1932

Abstract

The increasing prevalence of Parkinson disease (PD) highlights the need to develop interventions aimed at slowing or halting its progression. As a result of sophisticated disease modeling in preclinical studies, and refinement of specific clinical/genetic/pathological profiles, our understanding of PD pathogenesis has grown over the years, leading to the identification of several targets for disease modification. This has translated to the development of targeted therapies, many of which have entered clinical trials. Nonetheless, up until now, none of these treatments have satisfactorily shown disease-modifying effects in PD. In this review, we present the most up-to-date disease-modifying pharmacological interventions in the clinical trial pipeline for PD. We focus on agents that have reached more advanced stages of clinical trials testing, highlighting both positive and negative results, and critically reflect on strengths, weaknesses, and challenges of current disease-modifying therapeutic avenues in PD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-022124-033653
2025-01-23
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-022124-033653.html?itemId=/content/journals/10.1146/annurev-pharmtox-022124-033653&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    GBD 2016 Parkinson's Disease Collaborators. 2018.. Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. . Lancet Neurol. 17::93953
    [Crossref] [Google Scholar]
  2. 2.
    Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, et al. 2020.. Current and projected future economic burden of Parkinson's disease in the U.S. . NPJ Parkinsons Dis. 6::15
    [Crossref] [Google Scholar]
  3. 3.
    Vossius C, Nilsen OB, Larsen JP. 2009.. Parkinson's disease and nursing home placement: the economic impact of the need for care. . Eur. J. Neurol. 16::194200
    [Crossref] [Google Scholar]
  4. 4.
    Lees AJ, Hardy J, Revesz T. 2009.. Parkinson's disease. . Lancet 373::205566
    [Crossref] [Google Scholar]
  5. 5.
    Surmeier DJ, Obeso JA, Halliday GM. 2017.. Selective neuronal vulnerability in Parkinson disease. . Nat. Rev. Neurosci. 18::10113
    [Crossref] [Google Scholar]
  6. 6.
    McFarthing K, Buff S, Rafaloff G, Dominey T, Wyse RK, Stott SRW. 2020.. Parkinson's disease drug therapies in the clinical trial pipeline: 2020. . J. Parkinsons Dis. 10::75774
    [Crossref] [Google Scholar]
  7. 7.
    McFarthing K, Buff S, Rafaloff G, Fiske B, Mursaleen L, et al. 2023.. Parkinson's disease drug therapies in the clinical trial pipeline: 2023 update. . J. Parkinsons Dis. 13::42739
    [Crossref] [Google Scholar]
  8. 8.
    Makky A, Bousset L, Polesel-Maris J, Melki R. 2016.. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein. . Sci. Rep. 6::37970
    [Crossref] [Google Scholar]
  9. 9.
    Stefanis L. 2012.. α-Synuclein in Parkinson's disease. . Cold Spring Harb. Perspect. Med. 2::a009399
    [Crossref] [Google Scholar]
  10. 10.
    Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. 2010.. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. . Science 329::166367
    [Crossref] [Google Scholar]
  11. 11.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. 1997.. α-Synuclein in Lewy bodies. . Nature 388::83940
    [Crossref] [Google Scholar]
  12. 12.
    Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, et al. 2019.. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. . Nat. Neurosci. 22::1099109
    [Crossref] [Google Scholar]
  13. 13.
    Volpicelli-Daley L, Brundin P. 2018.. Prion-like propagation of pathology in Parkinson disease. . Handb. Clin. Neurol. 153::32135
    [Crossref] [Google Scholar]
  14. 14.
    Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, et al. 2004.. α-Synuclein locus duplication as a cause of familial Parkinson's disease. . Lancet 364::116769
    [Crossref] [Google Scholar]
  15. 15.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, et al. 1997.. Mutation in the α-synuclein gene identified in families with Parkinson's disease. . Science 276::204547
    [Crossref] [Google Scholar]
  16. 16.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, et al. 2003.. α-Synuclein locus triplication causes Parkinson's disease. . Science 302::841
    [Crossref] [Google Scholar]
  17. 17.
    Espay AJ, McFarthing K. 2023.. Alpha-synuclein and the Parkinson's disease drug pipeline. . Parkinsonism Relat. Disord. 111::105432
    [Crossref] [Google Scholar]
  18. 18.
    Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, et al. 2022.. Trial of cinpanemab in early Parkinson's disease. . N. Engl. J. Med. 387::40820
    [Crossref] [Google Scholar]
  19. 19.
    Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, et al. 2022.. Trial of prasinezumab in early-stage Parkinson's disease. . N. Engl. J. Med. 387::42132
    [Crossref] [Google Scholar]
  20. 20.
    Brys M, Fanning L, Hung S, Ellenbogen A, Penner N, et al. 2019.. Randomized phase I clinical trial of anti-α-synuclein antibody BIIB054. . Mov. Disord. 34::115463
    [Crossref] [Google Scholar]
  21. 21.
    Jankovic J, Goodman I, Safirstein B, Marmon TK, Schenk DB, et al. 2018.. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. . JAMA Neurol. 75::120614
    [Crossref] [Google Scholar]
  22. 22.
    Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, et al. 2017.. First-in-human assessment of PRX002, an anti-α-synuclein monoclonal antibody, in healthy volunteers. . Mov. Disord. 32::21118
    [Crossref] [Google Scholar]
  23. 23.
    Knecht L, Folke J, Dodel R, Ross JA, Albus A. 2022.. Alpha-synuclein immunization strategies for synucleinopathies in clinical studies: a biological perspective. . Neurotherapeutics 19::1489502
    [Crossref] [Google Scholar]
  24. 24.
    Poewe W, Volc D, Seppi K, Medori R, Luhrs P, et al. 2021.. Safety and tolerability of active immunotherapy targeting α-synuclein with PD03A in patients with early Parkinson's disease: a randomized, placebo-controlled, phase 1 study. . J. Parkinsons Dis. 11::107989
    [Crossref] [Google Scholar]
  25. 25.
    Volc D, Poewe W, Kutzelnigg A, Luhrs P, Thun-Hohenstein C, et al. 2020.. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson's disease: a randomised, single-blinded, phase 1 trial. . Lancet Neurol. 19::591600
    [Crossref] [Google Scholar]
  26. 26.
    Smit JW, Basile P, Prato MK, Detalle L, Mathy FX, et al. 2022.. Phase 1/1b studies of UCB0599, an oral inhibitor of α-synuclein misfolding, including a randomized study in Parkinson's disease. . Mov. Disord. 37::204556
    [Crossref] [Google Scholar]
  27. 27.
    Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, et al. 2013.. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease. . Acta Neuropathol. 125::795813
    [Crossref] [Google Scholar]
  28. 28.
    Levin J, Schmidt F, Boehm C, Prix C, Botzel K, et al. 2014.. The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset. . Acta Neuropathol. 127::77980
    [Crossref] [Google Scholar]
  29. 29.
    Heras-Garvin A, Weckbecker D, Ryazanov S, Leonov A, Griesinger C, et al. 2019.. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. . Mov. Disord. 34::25563
    [Crossref] [Google Scholar]
  30. 30.
    Levin J, Sing N, Melbourne S, Morgan A, Mariner C, et al. 2022.. Safety, tolerability and pharmacokinetics of the oligomer modulator anle138b with exposure levels sufficient for therapeutic efficacy in a murine Parkinson model: a randomised, double-blind, placebo-controlled phase 1a trial. . EBioMedicine 80::104021
    [Crossref] [Google Scholar]
  31. 31.
    Lee JE, Kim HN, Kim D-Y, Shin YJ, Shin JY, Lee PH. 2021.. Memantine exerts neuroprotective effects by modulating α-synuclein transmission in a Parkinsonian model. . Exp. Neurol. 344::113810
    [Crossref] [Google Scholar]
  32. 32.
    Xilouri M, Brekk OR, Stefanis L. 2016.. Autophagy and alpha-synuclein: relevance to Parkinson's disease and related synucleopathies. . Mov. Disord. 31::17892
    [Crossref] [Google Scholar]
  33. 33.
    Kim BS, Jang T, Yoo SE, Lee JM, Kim E. 2021.. Fas-associated factor 1 induces the accumulation of α-synuclein through autophagic suppression in dopaminergic neurons. . FASEB J. 35::e21363
    [Crossref] [Google Scholar]
  34. 34.
    Shin W, Lim KS, Kim MK, Kim HS, Hong J, et al. 2019.. A first-in-human study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of KM-819 (FAS-associated factor 1 inhibitor), a drug for Parkinson's disease, in healthy volunteers. . Drug Des. Dev. Ther. 13::101122
    [Crossref] [Google Scholar]
  35. 35.
    Kim BS, Song JA, Jang KH, Jang T, Jung B, et al. 2022.. Pharmacological intervention targeting FAF1 restores autophagic flux for α-synuclein degradation in the brain of a Parkinson's disease mouse model. . ACS Chem. Neurosci. 13::80617
    [Crossref] [Google Scholar]
  36. 36.
    Sun X, Majumder P, Shioya H, Wu F, Kumar S, et al. 2000.. Activation of the cytoplasmic c-Abl tyrosine kinase by reactive oxygen species. . J. Biol. Chem. 275::1723740
    [Crossref] [Google Scholar]
  37. 37.
    Moresco EM, Koleske AJ. 2003.. Regulation of neuronal morphogenesis and synaptic function by Abl family kinases. . Curr. Opin. Neurobiol. 13::53544
    [Crossref] [Google Scholar]
  38. 38.
    Karim MR, Liao EE, Kim J, Meints J, Martinez HM, et al. 2020.. α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. . Mol. Neurodegener. 15::27
    [Crossref] [Google Scholar]
  39. 39.
    Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. 2014.. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. . Sci. Rep. 4::4874
    [Crossref] [Google Scholar]
  40. 40.
    Hebron ML, Lonskaya I, Moussa CE. 2013.. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson's disease models. . Hum. Mol. Genet. 22::331528
    [Crossref] [Google Scholar]
  41. 41.
    Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, et al. 2019.. Pharmacokinetics and pharmacodynamics of a single dose nilotinib in individuals with Parkinson's disease. . Pharmacol. Res. Perspect. 7::e00470
    [Crossref] [Google Scholar]
  42. 42.
    Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, et al. 2020.. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. . JAMA Neurol. 77::30917
    [Crossref] [Google Scholar]
  43. 43.
    Pagan FL, Wilmarth B, Torres-Yaghi Y, Hebron ML, Mulki S, et al. 2021.. Long-term safety and clinical effects of nilotinib in Parkinson's disease. . Mov. Disord. 36::74049
    [Crossref] [Google Scholar]
  44. 44.
    Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, et al. 2021.. Efficacy of nilotinib in patients with moderately advanced Parkinson disease: a randomized clinical trial. . JAMA Neurol. 78::31220
    [Crossref] [Google Scholar]
  45. 45.
    Cole TA, Zhao H, Collier TJ, Sandoval I, Sortwell CE, et al. 2021.. α-Synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson's disease. . JCI Insight 6::e135633
    [Crossref] [Google Scholar]
  46. 46.
    Bennett CF, Swayze EE. 2010.. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. . Annu. Rev. Pharmacol. Toxicol. 50::25993
    [Crossref] [Google Scholar]
  47. 47.
    Kuo YM, Nwankwo EI, Nussbaum RL, Rogers J, Maccecchini ML. 2019.. Translational inhibition of α-synuclein by Posiphen normalizes distal colon motility in transgenic Parkinson mice. . Am. J. Neurodegener. Dis. 8::115
    [Google Scholar]
  48. 48.
    Fang C, Hernandez P, Liow K, Damiano E, Zetterberg H, et al. 2023.. Buntanetap, a novel translational inhibitor of multiple neurotoxic proteins, proves to be safe and promising in both Alzheimer's and Parkinson's patients. . J. Prev. Alzheimers Dis. 10::2533
    [Crossref] [Google Scholar]
  49. 49.
    Parkkinen L, O'Sullivan SS, Collins C, Petrie A, Holton JL, et al. 2011.. Disentangling the relationship between Lewy bodies and nigral neuronal loss in Parkinson's disease. . J. Parkinsons Dis. 1::27786
    [Crossref] [Google Scholar]
  50. 50.
    Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I. 2005.. α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. . Ann. Neurol. 57::8291
    [Crossref] [Google Scholar]
  51. 51.
    Schneider SA, Alcalay RN. 2017.. Neuropathology of genetic synucleinopathies with parkinsonism: review of the literature. . Mov. Disord. 32::150423
    [Crossref] [Google Scholar]
  52. 52.
    Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, et al. 2013.. Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. . JAMA Neurol. 70::127787
    [Google Scholar]
  53. 53.
    Espay AJ, Okun MS. 2023.. Abandoning the proteinopathy paradigm in Parkinson disease. . JAMA Neurol. 80::12324
    [Crossref] [Google Scholar]
  54. 54.
    Collier TJ, Redmond DE Jr., Steece-Collier K, Lipton JW, Manfredsson FP. 2016.. Is alpha-synuclein loss-of-function a contributor to Parkinsonian pathology? Evidence from non-human primates. . Front. Neurosci. 10::12
    [Crossref] [Google Scholar]
  55. 55.
    Gorbatyuk OS, Li S, Nash K, Gorbatyuk M, Lewin AS, et al. 2010.. In vivo RNAi-mediated α-synuclein silencing induces nigrostriatal degeneration. . Mol. Ther. 18::145057
    [Crossref] [Google Scholar]
  56. 56.
    Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A, et al. 2008.. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. . Lancet Neurol. 7::58390
    [Crossref] [Google Scholar]
  57. 57.
    Zhang Y, Shu L, Sun Q, Zhou X, Pan H, et al. 2018.. Integrated genetic analysis of racial differences of common GBA variants in Parkinson's disease: a meta-analysis. . Front. Mol. Neurosci. 11::43
    [Crossref] [Google Scholar]
  58. 58.
    Day JO, Mullin S. 2021.. The genetics of Parkinson's disease and implications for clinical practice. . Genes 12::1006
    [Crossref] [Google Scholar]
  59. 59.
    Grabowski GA. 2008.. Phenotype, diagnosis, and treatment of Gaucher's disease. . Lancet 372::126371
    [Crossref] [Google Scholar]
  60. 60.
    Stirnemann J, Vigan M, Hamroun D, Heraoui D, Rossi-Semerano L, et al. 2012.. The French Gaucher's disease registry: clinical characteristics, complications and treatment of 562 patients. . Orphanet J. Rare Dis. 7::77
    [Crossref] [Google Scholar]
  61. 61.
    Revel-Vilk S, Fuller M, Zimran A. 2020.. Value of glucosylsphingosine (Lyso-Gb1) as a biomarker in Gaucher disease: a systematic literature review. . Int. J. Mol. Sci. 21::7159
    [Crossref] [Google Scholar]
  62. 62.
    Parlar SC, Grenn FP, Kim JJ, Baluwendraat C, Gan-Or Z. 2023.. Classification of GBA1 variants in Parkinson's disease: the GBA1-PD browser. . Mov. Disord. 38::48995
    [Crossref] [Google Scholar]
  63. 63.
    Menozzi E, Toffoli M, Schapira AHV. 2023.. Targeting the GBA1 pathway to slow Parkinson disease: insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. . Pharmacol. Ther. 246::108419
    [Crossref] [Google Scholar]
  64. 64.
    Do J, McKinney C, Sharma P, Sidransky E. 2019.. Glucocerebrosidase and its relevance to Parkinson disease. . Mol. Neurodegener. 14::36
    [Crossref] [Google Scholar]
  65. 65.
    Gegg ME, Menozzi E, Schapira AHV. 2022.. Glucocerebrosidase-associated Parkinson disease: pathogenic mechanisms and potential drug treatments. . Neurobiol. Dis. 166::105663
    [Crossref] [Google Scholar]
  66. 66.
    Surface M, Balwani M, Waters C, Haimovich A, Gan-Or Z, et al. 2022.. Plasma glucosylsphingosine in GBA1 mutation carriers with and without Parkinson's disease. . Mov. Disord. 37::41621
    [Crossref] [Google Scholar]
  67. 67.
    Lerche S, Schulte C, Wurster I, Machetanz G, Roeben B, et al. 2021.. The mutation matters: CSF profiles of GCase, sphingolipids, α-synuclein in PDGBA. . Mov. Disord. 36::121628
    [Crossref] [Google Scholar]
  68. 68.
    Guedes LC, Chan RB, Gomes MA, Conceição VA, Machado RB, et al. 2017.. Serum lipid alterations in GBA-associated Parkinson's disease. . Parkinsonism Relat. Disord. 44::5865
    [Crossref] [Google Scholar]
  69. 69.
    Gegg ME, Sweet L, Wang BH, Shihabuddin LS, Sardi SP, Schapira AH. 2015.. No evidence for substrate accumulation in Parkinson brains with GBA mutations. . Mov. Disord. 30::108589
    [Crossref] [Google Scholar]
  70. 70.
    Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, et al. 2019.. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. . Mol. Neurodegener. 14::40
    [Crossref] [Google Scholar]
  71. 71.
    Rocha EM, Smith GA, Park E, Cao H, Brown E, et al. 2015.. Progressive decline of glucocerebrosidase in aging and Parkinson's disease. . Ann. Clin. Transl. Neurol. 2::43338
    [Crossref] [Google Scholar]
  72. 72.
    Menozzi E, Schapira AHV. 2020.. Enhancing the activity of glucocerebrosidase as a treatment for Parkinson disease. . CNS Drugs 34::91523
    [Crossref] [Google Scholar]
  73. 73.
    Blandini F, Cilia R, Cerri S, Pezzoli G, Schapira AHV, et al. 2019.. Glucocerebrosidase mutations and synucleinopathies: toward a model of precision medicine. . Mov. Disord. 34::921
    [Crossref] [Google Scholar]
  74. 74.
    Maegawa GH, Tropak MB, Buttner JD, Rigat BA, Fuller M, et al. 2009.. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. . J. Biol. Chem. 284::2350216
    [Crossref] [Google Scholar]
  75. 75.
    McNeill A, Magalhaes J, Shen C, Chau K-Y, Hughes D, et al. 2014.. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. . Brain 137:(Part 5):148195
    [Crossref] [Google Scholar]
  76. 76.
    Migdalska-Richards A, Daly L, Bezard E, Schapira AH. 2016.. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. . Ann. Neurol. 80::76675
    [Crossref] [Google Scholar]
  77. 77.
    Migdalska-Richards A, Ko WKD, Li Q, Bezard E, Schapira AHV. 2017.. Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate. . Synapse 71::e21967
    [Crossref] [Google Scholar]
  78. 78.
    Mullin S, Smith L, Lee K, D'Souza G, Woodgate P, et al. 2020.. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. . JAMA Neurol. 77::42734
    [Crossref] [Google Scholar]
  79. 79.
    Silveira CRA, MacKinley J, Coleman K, Li Z, Finger E, et al. 2019.. Ambroxol as a novel disease-modifying treatment for Parkinson's disease dementia: protocol for a single-centre, randomized, double-blind, placebo-controlled trial. . BMC Neurol. 19::20
    [Crossref] [Google Scholar]
  80. 80.
    Jung O, Patnaik S, Marugan J, Sidransky E, Westbroek W. 2016.. Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its implications for Parkinson disease. . Expert Rev. Proteom. 13::47179
    [Crossref] [Google Scholar]
  81. 81.
    den Heijer JM, Kruithof AC, van Amerongen G, de Kam ML, Thijssen E, et al. 2021.. A randomized single and multiple ascending dose study in healthy volunteers of LTI-291, a centrally penetrant glucocerebrosidase activator. . Br. J. Clin. Pharmacol. 87::356173
    [Crossref] [Google Scholar]
  82. 82.
    Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, et al. 2017.. AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. . Mol. Ther. 25::272742
    [Crossref] [Google Scholar]
  83. 83.
    Rocha EM, Smith GA, Park E, Cao H, Brown E, et al. 2015.. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. . Neurobiol. Dis. 82::495503
    [Crossref] [Google Scholar]
  84. 84.
    Viel C, Clarke J, Kayatekin C, Richards AM, Chiang MSR, et al. 2021.. Preclinical pharmacology of glucosylceramide synthase inhibitor venglustat in a GBA-related synucleinopathy model. . Sci. Rep. 11::20945
    [Crossref] [Google Scholar]
  85. 85.
    Peterschmitt MJ, Saiki H, Hatano T, Gasser T, Isaacson SH, et al. 2022.. Safety, pharmacokinetics, and pharmacodynamics of oral venglustat in patients with Parkinson's disease and a GBA mutation: results from part 1 of the randomized, double-blinded, placebo-controlled MOVES-PD trial. . J. Parkinsons Dis. 12::55770
    [Crossref] [Google Scholar]
  86. 86.
    Giladi N, Alcalay RN, Cutter G, Gasser T, Gurevich T, et al. 2023.. Safety and efficacy of venglustat in GBA1-associated Parkinson's disease: an international, multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. . Lancet Neurol. 22::66171
    [Crossref] [Google Scholar]
  87. 87.
    Sardi SP, Viel C, Clarke J, Treleaven CM, Richards AM, et al. 2017.. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. . PNAS 114::2699704
    [Crossref] [Google Scholar]
  88. 88.
    Steger M, Tonelli F, Ito G, Davies P, Trost M, et al. 2016.. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. . eLife 5::e12813
    [Crossref] [Google Scholar]
  89. 89.
    Rivero-Rios P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. 2020.. LRRK2-related Parkinson's disease due to altered endolysosomal biology with variable Lewy body pathology: a hypothesis. . Front. Neurosci. 14::556
    [Crossref] [Google Scholar]
  90. 90.
    Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, et al. 2006.. LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. . N. Engl. J. Med. 354::42425
    [Crossref] [Google Scholar]
  91. 91.
    Lesage S, Durr A, Tazir M, Lohmann E, Leutenegger AL, et al. 2006.. LRRK2 G2019S as a cause of Parkinson's disease in North African Arabs. . N. Engl. J. Med. 354::42223
    [Crossref] [Google Scholar]
  92. 92.
    Saunders-Pullman R, Alcalay RN, Mirelman A, Wang C, Luciano MS, et al. 2015.. REM sleep behavior disorder, as assessed by questionnaire, in G2019S LRRK2 mutation PD and carriers. . Mov. Disord. 30::183439
    [Crossref] [Google Scholar]
  93. 93.
    Alcalay RN, Mirelman A, Saunders-Pullman R, Tang MX, Mejia Santana H, et al. 2013.. Parkinson disease phenotype in Ashkenazi Jews with and without LRRK2 G2019S mutations. . Mov. Disord. 28::196671
    [Crossref] [Google Scholar]
  94. 94.
    Marras C, Alcalay RN, Caspell-Garcia C, Coffey C, Chan P, et al. 2016.. Motor and nonmotor heterogeneity of LRRK2-related and idiopathic Parkinson's disease. . Mov. Disord. 31::1192202
    [Crossref] [Google Scholar]
  95. 95.
    Kuwahara T, Iwatsubo T. 2020.. The emerging functions of LRRK2 and Rab GTPases in the endolysosomal system. . Front. Neurosci. 14::227
    [Crossref] [Google Scholar]
  96. 96.
    Alessi DR, Sammler E. 2018.. LRRK2 kinase in Parkinson's disease. . Science 360::3637
    [Crossref] [Google Scholar]
  97. 97.
    Gómez-Suaga P, Luzón-Toro B, Churamani D, Zhang L, Bloor-Young D, et al. 2012.. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. . Hum. Mol. Genet. 21::51125
    [Crossref] [Google Scholar]
  98. 98.
    West AB, Moore DJ, Choi C, Andrabi SA, Li X, et al. 2007.. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. . Hum. Mol. Genet. 16::22332
    [Crossref] [Google Scholar]
  99. 99.
    Azeggagh S, Berwick DC. 2022.. The development of inhibitors of leucine-rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. . Br. J. Pharmacol. 179::147895
    [Crossref] [Google Scholar]
  100. 100.
    Anand VS, Reichling LJ, Lipinski K, Stochaj W, Duan W, et al. 2009.. Investigation of leucine-rich repeat kinase 2: enzymological properties and novel assays. . FEBS J. 276::46678
    [Crossref] [Google Scholar]
  101. 101.
    Hu J, Zhang D, Tian K, Ren C, Li H, et al. 2023.. Small-molecule LRRK2 inhibitors for PD therapy: current achievements and future perspectives. . Eur. J. Med. Chem. 256::115475
    [Crossref] [Google Scholar]
  102. 102.
    Naskar A, Bhanja KK, Roy RK, Patra N. 2023.. Role of the residue Q1919 in increasing kinase activity of G2019S LRRK2 kinase: a computational study. . Chemphyschem 24::e202300306
    [Crossref] [Google Scholar]
  103. 103.
    Jennings D, Huntwork-Rodriguez S, Vissers MFJM, Daryani VM, Diaz D, et al. 2023.. LRRK2 inhibition by BIIB122 in healthy participants and patients with Parkinson's disease. . Mov. Disord. 38::38698
    [Crossref] [Google Scholar]
  104. 104.
    Biogen. 2023.. Statement: Biogen provides update on Parkinson's disease clinical development program. News release, June 5 , Biogen:. https://investors.biogen.com/news-releases/news-release-details/statement-biogen-provides-update-parkinsons-disease-clinical
    [Google Scholar]
  105. 105.
    Jennings D, Huntwork-Rodriguez S, Henry AG, Sasaki JC, Meisner R, et al. 2022.. Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson's disease. . Sci. Transl. Med. 14::eabj2658
    [Crossref] [Google Scholar]
  106. 106.
    Deniston CK, Salogiannis J, Mathea S, Snead DM, Lahiri I, et al. 2020.. Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. . Nature 588::34449
    [Crossref] [Google Scholar]
  107. 107.
    Schaffner A, Li X, Gomez-Llorente Y, Leandrou E, Memou A, et al. 2019.. Vitamin B12 modulates Parkinson's disease LRRK2 kinase activity through allosteric regulation and confers neuroprotection. . Cell Res. 29::31329
    [Crossref] [Google Scholar]
  108. 108.
    Li T, He X, Thomas JM, Yang D, Zhong S, et al. 2015.. A novel GTP-binding inhibitor, FX2149, attenuates LRRK2 toxicity in Parkinson's disease models. . PLOS ONE 10::e0122461
    [Crossref] [Google Scholar]
  109. 109.
    Li T, Yang D, Zhong S, Thomas JM, Xue F, et al. 2014.. Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models. . Hum. Mol. Genet. 23::621222
    [Crossref] [Google Scholar]
  110. 110.
    Ramírez MB, Ordóñez AJL, Fdez E, Madero-Pérez J, Gonnelli A, et al. 2017.. GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. . Hum. Mol. Genet. 26::274767
    [Crossref] [Google Scholar]
  111. 111.
    Zhao HT, John N, Delic V, Ikeda-Lee K, Kim A, et al. 2017.. LRRK2 antisense oligonucleotides ameliorate α-synuclein inclusion formation in a Parkinson's disease mouse model. . Mol. Ther. Nucleic Acids 8::50819
    [Crossref] [Google Scholar]
  112. 112.
    Gegg ME, Burke D, Heales SJ, Cooper JM, Hardy J, et al. 2012.. Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. . Ann. Neurol. 72::45563
    [Crossref] [Google Scholar]
  113. 113.
    Di Maio R, Hoffman EK, Rocha EM, Keeney MT, Sanders LH, et al. 2018.. LRRK2 activation in idiopathic Parkinson's disease. . Sci. Transl. Med. 10::eaar5429
    [Crossref] [Google Scholar]
  114. 114.
    Naaldijk Y, Fernández B, Fasiczka R, Fdez E, Leghay C, et al. 2024.. A potential patient stratification biomarker for Parkinson's disease based on LRRK2 kinase-mediated centrosomal alterations in peripheral blood-derived cells. . NPJ Parkinsons Dis. 10::12
    [Crossref] [Google Scholar]
  115. 115.
    Thaler A, Omer N, Giladi N, Gurevich T, Bar-Shira A, et al. 2021.. Biochemical markers for severity and risk in GBA and LRRK2 Parkinson's disease. . J. Neurol. 268::151725
    [Crossref] [Google Scholar]
  116. 116.
    Omer N, Giladi N, Gurevich T, Bar-Shira A, Gana-Weisz M, et al. 2022.. Glucocerebrosidase activity is not associated with Parkinson's disease risk or severity. . Mov. Disord. 37::19095
    [Crossref] [Google Scholar]
  117. 117.
    Fuji RN, Flagella M, Baca M, Baptista MA, Brodbeck J, et al. 2015.. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. . Sci. Transl. Med. 7::273ra15
    [Crossref] [Google Scholar]
  118. 118.
    Gomes S, Garrido A, Tonelli F, Obiang D, Tolosa E, et al. 2023.. Elevated urine BMP phospholipids in LRRK2 and VPS35 mutation carriers with and without Parkinson's disease. . NPJ Parkinsons Dis. 9::52
    [Crossref] [Google Scholar]
  119. 119.
    Alcalay RN, Hsieh F, Tengstrand E, Padmanabhan S, Baptista M, et al. 2020.. Higher urine bis(monoacylglycerol)phosphate levels in LRRK2 G2019S mutation carriers: implications for therapeutic development. . Mov. Disord. 35::13441
    [Crossref] [Google Scholar]
  120. 120.
    Merchant KM, Simuni T, Fedler J, Caspell-Garcia C, Brumm M, et al. 2023.. LRRK2 and GBA1 variant carriers have higher urinary bis(monacylglycerol) phosphate concentrations in PPMI cohorts. . NPJ Parkinsons Dis. 9::30
    [Crossref] [Google Scholar]
  121. 121.
    Baptista MAS, Merchant K, Barrett T, Bhargava S, Bryce DK, et al. 2020.. LRRK2 inhibitors induce reversible changes in nonhuman primate lungs without measurable pulmonary deficits. . Sci. Transl. Med. 12::eaav0820
    [Crossref] [Google Scholar]
  122. 122.
    Bryce DK, Ware CM, Woodhouse JD, Ciaccio PJ, Ellis JM, et al. 2021.. Characterization of the onset, progression, and reversibility of morphological changes in mouse lung after pharmacological inhibition of leucine-rich kinase 2 kinase activity. . J. Pharmacol. Exp. Ther. 377::1119
    [Crossref] [Google Scholar]
  123. 123.
    Greenland JC, Cutting E, Kadyan S, Bond S, Chhabra A, Williams-Gray CH. 2020.. Azathioprine immunosuppression and disease modification in Parkinson's disease (AZA-PD): a randomised double-blind placebo-controlled phase II trial protocol. . BMJ Open 10::e040527
    [Crossref] [Google Scholar]
  124. 124.
    Grozdanov V, Bliederhaeuser C, Ruf WP, Roth V, Fundel-Clemens K, et al. 2014.. Inflammatory dysregulation of blood monocytes in Parkinson's disease patients. . Acta Neuropathol. 128::65163
    [Crossref] [Google Scholar]
  125. 125.
    Kosloski LM, Kosmacek EA, Olson KE, Mosley RL, Gendelman HE. 2013.. GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. . J. Neuroimmunol. 265::110
    [Crossref] [Google Scholar]
  126. 126.
    Saunders JA, Estes KA, Kosloski LM, Allen HE, Dempsey KM, et al. 2012.. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson's disease. . J. Neuroimmune Pharmacol. 7::92738
    [Crossref] [Google Scholar]
  127. 127.
    Holmans P, Moskvina V, Jones L, Sharma M, International Parkinson's Disease Genomics Consortium, et al . 2013.. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease. . Hum. Mol. Genet. 22::103949
    [Crossref] [Google Scholar]
  128. 128.
    Saiki M, Baker A, Williams-Gray CH, Foltynie T, Goodman RS, et al. 2010.. Association of the human leucocyte antigen region with susceptibility to Parkinson's disease. . J. Neurol. Neurosurg. Psychiatry 81::89091
    [Crossref] [Google Scholar]
  129. 129.
    Reading CL, Ahlem CN, Murphy MF. 2021.. NM101 phase III study of NE3107 in Alzheimer's disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. . Neurodegener. Dis. Manag. 11::28998
    [Crossref] [Google Scholar]
  130. 130.
    Kulich SM, Chu CT. 2001.. Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson's disease. . J. Neurochem. 77::105866
    [Crossref] [Google Scholar]
  131. 131.
    Zhu JH, Kulich SM, Oury TD, Chu CT. 2002.. Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in Lewy body diseases. . Am. J. Pathol. 161::208798
    [Crossref] [Google Scholar]
  132. 132.
    Olson KE, Namminga KL, Lu Y, Schwab AD, Thurston MJ, et al. 2021.. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson's disease. . eBioMedicine 67::103380
    [Crossref] [Google Scholar]
  133. 133.
    Gendelman HE, Zhang Y, Santamaria P, Olson KE, Schutt CR, et al. 2017.. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson's disease trial. . NPJ Parkinsons Dis. 3::10
    [Crossref] [Google Scholar]
  134. 134.
    Olson KE, Abdelmoaty MM, Namminga KL, Lu Y, Obaro H, et al. 2023.. An open-label multiyear study of sargramostim-treated Parkinson's disease patients examining drug safety, tolerability, and immune biomarkers from limited case numbers. . Transl. Neurodegener. 12::26
    [Crossref] [Google Scholar]
  135. 135.
    Nguyen LTN, Nguyen HD, Kim YJ, Nguyen TT, Lai TT, et al. 2022.. Role of NLRP3 inflammasome in Parkinson's disease and therapeutic considerations. . J. Parkinsons Dis. 12::211733
    [Crossref] [Google Scholar]
  136. 136.
    Nguyen TTH, Fournier A, Courtois E, Artaud F, Escolano S, et al. 2023.. Statin use and incidence of Parkinson's disease in women from the French E3N Cohort Study. . Mov. Disord. 38::85465
    [Crossref] [Google Scholar]
  137. 137.
    Nedelec T, Couvy-Duchesne B, Darves-Bornoz A, Couronne R, Monnet F, et al. 2023.. A comparison between early presentation of dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease: evidence from routine primary care and UK Biobank Data. . Ann. Neurol. 94::25970
    [Crossref] [Google Scholar]
  138. 138.
    Stevens KN, Creanor S, Jeffery A, Whone A, Zajicek J, et al. 2022.. Evaluation of simvastatin as a disease-modifying treatment for patients with Parkinson disease: a randomized clinical trial. . JAMA Neurol. 79::123241
    [Crossref] [Google Scholar]
  139. 139.
    Lin CH, Chang CH, Tai CH, Cheng MF, Chen YC, et al. 2021.. A double-blind, randomized, controlled trial of lovastatin in early-stage Parkinson's disease. . Mov. Disord. 36::122937
    [Crossref] [Google Scholar]
  140. 140.
    Athauda D, Foltynie T. 2016.. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. . Drug Discov. Today 21::80218
    [Crossref] [Google Scholar]
  141. 141.
    Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Kahan J, et al. 2014.. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease. . J. Parkinsons Dis. 4::33744
    [Crossref] [Google Scholar]
  142. 142.
    Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, et al. 2017.. Exenatide once weekly versus placebo in Parkinson's disease: a randomised, double-blind, placebo-controlled trial. . Lancet 390::166475
    [Crossref] [Google Scholar]
  143. 143.
    Vijiaratnam N, Girges C, Auld G, Chau M, Maclagan K, et al. 2021.. Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson's disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: the ‘Exenatide-PD3’ study. . BMJ Open. 11::e047993
    [Crossref] [Google Scholar]
  144. 144.
    Meissner WG, Remy P, Giordana C, Maltete D, Derkinderen P, et al. 2024.. Trial of lixisenatide in early Parkinson's disease. . N. Engl. J. Med. 390::117685
    [Crossref] [Google Scholar]
  145. 145.
    McGarry A, Rosanbalm S, Leinonen M, Olanow CW, To D, et al. 2024.. Safety, tolerability, and efficacy of NLY01 in early untreated Parkinson's disease: a randomised, double-blind, placebo-controlled trial. . Lancet Neurol. 23::3745
    [Crossref] [Google Scholar]
  146. 146.
    Payne T, Appleby M, Buckley E, van Gelder LMA, Mullish BH, et al. 2023.. A double-blind, randomized, placebo-controlled trial of ursodeoxycholic acid (UDCA) in Parkinson's disease. . Mov. Disord. 38::1493502
    [Crossref] [Google Scholar]
  147. 147.
    Guttuso T Jr., Shepherd R, Frick L, Feltri ML, Frerichs V, et al. 2023.. Lithium's effects on therapeutic targets and MRI biomarkers in Parkinson's disease: a pilot clinical trial. . IBRO Neurosci. Rep. 14::42934
    [Crossref] [Google Scholar]
  148. 148.
    Patterson CG, Joslin E, Gil AB, Spigle W, Nemet T, et al. 2022.. Study in Parkinson's disease of exercise phase 3 (SPARX3): study protocol for a randomized controlled trial. . Trials 23::855
    [Crossref] [Google Scholar]
  149. 149.
    Menozzi E, Macnaughtan J, Schapira AHV. 2021.. The gut–brain axis and Parkinson disease: clinical and pathogenetic relevance. . Ann. Med. 53::61125
    [Crossref] [Google Scholar]
  150. 150.
    Tsukita K, Sakamaki-Tsukita H, Takahashi R. 2022.. Long-term effect of regular physical activity and exercise habits in patients with early Parkinson disease. . Neurology 98::e85971
    [Crossref] [Google Scholar]
  151. 151.
    Foltynie T, Gandhi S, Gonzalez-Robles C, Zeissler ML, Mills G, et al. 2023.. Towards a multi-arm multi-stage platform trial of disease modifying approaches in Parkinson's disease. . Brain 146::271722
    [Crossref] [Google Scholar]
  152. 152.
    Parkinson Study Group SURE-PD3 Investigators, Schwarzschild MA, Ascherio A, Casaceli C, Curhan GC, et al. 2021.. Effect of urate-elevating inosine on early Parkinson disease progression: the SURE-PD3 randomized clinical trial. . JAMA 326::92639
    [Crossref] [Google Scholar]
  153. 153.
    Devos D, Labreuche J, Rascol O, Corvol JC, Duhamel A, et al. 2022.. Trial of deferiprone in Parkinson's disease. . N. Engl. J. Med. 387::204555
    [Crossref] [Google Scholar]
  154. 154.
    Gonzalez-Robles C, Bartlett M, Burnell M, Clarke CS, Haar S, et al. 2024.. Embedding patient input in outcome measures for long-term disease-modifying Parkinson disease trials. . Mov. Disord. 39:(2):43338
    [Crossref] [Google Scholar]
  155. 155.
    Gonzalez-Robles C, Weil RS, van Wamelen D, Bartlett M, Burnell M, et al. 2023.. Outcome measures for disease-modifying trials in Parkinson's disease: consensus paper by the EJS ACT-PD multi-arm multi-stage trial initiative. . J. Parkinsons Dis. 13::101133
    [Crossref] [Google Scholar]
  156. 156.
    Mestre TA, Macklin EA, Ascherio A, Ferreira JJ, Lang AE, et al. 2021.. Expectations of benefit in a trial of a candidate disease-modifying treatment for Parkinson disease. . Mov. Disord. 36::196467
    [Crossref] [Google Scholar]
  157. 157.
    Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, et al. 2024.. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. . Lancet Neurol. 23::17890
    [Crossref] [Google Scholar]
  158. 158.
    Horsager J, Andersen KB, Knudsen K, Skjaerbaek C, Fedorova TD, et al. 2020.. Brain-first versus body-first Parkinson's disease: a multimodal imaging case-control study. . Brain 143::307788
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-022124-033653
Loading
/content/journals/10.1146/annurev-pharmtox-022124-033653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error