1932

Abstract

Liver fibrosis develops in response to chronic liver injury and is characterized by a sustained inflammatory response that leads to excessive collagen deposition by myofibroblasts. The fibrogenic response is governed by the release of inflammatory mediators from innate, adaptive, and innate-like lymphoid cells and from nonprofessional immune cells (i.e., epithelial cells, hepatic myofibroblasts, and liver sinusoidal endothelial cells). Upon removal of the underlying cause, liver fibrosis can resolve via activation of specific immune cell subsets. Despite major advances in the understanding of fibrosis pathogenesis, there is still no approved antifibrotic therapy. This review summarizes our current knowledge of the immune cell landscape and the inflammatory mechanisms underlying liver fibrosis progression and regression. We discuss how reprogramming immune cell phenotype, in particular through targeting selective inflammatory pathways or modulating cell-intrinsic metabolism, may be translated into antifibrogenic therapies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-020524-012013
2025-01-23
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-020524-012013.html?itemId=/content/journals/10.1146/annurev-pharmtox-020524-012013&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A. 2005.. Hepatic fibrosis: molecular mechanisms and drug targets. . Annu. Rev. Pharmacol. Toxicol. 45::60528
    [Crossref] [Google Scholar]
  2. 2.
    Gines P, Krag A, Abraldes JG, Sola E, Fabrellas N, Kamath PS. 2021.. Liver cirrhosis. . Lancet 398::135976
    [Crossref] [Google Scholar]
  3. 3.
    Lei L, Bruneau A, El Mourabit H, Guegan J, Folseraas T, et al. 2022.. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. . Hepatology 76::136075
    [Crossref] [Google Scholar]
  4. 4.
    Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, et al. 2013.. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. . Nat. Commun. 4::2823
    [Crossref] [Google Scholar]
  5. 5.
    Tsuchida T, Friedman SL. 2017.. Mechanisms of hepatic stellate cell activation. . Nat. Rev. Gastroenterol. Hepatol. 14::397411
    [Crossref] [Google Scholar]
  6. 6.
    Mallat A, Lotersztajn S. 2013.. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. . Am. J. Physiol. Cell Physiol. 305::C78999
    [Crossref] [Google Scholar]
  7. 7.
    Wallace SJ, Tacke F, Schwabe RF, Henderson NC. 2022.. Understanding the cellular interactome of non-alcoholic fatty liver disease. . JHEP Rep. 4::100524
    [Crossref] [Google Scholar]
  8. 8.
    Friedman SL, Pinzani M. 2022.. Hepatic fibrosis 2022: unmet needs and a blueprint for the future. . Hepatology 75::47388
    [Crossref] [Google Scholar]
  9. 9.
    Sanyal AJ, Anstee QM, Trauner M, Lawitz EJ, Abdelmalek MF, et al. 2022.. Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis. . Hepatology 75::123546
    [Crossref] [Google Scholar]
  10. 10.
    Brennan PN, Elsharkawy AM, Kendall TJ, Loomba R, Mann DA, Fallowfield JA. 2023.. Antifibrotic therapy in nonalcoholic steatohepatitis: time for a human-centric approach. . Nat. Rev. Gastroenterol. Hepatol. 20::67988
    [Crossref] [Google Scholar]
  11. 11.
    Bhattacharya M, Ramachandran P. 2023.. Immunology of human fibrosis. . Nat. Immunol. 24::142333
    [Crossref] [Google Scholar]
  12. 12.
    Ibidapo-Obe O, Bruns T. 2023.. Tissue-resident and innate-like T cells in patients with advanced chronic liver disease. . JHEP Rep. 5::100812
    [Crossref] [Google Scholar]
  13. 13.
    Tilg H, Adolph TE, Trauner M. 2022.. Gut-liver axis: pathophysiological concepts and clinical implications. . Cell Metab. 34::170018
    [Crossref] [Google Scholar]
  14. 14.
    Marra F, Lotersztajn S. 2013.. Pathophysiology of NASH: perspectives for a targeted treatment. . Curr. Pharm. Des. 19::525069
    [Crossref] [Google Scholar]
  15. 15.
    Wang S, Friedman SL. 2023.. Found in translation—fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). . Sci. Transl. Med. 15::eadi0759
    [Crossref] [Google Scholar]
  16. 16.
    Chung BK, Øgaard J, Reims HM, Karlsen TH, Melum E. 2022.. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis. . Hepatol. Commun. 6::253850
    [Crossref] [Google Scholar]
  17. 17.
    Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson NC. 2020.. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. . Nat. Rev. Gastroenterol. Hepatol. 17::45772
    [Crossref] [Google Scholar]
  18. 18.
    Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, et al. 2005.. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. . J. Clin. Investig. 115::5665
    [Crossref] [Google Scholar]
  19. 19.
    Bleriot C, Ginhoux F. 2019.. Understanding the heterogeneity of resident liver macrophages. . Front. Immunol. 10::2694
    [Crossref] [Google Scholar]
  20. 20.
    Guilliams M, Bonnardel J, Haest B, Vanderborght B, Wagner C, et al. 2022.. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. . Cell 185::37996.e38
    [Crossref] [Google Scholar]
  21. 21.
    Guilliams M, Scott CL. 2022.. Liver macrophages in health and disease. . Immunity 55::151529
    [Crossref] [Google Scholar]
  22. 22.
    MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, et al. 2018.. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. . Nat. Commun. 9::4383
    [Crossref] [Google Scholar]
  23. 23.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, et al. 2015.. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. . Nature 518::54751
    [Crossref] [Google Scholar]
  24. 24.
    Park MD, Silvin A, Ginhoux F, Merad M. 2022.. Macrophages in health and disease. . Cell 185::425979
    [Crossref] [Google Scholar]
  25. 25.
    Andrews TS, Nakib D, Perciani CT, Ma XZ, Liu L, et al. 2024.. Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and PSC human liver. . J. Hepatol. 80:(5):73043
    [Crossref] [Google Scholar]
  26. 26.
    Huby T, Gautier EL. 2022.. Immune cell-mediated features of non-alcoholic steatohepatitis. . Nat. Rev. Immunol. 22::42943
    [Crossref] [Google Scholar]
  27. 27.
    Peiseler M, Araujo David B, Zindel J, Surewaard BGJ, Lee WY, et al. 2023.. Kupffer cell-like syncytia replenish resident macrophage function in the fibrotic liver. . Science 381::eabq5202
    [Crossref] [Google Scholar]
  28. 28.
    Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, et al. 2020.. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. . Immunity 52::105774.e7
    [Crossref] [Google Scholar]
  29. 29.
    Tran S, Baba I, Poupel L, Dussaud S, Moreau M, et al. 2020.. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. . Immunity 53::62740.e5
    [Crossref] [Google Scholar]
  30. 30.
    Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwalder M, Tacke F. 2022.. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease—novel insights into cellular communication circuits. . J. Hepatol. 77::113660
    [Crossref] [Google Scholar]
  31. 31.
    Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, et al. 2019.. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. . Nature 575::51218
    [Crossref] [Google Scholar]
  32. 32.
    De Muynck K, Heyerick L, De Ponti FF, Vanderborght B, Meese T, et al. 2024.. Osteopontin characterizes bile duct-associated macrophages and correlates with liver fibrosis severity in primary sclerosing cholangitis. . Hepatology 79::26988
    [Crossref] [Google Scholar]
  33. 33.
    Fabre T, Barron AMS, Christensen SM, Asano S, Bound K, et al. 2023.. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. . Sci. Immunol. 8::eadd8945
    [Crossref] [Google Scholar]
  34. 34.
    Han H, Ge X, Komakula SSB, Desert R, Das S, et al. 2023.. Macrophage-derived osteopontin (SPP1) protects from nonalcoholic steatohepatitis. . Gastroenterology 165::20117
    [Crossref] [Google Scholar]
  35. 35.
    Wang X, He Q, Zhou C, Xu Y, Liu D, et al. 2023.. Prolonged hypernutrition impairs TREM2-dependent efferocytosis to license chronic liver inflammation and NASH development. . Immunity 56::5877.e11
    [Crossref] [Google Scholar]
  36. 36.
    Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, et al. 2019.. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. . Cell 178::68698.e14
    [Crossref] [Google Scholar]
  37. 37.
    Daemen S, Gainullina A, Kalugotla G, He L, Chan MM, et al. 2021.. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. . Cell Rep. 34::108626
    [Crossref] [Google Scholar]
  38. 38.
    Hendrikx T, Porsch F, Kiss MG, Rajcic D, Papac-Milicevic N, et al. 2022.. Soluble TREM2 levels reflect the recruitment and expansion of TREM2+ macrophages that localize to fibrotic areas and limit NASH. . J. Hepatol. 77::137385
    [Crossref] [Google Scholar]
  39. 39.
    Connolly MK, Bedrosian AS, Mallen-St. Clair J, Mitchell AP, Ibrahim J, et al. 2009.. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. . J. Clin. Investig. 119::321325
    [Google Scholar]
  40. 40.
    Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, et al. 2013.. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. . Hepatology 58::146173
    [Crossref] [Google Scholar]
  41. 41.
    Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, et al. 2012.. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. . Hepatology 55::24455
    [Crossref] [Google Scholar]
  42. 42.
    Deczkowska A, David E, Ramadori P, Pfister D, Safran M, et al. 2021.. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. . Nat. Med. 27::104354
    [Crossref] [Google Scholar]
  43. 43.
    Zhou Z, Xu M-J, Cai Y, Wang W, Jiang JX, et al. 2018.. Neutrophil–hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. . Cell Mol. Gastroenterol. Hepatol. 5::399413
    [Crossref] [Google Scholar]
  44. 44.
    Xia Y, Wang Y, Xiong Q, He J, Wang H, et al. 2024.. Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC. . Hepatology. https://doi.org/10.1097/HEP.0000000000000762
    [Google Scholar]
  45. 45.
    Calvente CJ, Tameda M, Johnson CD, Del Pilar H, Lin YC, et al. 2019.. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. . J. Clin. Investig. 129::4091109
    [Crossref] [Google Scholar]
  46. 46.
    Hargrove L, Kennedy L, Demieville J, Jones H, Meng F, et al. 2017.. Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient KitW-sh mice. . Hepatology 65::19912004
    [Crossref] [Google Scholar]
  47. 47.
    Jones H, Hargrove L, Kennedy L, Meng F, Graf-Eaton A, et al. 2016.. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2−/− mice. . Hepatology 64::120216
    [Crossref] [Google Scholar]
  48. 48.
    Sutti S, Albano E. 2020.. Adaptive immunity: an emerging player in the progression of NAFLD. . Nat. Rev. Gastroenterol. Hepatol. 17::8192
    [Crossref] [Google Scholar]
  49. 49.
    Albillos A, Martin-Mateos R, Van der Merwe S, Wiest R, Jalan R, Álvarez-Mon M. 2022.. Cirrhosis-associated immune dysfunction. . Nat. Rev. Gastroenterol. Hepatol. 19::11234
    [Crossref] [Google Scholar]
  50. 50.
    Bourinet M, Anty R, Gual P, Luci C. 2024.. Roles of innate lymphoid cells in metabolic and alcohol-associated liver diseases. . JHEP Rep. 6::100962
    [Crossref] [Google Scholar]
  51. 51.
    Toubal A, Nel I, Lotersztajn S, Lehuen A. 2019.. Mucosal-associated invariant T cells and disease. . Nat. Rev. Immunol. 19::64357
    [Crossref] [Google Scholar]
  52. 52.
    Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, et al. 2005.. Attenuated liver fibrosis in the absence of B cells. . J. Clin. Investig. 115::307282
    [Crossref] [Google Scholar]
  53. 53.
    Thapa M, Chinnadurai R, Velazquez VM, Tedesco D, Elrod E, et al. 2015.. Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. . Hepatology 61::206779
    [Crossref] [Google Scholar]
  54. 54.
    Karl M, Hasselwander S, Zhou Y, Reifenberg G, Kim YO, et al. 2022.. Dual roles of B lymphocytes in mouse models of diet-induced nonalcoholic fatty liver disease. . Hepatology 76::113549
    [Crossref] [Google Scholar]
  55. 55.
    Feng X, Feng B, Zhou J, Yang J, Pan Q, et al. 2024.. Mesenchymal stem cells alleviate mouse liver fibrosis by inhibiting pathogenic function of intrahepatic B cells. . Hepatology. https://doi.org/10.1097/HEP.0000000000000831
    [Google Scholar]
  56. 56.
    Kotsiliti E, Leone V, Schuehle S, Govaere O, Li H, et al. 2023.. Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. . J. Hepatol. 79::296313
    [Crossref] [Google Scholar]
  57. 57.
    Wynn TA. 2004.. Fibrotic disease and the TH1/TH2 paradigm. . Nat. Rev. Immunol. 4::58394
    [Crossref] [Google Scholar]
  58. 58.
    Shi Z, Wakil AE, Rockey DC. 1997.. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. . PNAS 94::1066368
    [Crossref] [Google Scholar]
  59. 59.
    McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, et al. 2013.. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. . Immunity 39::35771
    [Crossref] [Google Scholar]
  60. 60.
    Weng H-L, Liu Y, Chen J-L, Huang T, Xu L-J, et al. 2009.. The etiology of liver damage imparts cytokines transforming growth factor β1 or interleukin-13 as driving forces in fibrogenesis. . Hepatology 50::23043
    [Crossref] [Google Scholar]
  61. 61.
    Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. 1999.. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. . J. Clin. Investig. 104::77785
    [Crossref] [Google Scholar]
  62. 62.
    Gieseck RL 3rd, Wilson MS, Wynn TA. 2018.. Type 2 immunity in tissue repair and fibrosis. . Nat. Rev. Immunol. 18::6276
    [Crossref] [Google Scholar]
  63. 63.
    Hart KM, Fabre T, Sciurba JC, Gieseck RL 3rd, Borthwick LA, et al. 2017.. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. . Sci. Transl. Med. 9::eaal3694
    [Crossref] [Google Scholar]
  64. 64.
    Shimamura T, Fujisawa T, Husain SR, Kioi M, Nakajima A, Puri RK. 2008.. Novel role of IL-13 in fibrosis induced by nonalcoholic steatohepatitis and its amelioration by IL-13R-directed cytotoxin in a rat model. . J. Immunol. 181::465665
    [Crossref] [Google Scholar]
  65. 65.
    Jeffery HC, McDowell P, Lutz P, Wawman RE, Roberts S, et al. 2017.. Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. . PLOS ONE 12::e0188649
    [Crossref] [Google Scholar]
  66. 66.
    Gao B, Radaeva S. 2013.. Natural killer and natural killer T cells in liver fibrosis. . Biochim. Biophys. Acta Mol. Basis Dis. 1832::106169
    [Crossref] [Google Scholar]
  67. 67.
    Raabe J, Kaiser KM, ToVinh M, Finnemann C, Lutz P, et al. 2023.. Identification and characterization of a hepatic IL-13-producing ILC3-like population potentially involved in liver fibrosis. . Hepatology 78::787802
    [Crossref] [Google Scholar]
  68. 68.
    Feng D, Kong X, Weng H, Park O, Wang H, et al. 2012.. Interleukin-22 promotes proliferation of liver stem/progenitor cells in mice and patients with chronic hepatitis B virus infection. . Gastroenterology 143::18898.e7
    [Crossref] [Google Scholar]
  69. 69.
    Kleinschmidt D, Giannou AD, McGee HM, Kempski J, Steglich B, et al. 2017.. A protective function of IL-22BP in ischemia reperfusion and acetaminophen-induced liver injury. . J. Immunol. 199::407890
    [Crossref] [Google Scholar]
  70. 70.
    Kong X, Feng D, Wang H, Hong F, Bertola A, et al. 2012.. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. . Hepatology 56::115059
    [Crossref] [Google Scholar]
  71. 71.
    Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, et al. 2012.. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. . Gastroenterology 143::76576.e3
    [Crossref] [Google Scholar]
  72. 72.
    Fabre T, Molina MF, Soucy G, Goulet JP, Willems B, et al. 2018.. Type 3 cytokines IL-17A and IL-22 drive TGF-β-dependent liver fibrosis. . Sci. Immunol. 3::eaar7754
    [Crossref] [Google Scholar]
  73. 73.
    Hegde P, Weiss E, Paradis V, Wan J, Mabire M, et al. 2018.. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. . Nat. Commun. 9::2146
    [Crossref] [Google Scholar]
  74. 74.
    Lemmers A, Moreno C, Gustot T, Marechal R, Degre D, et al. 2009.. The interleukin-17 pathway is involved in human alcoholic liver disease. . Hepatology 49::64657
    [Crossref] [Google Scholar]
  75. 75.
    Poch T, Krause J, Casar C, Liwinski T, Glau L, et al. 2021.. Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4+ T cells in primary sclerosing cholangitis. . J. Hepatol. 75::41423
    [Crossref] [Google Scholar]
  76. 76.
    Seo W, Eun HS, Kim SY, Yi HS, Lee YS, et al. 2016.. Exosome-mediated activation of Toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. . Hepatology 64::61631
    [Crossref] [Google Scholar]
  77. 77.
    Marinović S, Lenartić M, Mladenić K, Šestan M, Kavazović I, et al. 2023.. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis. . Sci. Immunol. 8::eadd1599
    [Crossref] [Google Scholar]
  78. 78.
    Guillot A, Hamdaoui N, Bizy A, Zoltani K, Souktani R, et al. 2014.. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. . Hepatology 59::296306
    [Crossref] [Google Scholar]
  79. 79.
    Tan Z, Qian X, Jiang R, Liu Q, Wang Y, et al. 2013.. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. . J. Immunol. 191::183544
    [Crossref] [Google Scholar]
  80. 80.
    Lett MJ, Mehta H, Keogh A, Jaeger T, Jacquet M, et al. 2022.. Stimulatory MAIT cell antigens reach the circulation and are efficiently metabolised and presented by human liver cells. . Gut 71::252638
    [Crossref] [Google Scholar]
  81. 81.
    Bottcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, et al. 2018.. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. . Hepatology 68::17286
    [Crossref] [Google Scholar]
  82. 82.
    Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A, et al. 2021.. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. . Nature 592::44449
    [Crossref] [Google Scholar]
  83. 83.
    Wu K-J, Qian Q-F, Zhou J-R, Sun D-L, Duan Y-F, et al. 2023.. Regulatory T cells (Tregs) in liver fibrosis. . Cell Death Discov. 9::53
    [Crossref] [Google Scholar]
  84. 84.
    Savage TM, Fortson KT, de Los Santos-Alexis K, Oliveras-Alsina A, Rouanne M, et al. 2024.. Amphiregulin from regulatory T cells promotes liver fibrosis and insulin resistance in non-alcoholic steatohepatitis. . Immunity 57::30318.e6
    [Crossref] [Google Scholar]
  85. 85.
    Mederacke I, Filliol A, Affo S, Nair A, Hernandez C, et al. 2022.. The purinergic P2Y14 receptor links hepatocyte death to hepatic stellate cell activation and fibrogenesis in the liver. . Sci. Transl. Med. 14::eabe5795
    [Crossref] [Google Scholar]
  86. 86.
    Dong J, Viswanathan S, Adami E, Singh BK, Chothani SP, et al. 2021.. Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. . Nat. Commun. 12::66
    [Crossref] [Google Scholar]
  87. 87.
    Widjaja AA, Singh BK, Adami E, Viswanathan S, Dong J, et al. 2019.. Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis. . Gastroenterology 157::77792.e14
    [Crossref] [Google Scholar]
  88. 88.
    Zhu C, Kim K, Wang X, Bartolome A, Salomao M, et al. 2018.. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. . Sci. Transl. Med. 10::eaat0344
    [Crossref] [Google Scholar]
  89. 89.
    Kang J, Postigo-Fernandez J, Kim K, Zhu C, Yu J, et al. 2023.. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. . JCI Insight 8::e165369
    [Crossref] [Google Scholar]
  90. 90.
    Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ. 2019.. Cholangiocyte pathobiology. . Nat. Rev. Gastroenterol. Hepatol. 16::26981
    [Crossref] [Google Scholar]
  91. 91.
    Pinto C, Giordano DM, Maroni L, Marzioni M. 2018.. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. . Biochim. Biophys. Acta Mol. Basis Dis. 1864::127078
    [Crossref] [Google Scholar]
  92. 92.
    Gong J, Tu W, Liu J, Tian D. 2022.. Hepatocytes: a key role in liver inflammation. . Front. Immunol. 13::1083780
    [Crossref] [Google Scholar]
  93. 93.
    Balog S, Fujiwara R, Pan SQ, El-Baradie KB, Choi HY, et al. 2023.. Emergence of highly profibrotic and proinflammatory Lrat+Fbln2+ HSC subpopulation in alcoholic hepatitis. . Hepatology 78::21224
    [Crossref] [Google Scholar]
  94. 94.
    Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L, et al. 2021.. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. . JHEP Rep. 3::100278
    [Crossref] [Google Scholar]
  95. 95.
    Rosenthal SB, Liu X, Ganguly S, Dhar D, Pasillas MP, et al. 2021.. Heterogeneity of HSCs in a mouse model of NASH. . Hepatology 74::66785
    [Crossref] [Google Scholar]
  96. 96.
    Krenkel O, Hundertmark J, Ritz TP, Weiskirchen R, Tacke F. 2019.. Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis. . Cells 8::503
    [Crossref] [Google Scholar]
  97. 97.
    Hammoutene A, Rautou PE. 2019.. Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. . J. Hepatol. 70::127891
    [Crossref] [Google Scholar]
  98. 98.
    Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, et al. 2012.. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. . PNAS 109::944853
    [Crossref] [Google Scholar]
  99. 99.
    Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, et al. 2012.. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. . Gastroenterology 143::107383.e22
    [Crossref] [Google Scholar]
  100. 100.
    Glassner A, Eisenhardt M, Kramer B, Korner C, Coenen M, et al. 2012.. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. . Lab. Investig. 92::96777
    [Crossref] [Google Scholar]
  101. 101.
    Jeong WI, Park O, Suh YG, Byun JS, Park SY, et al. 2011.. Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice. . Hepatology 53::134251
    [Crossref] [Google Scholar]
  102. 102.
    Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. 2006.. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. . Gastroenterology 130::43552
    [Crossref] [Google Scholar]
  103. 103.
    Baroni GS, D'Ambrosio L, Curto P, Casini A, Mancini R, et al. 1996.. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. . Hepatology 23::118999
    [Crossref] [Google Scholar]
  104. 104.
    Hammerich L, Bangen JM, Govaere O, Zimmermann HW, Gassler N, et al. 2014.. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. . Hepatology 59::63042
    [Crossref] [Google Scholar]
  105. 105.
    Koda Y, Teratani T, Chu PS, Hagihara Y, Mikami Y, et al. 2021.. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. . Nat. Commun. 12::4474
    [Crossref] [Google Scholar]
  106. 106.
    Mallat A, Preaux AM, Blazejewski S, Rosenbaum J, Dhumeaux D, Mavier P. 1995.. Interferon alfa and gamma inhibit proliferation and collagen synthesis of human Ito cells in culture. . Hepatology 21::100310
    [Crossref] [Google Scholar]
  107. 107.
    Liu M, Hu Y, Yuan Y, Tian Z, Zhang C. 2019.. γδT cells suppress liver fibrosis via strong cytolysis and enhanced NK cell-mediated cytotoxicity against hepatic stellate cells. . Front. Immunol. 10::477
    [Crossref] [Google Scholar]
  108. 108.
    Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, et al. 2012.. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. . PNAS 109::E318695
    [Google Scholar]
  109. 109.
    Rantakari P, Patten DA, Valtonen J, Karikoski M, Gerke H, et al. 2016.. Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury. . PNAS 113::9298303
    [Crossref] [Google Scholar]
  110. 110.
    Shi H, Moore MP, Wang X, Tabas I. 2024.. Efferocytosis in liver disease. . JHEP Rep. 6::100960
    [Crossref] [Google Scholar]
  111. 111.
    Saijou E, Enomoto Y, Matsuda M, Yuet-Yin Kok C, Akira S, et al. 2018.. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model. . Hepatol. Commun. 2::70317
    [Crossref] [Google Scholar]
  112. 112.
    Mabire M, Hegde P, Hammoutene A, Wan J, Caer C, et al. 2023.. MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming. . Nat. Commun. 14::1830
    [Crossref] [Google Scholar]
  113. 113.
    Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, et al. 2014.. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. . Hepatology 59::13042
    [Crossref] [Google Scholar]
  114. 114.
    Iwaki M, Yoneda M, Wada N, Otani T, Kobayashi T, et al. 2024.. Emerging drugs for the treatment of hepatic fibrosis on nonalcoholic steatohepatitis. . Expert Opin. Emerg. Drugs 25::111
    [Google Scholar]
  115. 115.
    Harrison SA, Bedossa P, Guy CD, Schattenberg JM, Loomba R, et al. 2024.. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. . N. Engl. J. Med. 390::497509
    [Crossref] [Google Scholar]
  116. 116.
    Ma P-F, Gao C-C, Yi J, Zhao J-L, Liang S-Q, et al. 2017.. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. . J. Hepatol. 67::77079
    [Crossref] [Google Scholar]
  117. 117.
    Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, et al. 2011.. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. . Hepatology 53::200315
    [Crossref] [Google Scholar]
  118. 118.
    Moroni F, Dwyer BJ, Graham C, Pass C, Bailey L, et al. 2019.. Safety profile of autologous macrophage therapy for liver cirrhosis. . Nat. Med. 25::156065
    [Crossref] [Google Scholar]
  119. 119.
    Brennan PN, MacMillan M, Manship T, Moroni F, Glover A, et al. 2021.. Study protocol: a multicentre, open-label, parallel-group, phase 2, randomised controlled trial of autologous macrophage therapy for liver cirrhosis (MATCH). . BMJ Open 11::e053190
    [Crossref] [Google Scholar]
  120. 120.
    Bartneck M, Koppe C, Fech V, Warzecha KT, Kohlhepp M, et al. 2021.. Roles of CCR2 and CCR5 for hepatic macrophage polarization in mice with liver parenchymal cell-specific NEMO deletion. . Cell Mol. Gastroenterol. Hepatol. 11::32747
    [Crossref] [Google Scholar]
  121. 121.
    Baeck C, Wei X, Bartneck M, Fech V, Heymann F, et al. 2014.. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C+ macrophage infiltration in mice. . Hepatology 59::106072
    [Crossref] [Google Scholar]
  122. 122.
    Lefebvre E, Moyle G, Reshef R, Richman LP, Thompson M, et al. 2016.. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. . PLOS ONE 11::e0158156
    [Crossref] [Google Scholar]
  123. 123.
    Anstee QM, Neuschwander-Tetri BA, Wai-Sun Wong V, Abdelmalek MF, Rodriguez-Araujo G, et al. 2024.. Cenicriviroc lacked efficacy to treat liver fibrosis in nonalcoholic steatohepatitis: AURORA phase III randomized study. . Clin. Gastroenterol. Hepatol. 22::12434.e1
    [Crossref] [Google Scholar]
  124. 124.
    Ratziu V, Sanyal A, Harrison SA, Wong VW, Francque S, et al. 2020.. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. . Hepatology 72::892905
    [Crossref] [Google Scholar]
  125. 125.
    Berry SPD, Dossou C, Kashif A, Sharifinejad N, Azizi G, et al. 2022.. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. . Int. Immunopharmacol. 102::108402
    [Crossref] [Google Scholar]
  126. 126.
    Alegre F, Pelegrin P, Feldstein AE. 2017.. Inflammasomes in liver fibrosis. . Semin. Liver Dis. 37::11927
    [Crossref] [Google Scholar]
  127. 127.
    Tu W, Gawrieh S, Dasarathy S, Mitchell MC, Simonetto DA, et al. 2023.. Design of a multicenter randomized clinical trial for treatment of alcohol-associated hepatitis. . Contemp. Clin. Trials Commun. 32::101074
    [Crossref] [Google Scholar]
  128. 128.
    Li S, Zhou B, Xue M, Zhu J, Tong G, et al. 2023.. Macrophage-specific FGF12 promotes liver fibrosis progression in mice. . Hepatology 77::81633
    [Crossref] [Google Scholar]
  129. 129.
    Seitz T, Hellerbrand C. 2021.. Role of fibroblast growth factor signalling in hepatic fibrosis. . Liver Int. 41::120115
    [Crossref] [Google Scholar]
  130. 130.
    Chavakis T. 2022.. Immunometabolism: where immunology and metabolism meet. . J. Innate Immun. 14::13
    [Crossref] [Google Scholar]
  131. 131.
    Gilgenkrantz H, Mallat A, Moreau R, Lotersztajn S. 2021.. Targeting cell-intrinsic metabolism for antifibrotic therapy. . J. Hepatol. 74::144254
    [Crossref] [Google Scholar]
  132. 132.
    Gilgenkrantz H, Paradis V, Lotersztajn S. 2023.. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. . Hepatology. https://doi.org/10.1097/HEP.0000000000000479
    [Google Scholar]
  133. 133.
    Lodder J, Denaes T, Chobert MN, Wan J, El-Benna J, et al. 2015.. Macrophage autophagy protects against liver fibrosis in mice. . Autophagy 11::128092
    [Crossref] [Google Scholar]
  134. 134.
    Wan J, Weiss E, Ben Mkaddem S, Mabire M, Choinier PM, et al. 2020.. LC3-associated phagocytosis protects against inflammation and liver fibrosis via immunoreceptor inhibitory signaling. . Sci. Transl. Med. 12::eaaw8523
    [Crossref] [Google Scholar]
  135. 135.
    Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, et al. 2020.. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. . J. Hepatol. 73::114454
    [Crossref] [Google Scholar]
  136. 136.
    Gual P, Gilgenkrantz H, Lotersztajn S. 2017.. Autophagy in chronic liver diseases: the two faces of Janus. . Am. J. Physiol. Cell Physiol. 312::C26373
    [Crossref] [Google Scholar]
  137. 137.
    Hammoutene A, Biquard L, Lasselin J, Kheloufi M, Tanguy M, et al. 2020.. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. . J. Hepatol. 72::52838
    [Crossref] [Google Scholar]
  138. 138.
    Ni HM, Woolbright BL, Williams J, Copple B, Cui W, et al. 2014.. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. . J. Hepatol. 61::61725
    [Crossref] [Google Scholar]
  139. 139.
    Baselli GA, Jamialahmadi O, Pelusi S, Ciociola E, Malvestiti F, et al. 2022.. Rare ATG7 genetic variants predispose patients to severe fatty liver disease. . J. Hepatol. 77::596606
    [Crossref] [Google Scholar]
  140. 140.
    Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, et al. 2012.. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. . Gastroenterology 142::93846
    [Crossref] [Google Scholar]
  141. 141.
    Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, et al. 2010.. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. . Science 329::22932
    [Crossref] [Google Scholar]
  142. 142.
    Motino O, Lambertucci F, Anagnostopoulos G, Li S, Nah J, et al. 2022.. ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis. . PNAS 119::e2207344119
    [Crossref] [Google Scholar]
  143. 143.
    Zhu J, Wu J, Frizell E, Liu SL, Bashey R, et al. 1999.. Rapamycin inhibits hepatic stellate cell proliferation in vitro and limits fibrogenesis in an in vivo model of liver fibrosis. . Gastroenterology 117::1198204
    [Crossref] [Google Scholar]
  144. 144.
    Rao J, Wang H, Ni M, Wang Z, Wang Z, et al. 2022.. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. . Gut 71::253950
    [Crossref] [Google Scholar]
  145. 145.
    Mantovani A, Byrne CD, Targher G. 2022.. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. . Lancet Gastroenterol. Hepatol. 7::36778
    [Crossref] [Google Scholar]
  146. 146.
    Loomba R, Friedman SL, Shulman GI. 2021.. Mechanisms and disease consequences of nonalcoholic fatty liver disease. . Cell 184::253764
    [Crossref] [Google Scholar]
  147. 147.
    Tamura YO, Sugama J, Iwasaki S, Sasaki M, Yasuno H, et al. 2021.. Selective acetyl-CoA carboxylase 1 inhibitor improves hepatic steatosis and hepatic fibrosis in a preclinical nonalcoholic steatohepatitis model. . J. Pharmacol. Exp. Ther. 379::28089
    [Crossref] [Google Scholar]
  148. 148.
    Goedeke L, Bates J, Vatner DF, Perry RJ, Wang T, et al. 2018.. Acetyl-CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents. . Hepatology 68::2197211
    [Crossref] [Google Scholar]
  149. 149.
    O'Farrell M, Duke G, Crowley R, Buckley D, Martins EB, et al. 2022.. FASN inhibition targets multiple drivers of NASH by reducing steatosis, inflammation and fibrosis in preclinical models. . Sci. Rep. 12::15661
    [Crossref] [Google Scholar]
  150. 150.
    Esler WP, Cohen DE. 2024.. Pharmacologic inhibition of lipogenesis for the treatment of NAFLD. . J. Hepatol. 80::36277
    [Crossref] [Google Scholar]
  151. 151.
    Itoh M, Tamura A, Kanai S, Tanaka M, Kanamori Y, et al. 2023.. Lysosomal cholesterol overload in macrophages promotes liver fibrosis in a mouse model of NASH. . J. Exp. Med. 220::e20220681
    [Crossref] [Google Scholar]
  152. 152.
    Habib A, Chokr D, Wan J, Hegde P, Mabire M, et al. 2019.. Inhibition of monoacylglycerol lipase, an anti-inflammatory and antifibrogenic strategy in the liver. . Gut 68::52232
    [Crossref] [Google Scholar]
  153. 153.
    Griffett K, Burris TP. 2023.. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. . Front. Med. 10::1102469
    [Crossref] [Google Scholar]
  154. 154.
    Huang P, Kaluba B, Jiang XL, Chang S, Tang XF, et al. 2018.. Liver X receptor inverse agonist SR9243 suppresses nonalcoholic steatohepatitis intrahepatic inflammation and fibrosis. . Biomed. Res. Int. 2018::8071093
    [Google Scholar]
  155. 155.
    Beaven SW, Wroblewski K, Wang J, Hong C, Bensinger S, et al. 2011.. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. . Gastroenterology 140::105262
    [Crossref] [Google Scholar]
  156. 156.
    Sanyal AJ, Ratziu V, Loomba R, Anstee QM, Kowdley KV, et al. 2023.. Results from a new efficacy and safety analysis of the REGENERATE trial of obeticholic acid for treatment of pre-cirrhotic fibrosis due to non-alcoholic steatohepatitis. . J. Hepatol. 79::111020
    [Crossref] [Google Scholar]
  157. 157.
    Francque SM, Bedossa P, Ratziu V, Anstee QM, Bugianesi E, et al. 2021.. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH. . N. Engl. J. Med. 385::154758
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-020524-012013
Loading
/content/journals/10.1146/annurev-pharmtox-020524-012013
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error