1932

Abstract

Drugs represent our first, and sometimes last, line of defense for many diseases, yet despite decades of research we still do not fully understand why a given drug works in one patient and fails in the next. The human gut microbiome is one of the missing puzzle pieces, due to its ability to parallel and extend host pathways for drug metabolism, along with more complex host–microbiome interactions. Herein, we focus on the well-established links between the gut microbiome and drugs for heart disease and cancer, plus emerging data on neurological disease. We highlight the interdisciplinary methods that are available and how they can be used to address major remaining knowledge gaps, including the consequences of microbial drug metabolism for treatment outcomes. Continued progress in this area promises fundamental biological insights into humans and their associated microbial communities and strategies for leveraging the microbiome to improve the practice of medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-022724-100847
2025-01-23
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-022724-100847.html?itemId=/content/journals/10.1146/annurev-pharmtox-022724-100847&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, et al. 2021.. A unified catalog of 204,938 reference genomes from the human gut microbiome. . Nat. Biotechnol. 39:(1):10514
    [Crossref] [Google Scholar]
  2. 2.
    Human Microbiome Project Consortium. 2012.. Structure, function and diversity of the healthy human microbiome. . Nature 486:(7402):20714
    [Crossref] [Google Scholar]
  3. 3.
    Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. 2023.. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. . Nat. Rev. Microbiol. 21:(4):23647
    [Crossref] [Google Scholar]
  4. 4.
    Koropatkin NM, Cameron EA, Martens EC. 2012.. How glycan metabolism shapes the human gut microbiota. . Nat. Rev. Microbiol. 10:(5):32335
    [Crossref] [Google Scholar]
  5. 5.
    Koppel N, Maini Rekdal V, Balskus EP. 2017.. Chemical transformation of xenobiotics by the human gut microbiota. . Science 356:(6344):eaag2770
    [Crossref] [Google Scholar]
  6. 6.
    Bisanz JE, Spanogiannopoulos P, Pieper LM, Bustion AE, Turnbaugh PJ. 2018.. How to determine the role of the microbiome in drug disposition. . Drug Metab. Dispos. 46:(11):158895
    [Crossref] [Google Scholar]
  7. 7.
    Heirali A, Moossavi S, Arrieta MC, Coburn B. 2023.. Principles and terminology for host-microbiome-drug interactions. . Open Forum Infect. Dis. 10:(5):ofad195
    [Crossref] [Google Scholar]
  8. 8.
    Sonnenburg JL, Bäckhed F. 2016.. Diet-microbiota interactions as moderators of human metabolism. . Nature 535:(7610):5664
    [Crossref] [Google Scholar]
  9. 9.
    Ansaldo E, Farley TK, Belkaid Y. 2021.. Control of immunity by the microbiota. . Annu. Rev. Immunol. 39::44979
    [Crossref] [Google Scholar]
  10. 10.
    Mak K-K, Epemolu O, Pichika MR. 2022.. The role of DMPK science in improving pharmaceutical research and development efficiency. . Drug Discov. Today 27:(3):70529
    [Crossref] [Google Scholar]
  11. 11.
    Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. 2019.. Mapping human microbiome drug metabolism by gut bacteria and their genes. . Nature 570:(7762):46267
    [Crossref] [Google Scholar]
  12. 12.
    Klünemann M, Andrejev S, Blasche S, Mateus A, Phapale P, et al. 2021.. Bioaccumulation of therapeutic drugs by human gut bacteria. . Nature 597:(7877):53338
    [Crossref] [Google Scholar]
  13. 13.
    Javdan B, Lopez JG, Chankhamjon P, Lee Y-CJ, Hull R, et al. 2020.. Personalized mapping of drug metabolism by the human gut microbiome. . Cell 181:(7):166179.e22
    [Crossref] [Google Scholar]
  14. 14.
    Brunton L, Chabner BA, Knollmann BC, eds. 2011.. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York:: McGraw Hill. , 12th ed..
    [Google Scholar]
  15. 15.
    Lindenbaum J, Rund DG, Butler VP Jr., Tse-Eng D, Saha JR. 1981.. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. . N. Engl. J. Med. 305:(14):78994
    [Crossref] [Google Scholar]
  16. 16.
    Saha JR, Butler VP Jr., Neu HC, Lindenbaum J. 1983.. Digoxin-inactivating bacteria: identification in human gut flora. . Science 220:(4594):32527
    [Crossref] [Google Scholar]
  17. 17.
    Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 2013.. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. . Science 341:(6143):29598
    [Crossref] [Google Scholar]
  18. 18.
    Koppel N, Bisanz JE, Pandelia M-E, Turnbaugh PJ, Balskus EP. 2018.. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. . eLife 7::e33953
    [Crossref] [Google Scholar]
  19. 19.
    Alexander M, Ang QY, Nayak RR, Bustion AE, Sandy M, et al. 2022.. Human gut bacterial metabolism drives Th17 activation and colitis. . Cell Host Microbe 30:(1):1730.e9
    [Crossref] [Google Scholar]
  20. 20.
    Dong X, Guthrie BGH, Alexander M, Noecker C, Ramirez L, et al. 2022.. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. . Nat. Commun. 13:(1):7624
    [Crossref] [Google Scholar]
  21. 21.
    Schnell A, Littman DR, Kuchroo VK. 2023.. TH17 cell heterogeneity and its role in tissue inflammation. . Nat. Immunol. 24:(1):1929
    [Crossref] [Google Scholar]
  22. 22.
    Kyaw TS, Zhang C, Sandy M, Trepka K, Zhang S, et al. 2024.. Human gut Actinobacteria boost drug absorption by secreting P-glycoprotein ATPase inhibitors. . iScience 27::110122
    [Crossref] [Google Scholar]
  23. 23.
    Kyaw TS, Turnbaugh PJ. 2022.. Tiny gatekeepers: microbial control of host drug transporters. . Clin. Pharmacol. Ther. 112:(3):44345
    [Crossref] [Google Scholar]
  24. 24.
    Degraeve AL, Haufroid V, Loriot A, Gatto L, Andries V, et al. 2023.. Gut microbiome modulates tacrolimus pharmacokinetics through the transcriptional regulation of ABCB1. . Microbiome 11:(1):138
    [Crossref] [Google Scholar]
  25. 25.
    Foley SE, Tuohy C, Dunford M, Grey MJ, De Luca H, et al. 2021.. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. . Microbiome 9:(1):183
    [Crossref] [Google Scholar]
  26. 26.
    Fuentes AV, Pineda MD, Venkata KCN. 2018.. Comprehension of top 200 prescribed drugs in the US as a resource for pharmacy teaching, training and practice. . Pharmacy 6:(2):43
    [Crossref] [Google Scholar]
  27. 27.
    Stancu C, Sima A. 2001.. Statins: mechanism of action and effects. . J. Cell. Mol. Med. 5:(4):37887
    [Crossref] [Google Scholar]
  28. 28.
    Escalante V, Nayak RR, Noecker C, Babdor J, Spitzer M, et al. 2024.. Simvastatin induces human gut bacterial cell surface genes. . Mol. Microbiol. 122:(3):37286
    [Crossref] [Google Scholar]
  29. 29.
    Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, et al. 2018.. Extensive impact of non-antibiotic drugs on human gut bacteria. . Nature 555:(7698):62328
    [Crossref] [Google Scholar]
  30. 30.
    Zhao L, Chang W-C, Xiao Y, Liu H-W, Liu P. 2013.. Methylerythritol phosphate pathway of isoprenoid biosynthesis. . Annu. Rev. Biochem. 82::497530
    [Crossref] [Google Scholar]
  31. 31.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, et al. 2006.. Metagenomic analysis of the human distal gut microbiome. . Science 312:(5778):135559
    [Crossref] [Google Scholar]
  32. 32.
    Yoo D-H, Kim IS, Van Le TK, Jung I-H, Yoo HH, Kim D-H. 2014.. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. . Drug Metab. Dispos. 42:(9):150813
    [Crossref] [Google Scholar]
  33. 33.
    Đanić M, Pavlović N, Lazarević S, Stanimirov B, Vukmirović S, et al. 2023.. Bioaccumulation and biotransformation of simvastatin in probiotic bacteria: a step towards better understanding of drug–bile acids–microbiome interactions. . Front. Pharmacol. 14::1111115
    [Crossref] [Google Scholar]
  34. 34.
    Ricaurte D, Huang Y, Sheth RU, Gelsinger DR, Kaufman A, Wang HH. 2024.. High-throughput transcriptomics of 409 bacteria-drug pairs reveals drivers of gut microbiota perturbation. . Nat. Microbiol. 9::56175
    [Crossref] [Google Scholar]
  35. 35.
    Wilmanski T, Kornilov SA, Diener C, Conomos MP, Lovejoy JC, et al. 2022.. Heterogeneity in statin responses explained by variation in the human gut microbiome. . Med 3:(6):388405.e6
    [Crossref] [Google Scholar]
  36. 36.
    Vieira-Silva S, Falony G, Belda E, Nielsen T, Aron-Wisnewsky J, et al. 2020.. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. . Nature 581:(7808):31015
    [Crossref] [Google Scholar]
  37. 37.
    Kaddurah-Daouk R, Baillie RA, Zhu H, Zeng Z-B, Wiest MM, et al. 2011.. Enteric microbiome metabolites correlate with response to simvastatin treatment. . PLOS ONE 6:(10):e25482
    [Crossref] [Google Scholar]
  38. 38.
    Ang QY, Alba DL, Upadhyay V, Bisanz JE, Cai J, et al. 2021.. The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health. . eLife 10::e70349
    [Crossref] [Google Scholar]
  39. 39.
    He X, Zheng N, He J, Liu C, Feng J, et al. 2017.. Gut microbiota modulation attenuated the hypolipidemic effect of simvastatin in high-fat/cholesterol-diet fed mice. . J. Proteome Res. 16:(5):190010
    [Crossref] [Google Scholar]
  40. 40.
    Yoo HH, Kim IS, Yoo D-H, Kim D-H. 2016.. Effects of orally administered antibiotics on the bioavailability of amlodipine: gut microbiota-mediated drug interaction. . J. Hypertens. 34:(1):15662
    [Crossref] [Google Scholar]
  41. 41.
    Zhou S, Ko T-P, Huang J-W, Liu W, Zheng Y, et al. 2020.. Structure of a gut microbial diltiazem-metabolizing enzyme suggests possible substrate binding mode. . Biochem. Biophys. Res. Commun. 527:(3):799804
    [Crossref] [Google Scholar]
  42. 42.
    Chen B, Sun L, Zeng G, Shen Z, Wang K, et al. 2022.. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. . Nature 610:(7932):56268
    [Crossref] [Google Scholar]
  43. 43.
    Upadhyay V, Turnbaugh PJ. 2022.. nicX-ing bad habits with your microbial friends. . Nat. Metab. 4:(11):144243
    [Crossref] [Google Scholar]
  44. 44.
    Pasupuleti S, Sule N, Cohn WB, MacKenzie DS, Jayaraman A, Manson MD. 2014.. Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid. . J. Bacteriol. 196:(23):39924000
    [Crossref] [Google Scholar]
  45. 45.
    Lefkowitz RJ, Caron MG. 1988.. Adrenergic receptors. Models for the study of receptors coupled to guanine nucleotide regulatory proteins. . J. Biol. Chem. 263:(11):499396
    [Crossref] [Google Scholar]
  46. 46.
    Moreira CG, Sperandio V. 2010.. The epinephrine/norepinephrine/autoinducer-3 interkingdom signaling system in Escherichia coli O157:H7. . In Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health, ed. M Lyte, PPE Freestone , pp. 21327. New York:: Springer
    [Google Scholar]
  47. 47.
    Walters M, Sperandio V. 2006.. Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. . Infect. Immun. 74:(10):544555
    [Crossref] [Google Scholar]
  48. 48.
    Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V. 2009.. The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). . PLOS Pathog. 5:(8):e1000553
    [Crossref] [Google Scholar]
  49. 49.
    Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, et al. 2012.. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. . Am. J. Physiol. Gastrointest. Liver Physiol. 303:(11):G128895
    [Crossref] [Google Scholar]
  50. 50.
    Heinhuis KM, Ros W, Kok M, Steeghs N, Beijnen JH, Schellens JHM. 2019.. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. . Ann. Oncol. 30:(2):21935
    [Crossref] [Google Scholar]
  51. 51.
    Kratz F, Müller IA, Ryppa C, Warnecke A. 2008.. Prodrug strategies in anticancer chemotherapy. . ChemMedChem 3:(1):2053
    [Crossref] [Google Scholar]
  52. 52.
    Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. 2016.. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. . Nat. Rev. Microbiol. 14:(5):27387
    [Crossref] [Google Scholar]
  53. 53.
    Bailly C. 2019.. Irinotecan: 25 years of cancer treatment. . Pharmacol. Res. 148::104398
    [Crossref] [Google Scholar]
  54. 54.
    Wallace BD, Wang H, Lane KT, Scott JE, Orans J, et al. 2010.. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. . Science 330:(6005):83135
    [Crossref] [Google Scholar]
  55. 55.
    Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, et al. 2015.. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. . Chem. Biol. 22:(9):123849
    [Crossref] [Google Scholar]
  56. 56.
    Meng J, Abu YF, Zhang Y, Zhou Y, Xie Y, et al. 2023.. Opioid-induced microbial dysbiosis disrupts irinotecan (CPT-11) metabolism and increases gastrointestinal toxicity in a murine model. . Br. J. Pharmacol. 180:(10):136278
    [Crossref] [Google Scholar]
  57. 57.
    Spanogiannopoulos P, Kyaw TS, Guthrie BGH, Bradley PH, Lee JV, et al. 2022.. Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. . Nat. Microbiol. 7:(10):160520
    [Crossref] [Google Scholar]
  58. 58.
    Zwart NRK, Franken MD, Tissing WJE, Lubberman FJE, McKay JA, et al. 2023.. Folate, folic acid, and chemotherapy-induced toxicities: a systematic literature review. . Crit. Rev. Oncol. Hematol. 188::104061
    [Crossref] [Google Scholar]
  59. 59.
    Scott TA, Quintaneiro LM, Norvaisas P, Lui PP, Wilson MP, et al. 2017.. Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. . Cell 169:(3):44256.e18
    [Crossref] [Google Scholar]
  60. 60.
    Rosener B, Sayin S, Oluoch PO, García González AP, Mori H, et al. 2020.. Evolved bacterial resistance against fluoropyrimidines can lower chemotherapy impact in the Caenorhabditis elegans host. . eLife 9::e59831
    [Crossref] [Google Scholar]
  61. 61.
    Osterlund P, Ruotsalainen T, Korpela R, Saxelin M, Ollus A, et al. 2007.. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: a randomised study. . Br. J. Cancer 97:(8):102834
    [Crossref] [Google Scholar]
  62. 62.
    Chang C-W, Liu C-Y, Lee H-C, Huang Y-H, Li L-H, et al. 2018.. Lactobacillus casei variety rhamnosus probiotic preventively attenuates 5-fluorouracil/oxaliplatin-induced intestinal injury in a syngeneic colorectal cancer model. . Front. Microbiol. 9::983
    [Crossref] [Google Scholar]
  63. 63.
    Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, et al. 2020.. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. . Science 368:(6494):97380
    [Crossref] [Google Scholar]
  64. 64.
    LaCourse KD, Zepeda-Rivera M, Kempchinsky AG, Baryiames A, Minot SS, et al. 2022.. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota. . Cell Rep. 41:(7):111625
    [Crossref] [Google Scholar]
  65. 65.
    Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, et al. 2017.. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. . Science 357:(6356):115660
    [Crossref] [Google Scholar]
  66. 66.
    Sayin S, Rosener B, Li CG, Ho B, Ponomarova O, et al. 2023.. Evolved bacterial resistance to the chemotherapy gemcitabine modulates its efficacy in co-cultured cancer cells. . eLife 12::e83140
    [Crossref] [Google Scholar]
  67. 67.
    Hargadon KM, Johnson CE, Williams CJ. 2018.. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. . Int. Immunopharmacol. 62::2939
    [Crossref] [Google Scholar]
  68. 68.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, et al. 2015.. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. . Science 350:(6264):108489
    [Crossref] [Google Scholar]
  69. 69.
    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, et al. 2015.. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. . Science 350:(6264):107984
    [Crossref] [Google Scholar]
  70. 70.
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, et al. 2018.. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. . Science 359:(6371):9197
    [Crossref] [Google Scholar]
  71. 71.
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, et al. 2018.. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. . Science 359:(6371):97103
    [Crossref] [Google Scholar]
  72. 72.
    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, et al. 2018.. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. . Science 359:(6371):1048
    [Crossref] [Google Scholar]
  73. 73.
    Lee KA, Thomas AM, Bolte LA, Björk JR, de Ruijter LK, et al. 2022.. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. . Nat. Med. 28:(3):53544
    [Crossref] [Google Scholar]
  74. 74.
    Kyaw TS, Upadhyay V, Tolstykh I, Van Loon K, Laffan A, et al. 2023.. Variety of fruit and vegetables and alcohol intake are associated with gut microbial species and gene abundance in colorectal cancer survivors. . Am. J. Clin. Nutr. 118:(3):51829
    [Crossref] [Google Scholar]
  75. 75.
    Piawah S, Kyaw TS, Trepka K, Stewart AL, Mora RV, et al. 2023.. Associations between the gut microbiota, race, and ethnicity of patients with colorectal cancer: a pilot and feasibility study. . Cancers 15:(18):4546
    [Crossref] [Google Scholar]
  76. 76.
    Hu M, Lin X, Sun T, Shao X, Huang X, et al. 2024.. Gut microbiome for predicting immune checkpoint blockade-associated adverse events. . Genome Med. 16:(1):16
    [Crossref] [Google Scholar]
  77. 77.
    Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, et al. 2020.. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. . Science 369:(6510):148189
    [Crossref] [Google Scholar]
  78. 78.
    DeFilipp Z, Maus MV. 2023.. Linking the microbiome to CAR-T cell responses. . Nat. Med. 29::78586
    [Crossref] [Google Scholar]
  79. 79.
    Martino M, Alati C, Canale FA, Musuraca G, Martinelli G, Cerchione C. 2021.. A review of clinical outcomes of CAR T-cell therapies for B-acute lymphoblastic leukemia. . Int. J. Mol. Sci. 22:(4):2150
    [Crossref] [Google Scholar]
  80. 80.
    Sacchetti B, Botticelli A, Pierelli L, Nuti M, Alimandi M. 2019.. CAR-T with license to kill solid tumors in search of a winning strategy. . Int. J. Mol. Sci. 20:(8):1903
    [Crossref] [Google Scholar]
  81. 81.
    Smith M, Dai A, Ghilardi G, Amelsberg KV, Devlin SM, et al. 2022.. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. . Nat. Med. 28:(4):71323
    [Crossref] [Google Scholar]
  82. 82.
    Hu Y, Li J, Ni F, Yang Z, Gui X, et al. 2022.. CAR-T cell therapy-related cytokine release syndrome and therapeutic response is modulated by the gut microbiome in hematologic malignancies. . Nat. Commun. 13:(1):5313
    [Crossref] [Google Scholar]
  83. 83.
    Stein-Thoeringer CK, Saini NY, Zamir E, Blumenberg V, Schubert M-L, et al. 2023.. A non-antibiotic-disrupted gut microbiome is associated with clinical responses to CD19-CAR-T cell cancer immunotherapy. . Nat. Med. 29:(4):90616
    [Crossref] [Google Scholar]
  84. 84.
    Uribe-Herranz M, Beghi S, Ruella M, Parvathaneni K, Salaris S, et al. 2023.. Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy. . Mol. Ther. 31:(3):686700
    [Crossref] [Google Scholar]
  85. 85.
    Mayer EA, Nance K, Chen S. 2022.. The gut–brain axis. . Annu. Rev. Med. 73::43953
    [Crossref] [Google Scholar]
  86. 86.
    Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. 2019.. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. . Science 363:(6427):eaat9931
    [Crossref] [Google Scholar]
  87. 87.
    Ovallath S, Sulthana B. 2017.. Levodopa: history and therapeutic applications. . Ann. Indian Acad. Neurol. 20:(3):18589
    [Crossref] [Google Scholar]
  88. 88.
    Ahlskog JE, Muenter MD. 2001.. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. . Mov. Disord. 16:(3):44858
    [Crossref] [Google Scholar]
  89. 89.
    Katz R. 2008.. Carbidopa-levodopa [package insert]. . Bristol-Myers Squibb. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/017555Orig1s069.pdf
  90. 90.
    Williams M, ed. 2006.. Comprehensive Medicinal Chemistry II, Vol. 6: Therapeutic Areas I. London:: Elsevier. 863 pp.
    [Google Scholar]
  91. 91.
    Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. 2019.. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. . Science 364:(6445):eaau6323
    [Crossref] [Google Scholar]
  92. 92.
    van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, et al. 2019.. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. . Nat. Commun. 10:(1):310
    [Crossref] [Google Scholar]
  93. 93.
    Liu F, Xu W, Du L, Wang D, Zhu Y, et al. 2014.. Heterologous expression and characterization of tyrosine decarboxylase from Enterococcus faecalis R612Z1 and Enterococcus faecium R615Z1. . J. Food Prot. 77:(4):59298
    [Crossref] [Google Scholar]
  94. 94.
    van Kessel SP, de Jong HR, Winkel SL, van Leeuwen SS, Nelemans SA, et al. 2020.. Gut bacterial deamination of residual levodopa medication for Parkinson's disease. . BMC Biol. 18:(1):137
    [Crossref] [Google Scholar]
  95. 95.
    Cirstea MS, Creus-Cuadros A, Lo C, Yu AC, Serapio-Palacios A, et al. 2023.. A novel pathway of levodopa metabolism by commensal Bifidobacteria. . Sci. Rep. 13:(1):19155
    [Crossref] [Google Scholar]
  96. 96.
    Zhang Y, He X, Mo C, Liu X, Li J, et al. 2022.. Association between microbial tyrosine decarboxylase gene and levodopa responsiveness in patients with Parkinson disease. . Neurology 99:(22):e244353
    [Crossref] [Google Scholar]
  97. 97.
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, et al. 2015.. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. . Cell 161:(2):26476
    [Crossref] [Google Scholar]
  98. 98.
    Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, et al. 2015.. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. . FASEB J. 29:(4):1395403
    [Crossref] [Google Scholar]
  99. 99.
    Fung TC, Vuong HE, Luna CDG, Pronovost GN, Aleksandrova AA, et al. 2019.. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. . Nat. Microbiol. 4:(12):206473
    [Crossref] [Google Scholar]
  100. 100.
    Jackson MA, Verdi S, Maxan M-E, Shin CM, Zierer J, et al. 2018.. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. . Nat. Commun. 9:(1):2655
    [Crossref] [Google Scholar]
  101. 101.
    Bharwani A, Bala A, Surette M, Bienenstock J, Vigod SN, Taylor VH. 2020.. Gut microbiome patterns associated with treatment response in patients with major depressive disorder. . Can. J. Psychiatry 65:(4):27880
    [Crossref] [Google Scholar]
  102. 102.
    Zhang L, Meng J, Ban Y, Jalodia R, Chupikova I, et al. 2019.. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome. . PNAS 116:(27):1352332
    [Crossref] [Google Scholar]
  103. 103.
    Kang M, Mischel RA, Bhave S, Komla E, Cho A, et al. 2017.. The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. . Sci. Rep. 7::42658
    [Crossref] [Google Scholar]
  104. 104.
    Li T, Ding N, Guo H, Hua R, Lin Z, et al. 2024.. A gut microbiota-bile acid axis promotes intestinal homeostasis upon aspirin-mediated damage. . Cell Host Microbe 32:(2):191208.e9
    [Crossref] [Google Scholar]
  105. 105.
    Li D, Chen Y, Wan M, Mei F, Wang F, et al. 2024.. Oral magnesium prevents acetaminophen-induced acute liver injury by modulating microbial metabolism. . Cell Host Microbe 32:(1):4862.e9
    [Crossref] [Google Scholar]
  106. 106.
    Scheline RR. 1968.. Drug metabolism by intestinal microorganisms. . J. Pharm. Sci. 57:(12):202137
    [Crossref] [Google Scholar]
  107. 107.
    Savage DC. 1977.. Microbial ecology of the gastrointestinal tract. . Annu. Rev. Microbiol. 31::10733
    [Crossref] [Google Scholar]
  108. 108.
    Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, et al. 2016.. Population-level analysis of gut microbiome variation. . Science 352:(6285):56064
    [Crossref] [Google Scholar]
  109. 109.
    Liu H, Shiver AL, Price MN, Carlson HK, Trotter VV, et al. 2021.. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. . Cell Rep. 34:(9):108789
    [Crossref] [Google Scholar]
  110. 110.
    Peters JM, Koo B-M, Patino R, Heussler GE, Hearne CC, et al. 2019.. Enabling genetic analysis of diverse bacteria with mobile-CRISPRi. . Nat. Microbiol. 4:(2):24450
    [Crossref] [Google Scholar]
  111. 111.
    Bustion AE, Nayak RR, Agrawal A, Turnbaugh PJ, Pollard KS. 2023.. SIMMER employs similarity algorithms to accurately identify human gut microbiome species and enzymes capable of known chemical transformations. . eLife 12::e82401
    [Crossref] [Google Scholar]
  112. 112.
    Mallory EK, Acharya A, Rensi SE, Turnbaugh PJ, Bright RA, Altman RB. 2018.. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome. . Pac. Symp. Biocomput. 23::5667
    [Google Scholar]
  113. 113.
    Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, et al. 2018.. The MetaCyc database of metabolic pathways and enzymes. . Nucleic Acids Res. 46:(D1):D63339
    [Crossref] [Google Scholar]
  114. 114.
    Artacho A, Isaac S, Nayak R, Flor-Duro A, Alexander M, et al. 2021.. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis. . Arthritis Rheumatol. 73:(6):93142
    [Crossref] [Google Scholar]
  115. 115.
    Yu T, Cui H, Li JC, Luo Y, Jiang G, Zhao H. 2023.. Enzyme function prediction using contrastive learning. . Science 379:(6639):135863
    [Crossref] [Google Scholar]
  116. 116.
    Wolfson SJ, Hitchings R, Peregrina K, Cohen Z, Khan S, et al. 2022.. Bacterial hydrogen sulfide drives cryptic redox chemistry in gut microbial communities. . Nat. Metab. 4:(10):126070
    [Crossref] [Google Scholar]
  117. 117.
    Pieper LM, Spanogiannopoulos P, Volk RF, Miller CJ, Wright AT, Turnbaugh PJ. 2023.. The global anaerobic metabolism regulator fnr is necessary for the degradation of food dyes and drugs by Escherichia coli. . mBio 14:(5):e0157323
    [Crossref] [Google Scholar]
  118. 118.
    Nayak RR, Alexander M, Deshpande I, Stapleton-Gray K, Rimal B, et al. 2021.. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. . Cell Host Microbe 29:(3):36277.e11
    [Crossref] [Google Scholar]
  119. 119.
    Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, et al. 2019.. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. . Cell 178:(4):795806.e12
    [Crossref] [Google Scholar]
  120. 120.
    Lam KN, Alexander M, Turnbaugh PJ. 2019.. Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes. . Cell Host Microbe 26:(1):2234
    [Crossref] [Google Scholar]
  121. 121.
    Lam KN, Spanogiannopoulos P, Soto-Perez P, Alexander M, Nalley MJ, et al. 2021.. Phage-delivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. . Cell Rep. 37:(5):109930
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-022724-100847
Loading
/content/journals/10.1146/annurev-pharmtox-022724-100847
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error