref] [Google Scholar]
  55. 55.
    Colonna M, Butovsky O. 2017.. Microglia function in the central nervous system during health and neurodegeneration. . Annu. Rev. Immunol. 35::44168
    [Crossref] [Google Scholar]
  56. 56.
    Gotohda T, Tokunaga I, Kubo S, Kitamura O, Ishigami A. 2002.. Toluene inhalation induces glial cell line-derived neurotrophic factor, transforming growth factor and tumor necrosis factor in rat cerebellum. . Leg. Med. 4:(1):2128
    [Crossref] [Google Scholar]
  57. 57.
    El-Nabi Kamel MA, Shehata M. 2008.. Effect of toluene exposure on the antioxidant status and apoptotic pathway in organs of the rat. . Br. J. Biomed. Sci. 65:(2):7579
    [Crossref] [Google Scholar]
  58. 58.
    Yun SP, Kam TI, Panicker N, Kim S, Oh Y, et al. 2018.. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson's disease. . Nat. Med. 24:(7):93138
    [Crossref] [Google Scholar]
  59. 59.
    Eisenberg DP. 2003.. Neurotoxicity and mechanism of toluene abuse. . Einstein Q. J. Biol. Med. 19::15059
    [Google Scholar]
  60. 60.
    Riegel AC, French ED. 1999.. An electrophysiological analysis of rat ventral tegmental dopamine neuronal activity during acute toluene exposure. . Pharmacol. Toxicol. 85:(1):3743
    [Crossref] [Google Scholar]
  61. 61.
    Bale AS, Smothers CT, Woodward JJ. 2002.. Inhibition of neuronal nicotinic acetylcholine receptors by the abused solvent, toluene. . Br. J. Pharmacol. 137:(3):37583
    [Crossref] [Google Scholar]
  62. 62.
    Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, et al. 1999.. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. . Science 283::7074
    [Crossref] [Google Scholar]
  63. 63.
    Cruz SL, Mirshahi T, Thomas B, Balster RL, Woodward JJ. 1998.. Effects of the abused solvent toluene on recombinant N-methyl-d-aspartate and non-N-methyl-d-aspartate receptors expressed in Xenopus oocytes. . J. Pharmacol. Exp. Ther. 286:(1):33440
    [Crossref] [Google Scholar]
  64. 64.
    Jessen KR. 2004.. Glial cells. . Int. J. Biochem. Cell Biol. 36:(10):186167
    [Crossref] [Google Scholar]
  65. 65.
    Coşkun Ö, Yüncü M, Kanter M, Büyükbaş S. 2006.. Ebselen protects against oxidative and morphological effects of high concentration chronic toluene exposure on rat sciatic nerves. . Eur. J. Gen. Pract. 3:(2):6472
    [Google Scholar]
  66. 66.
    Marzan DE, Brügger-Verdon V, West BL, Liddelow S, Samanta J, Salzer JL. 2021.. Activated microglia drive demyelination via CSF1R signaling. . Glia 69:(6):1583604
    [Crossref] [Google Scholar]
  67. 67.
    Flanagan RJ, Ruprah M, Meredith TJ, Ramsey JD. 1990.. An introduction to the clinical toxicology of volatile substances. . Drug Saf. 5:(5):35983
    [Crossref] [Google Scholar]
  68. 68.
    Bass M. 1970.. Sudden sniffing death. . JAMA 212:(12):207579
    [Crossref] [Google Scholar]
  69. 69.
    Bowen SE. 2011.. Two serious and challenging medical complications associated with volatile substance misuse: sudden sniffing death and fetal solvent syndrome. . Subst. Use Misuse 46:(Suppl. 1):6872
    [Crossref] [Google Scholar]
  70. 70.
    Cruz SL, Rivera-García MT, Woodward JJ. 2014.. Review of toluene action: clinical evidence, animal studies and molecular targets. . J. Drug Alcohol Res. 3::235840
    [Crossref] [Google Scholar]
  71. 71.
    Columbia Univ. Irving Med. Cent. 2023.. Cerebral ischemia. . Columbia University Irving Medical Center. https://www.neurosurgery.columbia.edu/patient-care/conditions/cerebral-ischemia
    [Google Scholar]
  72. 72.
    Hagan IG, Burney K. 2007.. Radiology of recreational drug abuse. . Radiographics 27:(4):91940
    [Crossref] [Google Scholar]
  73. 73.
    Ramirez-Bermudez J, Perez-Esparza R, Flores J, Leon-Ortiz P, Corona T, Restrepo-Martínez M. 2022.. Involuntary emotional expression disorder in a patient with toluene leukoencephalopathy. . Rev. Colomb. Psiquiatr. 51:(2):16366
    [Crossref] [Google Scholar]
  74. 74.
    Okada S, Yamanouchi N, Kodama K, Uchida Y, Hirai S, et al. 1999.. Regional cerebral blood flow abnormalities in chronic solvent abusers. . Psychiatry Clin. Neurosci. 53:(3):35156
    [Crossref] [Google Scholar]
  75. 75.
    Küçük NO, Kiliç EO, Ibis E, Aysev A, Gençoglu EA, et al. 2000.. Brain SPECT findings in long-term inhalant abuse. . Nucl. Med. Commun. 21:(8):76973
    [Crossref] [Google Scholar]
  76. 76.
    Shaw AA, North KC, Steketee JD, Bukiya AN, Dopico AM. 2023.. Effects of toluene on cerebral artery diameter: sex differences and BK channel involvement. Poster presented at the 2023 Annual Meeting of the Society for Neuroscience, Washington, DC:, Nov. 11
    [Google Scholar]
  77. 77.
    North KC, Moreira L, Slayden A, Bukiya AN, Dopico AM. 2020.. Toluene-induced inhibition of smooth muscle BK channels and middle cerebral artery constriction. . Biophys. J. 118:(3):261a
    [Crossref] [Google Scholar]
  78. 78.
    Ryu YH, Lee JD, Yoon PH, Jeon P, Kim DI, Shin DW. 1998.. Cerebral perfusion impairment in a patient with toluene abuse. . J. Nucl. Med. 39:(4):63233
    [Google Scholar]
  79. 79.
    Riegel AC, Ali SF, Torinese S, French ED. 2004.. Repeated exposure to the abused inhalant toluene alters levels of neurotransmitters and generates peroxynitrite in nigrostriatal and mesolimbic nuclei in rat. . Ann. N. Y. Acad. Sci. 1025::54351
    [Crossref] [Google Scholar]
  80. 80.
    Jain S, Dhawan A, Kumaran SS, Deep R, Jain R. 2020.. BOLD activation during cue induced craving in adolescent inhalant users. . Asian J. Psychiatr. 52::102097
    [Crossref] [Google Scholar]
  81. 81.
    Bale AS, Tu Y, Carpenter-Hyland EP, Chandler LJ, Woodward JJ. 2005.. Alterations in glutamatergic and gabaergic ion channel activity in hippocampal neurons following exposure to the abused inhalant toluene. . Neuroscience 130:(1):197206
    [Crossref] [Google Scholar]
  82. 82.
    Beckley JT, Woodward JJ. 2011.. The abused inhalant toluene differentially modulates excitatory and inhibitory synaptic transmission in deep-layer neurons of the medial prefrontal cortex. . Neuropsychopharmacology 36:(7):153142
    [Crossref] [Google Scholar]
  83. 83.
    Bale AS, Meacham CA, Benignus VA, Bushnell PJ, Shafer TJ. 2005.. Volatile organic compounds inhibit human and rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. . Toxicol. Appl. Pharmacol. 205:(1):7788
    [Crossref] [Google Scholar]
  84. 84.
    Cruz SL, Balster RL, Woodward JJ. 2000.. Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. . Br. J. Pharmacol. 131:(7):13038
    [Crossref] [Google Scholar]
  85. 85.
    Williams JM, Stafford D, Steketee JD. 2005.. Effects of repeated inhalation of toluene on ionotropic GABAA and glutamate receptor subunit levels in rat brain. . Neurochem. Int. 46:(1):110
    [Crossref] [Google Scholar]
  86. 86.
    Beckstead MJ, Weiner JL, Eger EI 2nd, Gong DH, Mihic SJ. 2000.. Glycine and γ-aminobutyric acidA receptor function is enhanced by inhaled drugs of abuse. . Mol. Pharmacol. 57:(6):1199205
    [Crossref] [Google Scholar]
  87. 87.
    MacIver MB. 2009.. Abused inhalants enhance GABA-mediated synaptic inhibition. . Neuropsychopharmacology 34:(10):2296304
    [Crossref] [Google Scholar]
  88. 88.
    Lopreato GF, Phelan R, Borghese CM, Beckstead MJ, Mihic SJ. 2003.. Inhaled drugs of abuse enhance serotonin-3 receptor function. . Drug Alcohol Depend. 70:(1):1115
    [Crossref] [Google Scholar]
  89. 89.
    Woodward JJ, Nowak M, Davies DL. 2004.. Effects of the abused solvent toluene on recombinant P2X receptors expressed in HEK293 cells. . Brain Res. Mol. Brain Res. 125:(1–2):8695
    [Crossref] [Google Scholar]
  90. 90.
    Shafer TJ, Bushnell PJ, Benignus VA, Woodward JJ. 2005.. Perturbation of voltage-sensitive Ca2+ channel function by volatile organic solvents. . J. Pharmacol. Exp. Ther. 315:(3):110918
    [Crossref] [Google Scholar]
  91. 91.
    Del Re AM, Dopico AM, Woodward JJ. 2006.. Effects of the abused inhalant toluene on ethanol-sensitive potassium channels expressed in oocytes. . Brain Res. 1087:(1):7582
    [Crossref] [Google Scholar]
  92. 92.
    Gauthereau MY, Salinas-Stefanon EM, Cruz SL. 2005.. A mutation in the local anaesthetic binding site abolishes toluene effects in sodium channels. . Eur. J. Pharmacol. 528:(1–3):1726
    [Crossref] [Google Scholar]
  93. 93.
    Cruz SL, Orta-Salazar G, Gauthereau MY, Millan-Perez Peña L, Salinas-Stefanón EM. 2003.. Inhibition of cardiac sodium currents by toluene exposure. . Br. J. Pharmacol. 140:(4):65360
    [Crossref] [Google Scholar]
  94. 94.
    Wang J, Ou SW, Wang YJ. 2017.. Distribution and function of voltage-gated sodium channels in the nervous system. . Channels 11:(6):53454
    [Crossref] [Google Scholar]
  95. 95.
    Steketee JD, Kalivas PW. 2011.. Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. . Pharmacol. Rev. 63:(2):34865
    [Crossref] [Google Scholar]
  96. 96.
    Páez-Martínez N, Pellicer F, González-Trujano ME, Cruz-López B. 2020.. Environmental enrichment reduces behavioural sensitization in mice previously exposed to toluene: the role of D1 receptors. . Behav. Brain Res. 390::112624
    [Crossref] [Google Scholar]
  97. 97.
    Riegel AC, Ali SF, French ED. 2003.. Toluene-induced locomotor activity is blocked by 6-hydroxydopamine lesions of the nucleus accumbens and the mGluR2/3 agonist LY379268. . Neuropsychopharmacology 28:(8):144047
    [Crossref] [Google Scholar]
  98. 98.
    Chan MH, Tsai YL, Lee MY, Stoker AK, Markou A, Chen HH. 2015.. The group II metabotropic glutamate receptor agonist LY379268 reduces toluene-induced enhancement of brain-stimulation reward and behavioral disturbances. . Psychopharmacology 232:(17):325968
    [Crossref] [Google Scholar]
  99. 99.
    Chan MH, Lee CC, Lin BF, Wu CY, Chen HH. 2012.. Metabotropic glutamate receptor 5 modulates behavioral and hypothermic responses to toluene in rats. . Pharmacol. Biochem. Behav. 103:(2):41824
    [Crossref] [Google Scholar]
  100. 100.
    Rivera-García MT, López-Rubalcava C, Cruz SL. 2015.. Preclinical characterization of toluene as a non-classical hallucinogen drug in rats: participation of 5-HT, dopamine and glutamate systems. . Psychopharmacology 232:(20):3797808
    [Crossref] [Google Scholar]
  101. 101.
    Lee MY, Lin BF, Chan MH, Chen HH. 2020.. Increased behavioral and neuronal responses to a hallucinogenic drug after adolescent toluene exposure in mice: effects of antipsychotic treatment. . Toxicology 445::152602
    [Crossref] [Google Scholar]
  102. 102.
    Lee MY, Hsieh CP, Chan MH, Chen HH. 2022.. Beneficial effects of atypical antipsychotics on object recognition deficits after adolescent toluene exposure in mice: involvement of 5-HT1A receptors. . Am. J. Drug Alcohol Abuse 48:(6):67383
    [Crossref] [Google Scholar]
  103. 103.
    Saracibar G, Hernandez ML, Echevarria E, Barbero I, Gutierrez A, Casis O. 2001.. Toluene alters mu-opioid receptor expression in the rat brainstem. . Ind. Health 39:(3):23134
    [Crossref] [Google Scholar]
  104. 104.
    Páez-Martínez N, Ambrosio E, García-Lecumberri C, Rocha L, Montoya GL, Cruz SL. 2008.. Toluene and TCE decrease binding to mu-opioid receptors, but not to benzodiazepine and NMDA receptors in mouse brain. . Ann. N. Y. Acad. Sci. 1139::390401
    [Crossref] [Google Scholar]
  105. 105.
    Feldman RS, Meyer JS, Quenzer LF. 1997.. Principles of Neuropsychopharmacology. Sunderland, MA:: Sinauer Assoc.
    [Google Scholar]
  106. 106.
    Balster RL. 1998.. Neural basis of inhalant abuse. . Drug Alcohol Depend. 51:(1–2):20714
    [Crossref] [Google Scholar]
  107. 107.
    Seeman P. 1972.. The membrane actions of anesthetics and tranquilizers. . Pharmacol. Rev. 24:(4):583655
    [Google Scholar]
  108. 108.
    Halsey MJ. 1992.. Molecular interactions of anaesthetics with biological membranes. . Gen. Pharmacol. 23:(6):101316
    [Crossref] [Google Scholar]
  109. 109.
    Urban BW. 1993.. Differential effects of gaseous and volatile anaesthetics on sodium and potassium channels. . Br. J. Anaesth. 71:(1):2538
    [Crossref] [Google Scholar]
  110. 110.
    Franks NP, Lieb WR. 1984.. Do general anaesthetics act by competitive binding to specific receptors?. Nature 310:(5978):599601
    [Crossref] [Google Scholar]
  111. 111.
    Dopico AM, Bukiya AN, Singh AK. 2012.. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. . Pharmacol. Ther. 135:(2):13350
    [Crossref] [Google Scholar]
  112. 112.
    Calderón-Guzmán D, Espitia-Vázquez I, López-Domínguez A, Hernández-García E, Huerta-Gertrudis B, et al. 2005.. Effect of toluene and nutritional status on serotonin, lipid peroxidation levels and NA+/K+-ATPase in adult rat brain. . Neurochem. Res. 30:(5):61924
    [Crossref] [Google Scholar]
  113. 113.
    Sawyer DB, Koeppe RE 2nd, Andersen OS. 1990.. Gramicidin single-channel properties show no solvent-history dependence. . Biophys. J. 57:(3):51523
    [Crossref] [Google Scholar]
  114. 114.
    Ramos JL, Duque E, Rodríguez-Herva JJ, Godoy P, Haïdour A, et al. 1997.. Mechanisms for solvent tolerance in bacteria. . J. Biol. Chem. 272:(7):388790
    [Crossref] [Google Scholar]
  115. 115.
    Peng H, Yi L, Zhang X, Xiao Y, Gao Y, He C. 2017.. Changes in the membrane fatty acid composition in Anoxybacillus flavithermus subsp. yunnanensis E13T as response to solvent stress. . Arch. Microbiol. 199:(1):18
    [Crossref] [Google Scholar]
  116. 116.
    Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R, Horikoshi K. 1999.. Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. . J. Bacteriol. 181:(15):449398
    [Crossref] [Google Scholar]
  117. 117.
    Fang J, Barcelona MJ, Alvarez PJ. 2000.. Phospholipid compositional changes of five pseudomonad archetypes grown with and without toluene. . Appl. Microbiol. Biotechnol. 54:(3):38289
    [Crossref] [Google Scholar]
  118. 118.
    Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, et al. 2002.. Mechanisms of solvent tolerance in gram-negative bacteria. . Annu. Rev. Microbiol. 56::74368
    [Crossref] [Google Scholar]
  119. 119.
    Pepi M, Heipieper HJ, Fischer J, Ruta M, Volterrani M, Focardi SE. 2008.. Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. . Extremophiles 12:(3):34349
    [Crossref] [Google Scholar]
  120. 120.
    Kim IS, Shim JH, Suh YT. 2002.. Changes in membrane fluidity and fatty acid composition of Pseudomonas putida CN-T19 in response to toluene. . Biosci. Biotechnol. Biochem. 66:(9):194550
    [Crossref] [Google Scholar]
  121. 121.
    Nielsen LE, Kadavy DR, Rajagopal S, Drijber R, Nickerson KW. 2005.. Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. . Appl. Environ. Microbiol. 71:(9):517176
    [Crossref] [Google Scholar]
  122. 122.
    Kovacic P, Somanathan R. 2009.. Novel, unifying mechanism for mescaline in the central nervous system: electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships. . Oxid. Med. Cell Longev. 2:(4):18190
    [Crossref] [Google Scholar]
  123. 123.
    Kometer M, Schmidt A, Jäncke L, Vollenweider FX. 2013.. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. . J. Neurosci. 33:(25):1054451
    [Crossref] [Google Scholar]
  124. 124.
    Cameron LP, Benetatos J, Lewis V, Bonniwell EM, Jaster AM, et al. 2023.. Beyond the 5-HT2A receptor: classic and nonclassic targets in psychedelic drug action. . J. Neurosci. 43:(45):747282
    [Crossref] [Google Scholar]
  125. 125.
    Kim K, Che T, Panova O, DiBerto JF, Lyu J, et al. 2020.. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. . Cell 182:(6):157488.e19
    [Crossref] [Google Scholar]
  126. 126.
    Friemann R, Lee K, Brown EN, Gibson DT, Eklund H, Ramaswamy S. 2009.. Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. . Acta Crystallogr. D Biol. Crystallogr. 65:(Part 1):2433
    [Crossref] [Google Scholar]
  127. 127.
    Lovinger DM, Roberto M. 2013.. Synaptic effects induced by alcohol. . Curr. Top. Behav. Neurosci. 13::3186
    [Crossref] [Google Scholar]
  128. 128.
    Dopico AM, Bukiya AN, Martin GE. 2014.. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior. . Front. Physiol. 5::466
    [Google Scholar]
  129. 129.
    Dopico AM, Bukiya AN, Kuntamallappanavar G, Liu J. 2016.. Modulation of BK channels by ethanol. . Int. Rev. Neurobiol. 128::23979
    [Crossref] [Google Scholar]
  130. 130.
    Harrison NL, Skelly MJ, Grosserode EK, Lowes DC, Zeric T, et al. 2017.. Effects of acute alcohol on excitability in the CNS. . Neuropharmacology 122::3645
    [Crossref] [Google Scholar]
  131. 131.
    Bukiya AN, Kuntamallappanavar G, Edwards J, Singh AK, Shivakumar B, Dopico AM. 2014.. An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel. . PNAS 111:(25):931318
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-012924-010532
Loading
/content/journals/10.1146/annurev-pharmtox-012924-010532
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error