1932

Abstract

Sickle cell disease (SCD) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin molecules and thus distortion (sickling) of the red blood cells. SCD causes chronic pain and organ damage and shortens life expectancy. Gene therapy emerges as a potentially curative approach for people with SCD who lack a matched sibling donor for hematopoietic stem cell transplantation. Here, we review recent progress in gene therapy for SCD and focus on innovative technologies that target the genetic roots of the disease. We also review the challenges associated with gene therapy, including oncogenic risks, and the need for refined delivery methods. Despite these hurdles, the rapidly evolving landscape of gene therapy for SCD raises hope for a paradigm shift in the treatment of this debilitating disease. As research progresses, a deeper understanding of the molecular mechanisms involved and continuous improvements in gene-editing technologies promise to bring gene therapy for SCD closer to mainstream clinical application, offering a transformative, curative option for patients with this genetic disorder.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-022124-022000
2025-01-23
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-022124-022000.html?itemId=/content/journals/10.1146/annurev-pharmtox-022124-022000&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    GBD 2021 Sickle Cell Disease Collaborators. 2023.. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021. . Lancet Haematol. 10:(8):e58599
    [Crossref] [Google Scholar]
  2. 2.
    Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, et al. 2010.. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. . Nat. Commun. 1:(1):104
    [Crossref] [Google Scholar]
  3. 3.
    Gupta N, Mocumbi A, Arwal SH, Jain Y, Haileamlak AM, et al. 2021.. Prioritizing health-sector interventions for noncommunicable diseases and injuries in low- and lower-middle income countries: National NCDI Poverty Commissions. . Glob. Health Sci. Pract. 9:(3):62639
    [Crossref] [Google Scholar]
  4. 4.
    Piel FB, Steinberg MH, Rees DC. 2017.. Sickle cell disease. . N. Engl. J. Med. 376:(16):156173
    [Crossref] [Google Scholar]
  5. 5.
    Doerfler PA, Feng R, Li Y, Palmer LE, Porter SN, et al. 2021.. Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. . Nat. Genet. 53:(8):117786
    [Crossref] [Google Scholar]
  6. 6.
    Bauer DE, Orkin SH. 2015.. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. . Curr. Opin. Genet. Dev. 33::6270
    [Crossref] [Google Scholar]
  7. 7.
    Traxler EA, Yao Y, Wang Y-D, Woodard KJ, Kurita R, et al. 2016.. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. . Nat. Med. 22:(9):98790
    [Crossref] [Google Scholar]
  8. 8.
    Nolan VG, Adewoye A, Baldwin C, Wang L, Ma Q, et al. 2006.. Sickle cell leg ulcers: associations with haemolysis and SNPs in Klotho, TEK and genes of the TGF-β/BMP pathway. . Br. J. Haematol. 133:(5):57078
    [Crossref] [Google Scholar]
  9. 9.
    Conran N, Belcher JD. 2018.. Inflammation in sickle cell disease. . Clin. Hemorheol. Microcirc. 68:(2–3):26399
    [Crossref] [Google Scholar]
  10. 10.
    Flanagan JM, Frohlich DM, Howard TA, Schultz WH, Driscoll C, et al. 2011.. Genetic predictors for stroke in children with sickle cell anemia. . Blood 117:(24):668184
    [Crossref] [Google Scholar]
  11. 11.
    Amjad H, Bannerman RM, Judisch JM. 1974.. Letter: sickling pain and season. . Br. Med. J. 2:(5909):54
    [Crossref] [Google Scholar]
  12. 12.
    Blumberg AH, Ebelt ST, Liang D, Morris CR, Sarnat JA. 2020.. Ambient air pollution and sickle cell disease-related emergency department visits in Atlanta, GA. . Environ. Res. 184::109292
    [Crossref] [Google Scholar]
  13. 13.
    Rankine-Mullings AE, Nevitt SJ. 2022.. Hydroxyurea (hydroxycarbamide) for sickle cell disease. . Cochrane Database Syst. Rev. 9:(9):CD002202
    [Google Scholar]
  14. 14.
    Miller ST, Wright E, Abboud M, Berman B, Files B, et al. 2001.. Impact of chronic transfusion on incidence of pain and acute chest syndrome during the Stroke Prevention Trial (STOP) in sickle-cell anemia. . J. Pediatr. 139:(6):78589
    [Crossref] [Google Scholar]
  15. 15.
    Yukata N, Miller ST, Kanter J, Lanzkron S, Smith WR, et al. 2018.. A phase 3 trial of l-glutamine in sickle cell disease. . N. Engl. J. Med. 379:(3):22635
    [Crossref] [Google Scholar]
  16. 16.
    Blair HA. 2020.. Crizanlizumab: first approval. . Drugs 80:(1):7984
    [Crossref] [Google Scholar]
  17. 17.
    Vichinsky E, Hoppe CC, Ataga KI, Ware RE, Nduba V, et al. 2019.. A phase 3 randomized trial of voxelotor in sickle cell disease. . N. Engl. J. Med. 381:(6):50919
    [Crossref] [Google Scholar]
  18. 18.
    De La Fuente J, Gluckman E, Makani J, Telfer P, Faulkner L, et al. 2020.. The role of haematopoietic stem cell transplantation for sickle cell disease in the era of targeted disease-modifying therapies and gene editing. . Lancet Haematol. 7:(12):e90211
    [Crossref] [Google Scholar]
  19. 19.
    Yahouédéhou SCMA, Adorno EV, da Guarda CC, Ndidi US, Carvalho SP, et al. 2018.. Hydroxyurea in the management of sickle cell disease: pharmacogenomics and enzymatic metabolism. . Pharmacogenom. J. 18:(6):73039
    [Crossref] [Google Scholar]
  20. 20.
    Kutlar A, Kanter J, Liles DK, Alvarez OA, Cançado RD, et al. 2019.. Effect of crizanlizumab on pain crises in subgroups of patients with sickle cell disease: a SUSTAIN study analysis. . Am. J. Hematol. 94:(1):5561
    [Crossref] [Google Scholar]
  21. 21.
    Springer Nature. 2023.. Crizanlizumab not superior to placebo and has higher rates of grade ≥3 AEs. . React. Wkly. 1945:(2). https://doi.org/10.1007/s40278-023-34083-6
    [Google Scholar]
  22. 22.
    Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, et al. 2017.. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. . Blood 129:(11):154856
    [Crossref] [Google Scholar]
  23. 23.
    Gluckman E, de la Fuente J, Cappelli B, Scigliuolo GM, Volt F, et al. 2020.. The role of HLA matching in unrelated donor hematopoietic stem cell transplantation for sickle cell disease in Europe. . Bone Marrow Transplant. 55:(10):194654
    [Crossref] [Google Scholar]
  24. 24.
    De la Fuente J, Dhedin N, Koyama T, Bernaudin F, Kuentz M, et al. 2019.. Haploidentical bone marrow transplantation with post-transplantation cyclophosphamide plus thiotepa improves donor engraftment in patients with sickle cell anemia: results of an international learning collaborative. . Biol. Blood Marrow Transplant. 25:(6):1197209
    [Crossref] [Google Scholar]
  25. 25.
    Foell J, Kleinschmidt K, Jakob M, Troeger A, Corbacioglu S. 2020.. Alternative donor: αβ/CD19 T-cell-depleted haploidentical hematopoietic stem cell transplantation for sickle cell disease. . Hematol. Oncol. Stem Cell Ther. 13:(2):98105
    [Crossref] [Google Scholar]
  26. 26.
    Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, et al. 1994.. Mortality in sickle cell disease–life expectancy and risk factors for early death. . N. Engl. J. Med. 330:(23):163944
    [Crossref] [Google Scholar]
  27. 27.
    Ngo S, Bartolucci P, Lobo D, Mekontso-Dessap A, Gellen-Dautremer J, et al. 2014.. Causes of death in sickle cell disease adult patients: old and new trends. . Blood 124:(21):2715
    [Crossref] [Google Scholar]
  28. 28.
    Gardner K, Douiri A, Drasar E, Allman M, Mwirigi A, et al. 2016.. Survival in adults with sickle cell disease in a high-income setting. . Blood 128:(10):143638
    [Crossref] [Google Scholar]
  29. 29.
    Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, et al. 2009.. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. . J. Clin. Investig. 119:(4):96475
    [Crossref] [Google Scholar]
  30. 30.
    Miyoshi H, Blömer U, Takahashi M, Gage FH, Verma IM. 1998.. Development of a self-inactivating lentivirus vector. . J. Virol. 72:(10):815057
    [Crossref] [Google Scholar]
  31. 31.
    Naldini L, Trono D, Verma IM. 2016.. Lentiviral vectors, two decades later. . Science 353:(6304):11012
    [Crossref] [Google Scholar]
  32. 32.
    Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, et al. 1998.. A third-generation lentivirus vector with a conditional packaging system. . J. Virol. 72:(11):846371
    [Crossref] [Google Scholar]
  33. 33.
    Cattoglio C, Pellin D, Rizzi E, Maruggi G, Corti G, et al. 2010.. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. . Blood 116:(25):550717
    [Crossref] [Google Scholar]
  34. 34.
    Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti A. 2022.. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. . Nat. Commun. 13:(1):1315
    [Crossref] [Google Scholar]
  35. 35.
    Ribeil J-A, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, et al. 2017.. Gene therapy in a patient with sickle cell disease. . N. Engl. J. Med. 376:(9):84855
    [Crossref] [Google Scholar]
  36. 36.
    Kanter J, Walters MC, Krishnamurti L, Mapara MY, Kwiatkowski JL, et al. 2022.. Biologic and clinical efficacy of LentiGlobin for sickle cell disease. . N. Engl. J. Med. 386:(7):61728
    [Crossref] [Google Scholar]
  37. 37.
    Jones RJ, DeBaun MR. 2021.. Leukemia after gene therapy for sickle cell disease: insertional mutagenesis, busulfan, both, or neither. . Blood 138:(11):94247
    [Crossref] [Google Scholar]
  38. 38.
    Goyal S, Tisdale J, Schmidt M, Kanter J, Jaroscak J, et al. 2022.. Acute myeloid leukemia case after gene therapy for sickle cell disease. . N. Engl. J. Med. 386:(2):13847
    [Crossref] [Google Scholar]
  39. 39.
    Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, et al. 2021.. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. . N. Engl. J. Med. 384:(3):20515
    [Crossref] [Google Scholar]
  40. 40.
    Grimley M, Asnani M, Shrestha A, Felker S, Lutzko C, et al. 2021.. Safety and efficacy of Aru-1801 in patients with sickle cell disease: early results from the phase 1/2 Momentum Study of a modified gamma globin gene therapy and reduced intensity conditioning. . Blood 138:(Suppl. 1):3970
    [Crossref] [Google Scholar]
  41. 41.
    Lagresle-Peyrou C, Lefrère F, Magrin E, Ribeil JA, Romano O, et al. 2018.. Plerixafor enables safe, rapid, efficient mobilization of hematopoietic stem cells in sickle cell disease patients after exchange transfusion. . Haematologica 103:(5):77886
    [Crossref] [Google Scholar]
  42. 42.
    Brendel C, Guda S, Renella R, Bauer DE, Canver MC, et al. 2016.. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. . J. Clin. Investig. 126:(10):386878
    [Crossref] [Google Scholar]
  43. 43.
    Brendel C, Negre O, Rothe M, Guda S, Parsons G, et al. 2020.. Preclinical evaluation of a novel lentiviral vector driving lineage-specific BCL11A knockdown for sickle cell gene therapy. . Mol. Ther. Methods Clin. Dev. 17::589600
    [Crossref] [Google Scholar]
  44. 44.
    Hsieh MM, Bonner M, Pierciey FJ Jr., Uchida N, Rottman J, et al. 2020.. Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease. . Blood Adv. 4:(9):205863
    [Crossref] [Google Scholar]
  45. 45.
    Spencer Chapman M, Cull AH, Ciuculescu MF, Esrick EB, Mitchell E, et al. 2023.. Clonal selection of hematopoietic stem cells after gene therapy for sickle cell disease. . Nat. Med. 29:(12):317583
    [Crossref] [Google Scholar]
  46. 46.
    Seminog OO, Ogunlaja OI, Yeates D, Goldacre MJ. 2016.. Risk of individual malignant neoplasms in patients with sickle cell disease: English national record linkage study. . J. R. Soc. Med. 109:(8):3039
    [Crossref] [Google Scholar]
  47. 47.
    Brunson A, Keegan THM, Bang H, Mahajan A, Paulukonis S, et al. 2017.. Increased risk of leukemia among sickle cell disease patients in California. . Blood 130:(13):159799
    [Crossref] [Google Scholar]
  48. 48.
    Ghannam JY, Xu X, Maric I, Dillon L, Li Y, et al. 2020.. Baseline TP53 mutations in adults with SCD developing myeloid malignancy following hematopoietic cell transplantation. . Blood 135:(14):118588
    [Google Scholar]
  49. 49.
    Janakiram M, Verma A, Wang Y, Budhathoki A, Suarez Londono J, et al. 2018.. Accelerated leukemic transformation after haplo-identical transplantation for hydroxyurea-treated sickle cell disease. . Leuk. Lymphoma 59:(1):24144
    [Crossref] [Google Scholar]
  50. 50.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, et al. 2014.. Age-related clonal hematopoiesis associated with adverse outcomes. . N. Engl. J. Med. 371:(26):248898
    [Crossref] [Google Scholar]
  51. 51.
    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, et al. 2015.. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. . Blood 126:(1):916
    [Crossref] [Google Scholar]
  52. 52.
    Pincez T, Lee SSK, Ilboudo Y, Preuss M, Pham Hung d'Alexandry d'Orengiani A-L, et al. 2021.. Clonal hematopoiesis in sickle cell disease. . Blood 138:(21):214852
    [Crossref] [Google Scholar]
  53. 53.
    Liggett LA, Cato LD, Weinstock JS, Zhang Y, Nouraie SM, et al. 2022.. Clonal hematopoiesis in sickle cell disease. . J. Clin. Investig. 132:(4):e156060
    [Crossref] [Google Scholar]
  54. 54.
    Lieber MR. 2008.. The mechanism of human nonhomologous DNA end joining. . J. Biol. Chem. 283:(1):15
    [Crossref] [Google Scholar]
  55. 55.
    Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB, et al. 2015.. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. . Nat. Biotechnol. 33:(12):125663
    [Crossref] [Google Scholar]
  56. 56.
    Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, et al. 2016.. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. . Nature 539:(7629):38489
    [Crossref] [Google Scholar]
  57. 57.
    Ferrari S, Jacob A, Beretta S, Unali G, Albano L, et al. 2020.. Efficient gene editing of human long-term hematopoietic stem cells validated by clonal tracking. . Nat. Biotechnol. 38:(11):1298308
    [Crossref] [Google Scholar]
  58. 58.
    Shin JJ, Schröder MS, Caiado F, Wyman SK, Bray NL, et al. 2020.. Controlled cycling and quiescence enables efficient HDR in engraftment-enriched adult hematopoietic stem and progenitor cells. . Cell Rep. 32:(9):108093
    [Crossref] [Google Scholar]
  59. 59.
    Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, et al. 2014.. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. . Nat. Commun. 5:(1):5560
    [Crossref] [Google Scholar]
  60. 60.
    Rivière J, Hauer J, Poirot L, Brochet J, Souque P, et al. 2014.. Variable correction of Artemis deficiency by I-Sce1-meganuclease-assisted homologous recombination in murine hematopoietic stem cells. . Gene Ther. 21:(5):52932
    [Crossref] [Google Scholar]
  61. 61.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, et al. 2014.. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. . N. Engl. J. Med. 370:(10):90110
    [Crossref] [Google Scholar]
  62. 62.
    Doudna JA, Charpentier E. 2014.. The new frontier of genome engineering with CRISPR-Cas9. . Science 346:(6213):1258096
    [Crossref] [Google Scholar]
  63. 63.
    Ledford H, Callaway E. 2020.. Pioneers of revolutionary CRISPR gene editing win Chemistry Nobel. . Nature 586:(7829):34647
    [Crossref] [Google Scholar]
  64. 64.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. 2012.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. . Science 337:(6096):81621
    [Crossref] [Google Scholar]
  65. 65.
    Sharma A, Boelens J-J, Cancio M, Hankins JS, Bhad P, et al. 2023.. CRISPR-Cas9 editing of the HBG1 and HBG2 promoters to treat sickle cell disease. . N. Engl. J. Med. 389:(9):82032
    [Crossref] [Google Scholar]
  66. 66.
    Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA, et al. 2003.. Bcl11a is essential for normal lymphoid development. . Nat. Immunol. 4:(6):52532
    [Crossref] [Google Scholar]
  67. 67.
    Luc S, Huang J, McEldoon JL, Somuncular E, Li D, et al. 2016.. Bcl11a deficiency leads to hematopoietic stem cell defects with an aging-like phenotype. . Cell Rep. 16:(12):318194
    [Crossref] [Google Scholar]
  68. 68.
    Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, et al. 2013.. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. . Science 342:(6155):25357
    [Crossref] [Google Scholar]
  69. 69.
    Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, et al. 2021.. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. . N. Engl. J. Med. 384:(3):25260
    [Crossref] [Google Scholar]
  70. 70.
    Weber L, Frati G, Felix T, Hardouin G, Casini A, et al. 2020.. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. . Sci. Adv. 6:(7):eaay9392
    [Crossref] [Google Scholar]
  71. 71.
    Amendola M, Brusson M, Miccio A. 2022.. CRISPRthripsis: the risk of CRISPR/Cas9-induced chromothripsis in gene therapy. . Stem Cells Transl. Med. 11:(10):10039
    [Crossref] [Google Scholar]
  72. 72.
    Antoniou P, Miccio A, Brusson M. 2021.. Base and prime editing technologies for blood disorders. . Front. Genome Ed. 3::618406
    [Crossref] [Google Scholar]
  73. 73.
    Brusson M, Miccio A. 2021.. Genome editing approaches to β-hemoglobinopathies. . Prog. Mol. Biol. Transl. Sci. 182::15383
    [Crossref] [Google Scholar]
  74. 74.
    Fiumara M, Ferrari S, Omer-Javed A, Beretta S, Albano L, et al. 2024.. Genotoxic effects of base and prime editing in human hematopoietic stem cells. . Nat. Biotechnol. 42:(6):87791
    [Crossref] [Google Scholar]
  75. 75.
    Zeng J, Wu Y, Ren C, Bonanno J, Shen AH, et al. 2020.. Therapeutic base editing of human hematopoietic stem cells. . Nat. Med. 26:(4):53541
    [Crossref] [Google Scholar]
  76. 76.
    Antoniou P, Hardouin G, Martinucci P, Frati G, Felix T, et al. 2022.. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. . Nat. Commun. 13:(1):6618
    [Crossref] [Google Scholar]
  77. 77.
    Mayuranathan T, Newby GA, Feng R, Yao Y, Mayberry KD, et al. 2023.. Potent and uniform fetal hemoglobin induction via base editing. . Nat. Genet. 55:(7):121020
    [Crossref] [Google Scholar]
  78. 78.
    Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto CR, et al. 2021.. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. . Nature 595:(7866):295302
    [Crossref] [Google Scholar]
  79. 79.
    Everette KA, Newby GA, Levine RM, Mayberry K, Jang Y, et al. 2023.. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. . Nat. Biomed. Eng. 7:(5):61628
    [Crossref] [Google Scholar]
  80. 80.
    Li C, Georgakopoulou A, Newby GA, Chen PJ, Everette KA, et al. 2023.. In vivo HSC prime editing rescues sickle cell disease in a mouse model. . Blood 141:(17):2085-99
    [Google Scholar]
  81. 81.
    Breda L, Papp TE, Triebwasser MP, Yadegari A, Fedorky MT, et al. 2023.. In vivo hematopoietic stem cell modification by mRNA delivery. . Science 381:(6656):43643
    [Crossref] [Google Scholar]
  82. 82.
    Philippidis A. 2024.. CASGEVY makes history as FDA approves first CRISPR/Cas9 genome edited therapy. . Hum. Gene Ther. 35:(1–2):14
    [Crossref] [Google Scholar]
  83. 83.
    Magrin E, Semeraro M, Hebert N, Joseph L, Magnani A, et al. 2022.. Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial. . Nat. Med. 28:(1):8188
    [Crossref] [Google Scholar]
  84. 84.
    Alavi A, Krishnamurti L, Abedi M, Galeon I, Reiner D, et al. 2021.. Preliminary safety and efficacy results from precizn-1: an ongoing Phase 1/2 study on zinc finger nuclease-modified autologous CD34+ HSPCs for sickle cell disease (SCD). . Blood 138:(Suppl. 1):2930
    [Crossref] [Google Scholar]
  85. 85.
    Frangoul H, Locatelli F, Sharma A, Bhatia M, Mapara M, et al. 2024.. Exagamglogene autotemcel for severe sickle cell disease. . N. Engl. J. Med. 390:(18):164962
    [Crossref] [Google Scholar]
  86. 86.
    Hanna R, Frangoul H, Mckinney C, Pineiro L, Mapara M, et al. 2023.. S264: EDIT-301 shows promising preliminary safety and efficacy results in the Phase I/II clinical trial (RUBY) of patients with severe sickle cell disease using highly specific and efficient ASCAS12A enzyme. . Hemasphere 7:(Suppl.):e05170e0
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-022124-022000
Loading
/content/journals/10.1146/annurev-pharmtox-022124-022000
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error