1932

Abstract

Transient receptor potential canonical (TRPC) proteins assemble to form homo- or heterotetrameric, nonselective cation channels permeable to K+, Na+, and Ca2+. TRPC channels are thought to act as complex integrators of physical and chemical environmental stimuli. Although the understanding of essential physiological roles of TRPC channels is incomplete, their implication in various pathological mechanisms and conditions of the nervous system, kidneys, and cardiovascular system in combination with the lack of major adverse effects of TRPC knockout or TRPC channel inhibition is driving the search of TRPC channel modulators as potential therapeutics. Here, we review the most promising small-molecule TRPC channel modulators, the understanding of their mode of action, and their potential in the study and treatment of cardiovascular and metabolic disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030121-122314
2022-01-06
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-030121-122314.html?itemId=/content/journals/10.1146/annurev-pharmtox-030121-122314&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C 1995. TRPC1, a human homolog of a Drosophila store-operated channel. PNAS 92:219652–56
    [Google Scholar]
  2. 2. 
    Hardie RC. 2007. TRP channels and lipids: from Drosophila to mammalian physiology. J. Physiol. 578:19–24
    [Google Scholar]
  3. 3. 
    Clapham DE. 2003. TRP channels as cellular sensors. Nature 426:6966517–24
    [Google Scholar]
  4. 4. 
    Abramowitz J, Birnbaumer L. 2009. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:2297–328
    [Google Scholar]
  5. 5. 
    Vannier B, Peyton M, Boulay G, Brown D, Qin N et al. 1999. Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. PNAS 96:52060–64
    [Google Scholar]
  6. 6. 
    Montell C. 2005. The TRP superfamily of cation channels. Sci. STKE 2005:272re3
    [Google Scholar]
  7. 7. 
    Schaefer M, Plant TD, Stresow N, Albrecht N, Schultz G 2002. Functional differences between TRPC4 splice variants. J. Biol. Chem. 277:53752–59
    [Google Scholar]
  8. 8. 
    Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:7517–29
    [Google Scholar]
  9. 9. 
    Beech DJ. 2013. Characteristics of transient receptor potential canonical calcium-permeable channels and their relevance to vascular physiology and disease. Circ. J. 77:3570–79
    [Google Scholar]
  10. 10. 
    Zeng F, Xu S-Z, Jackson PK, McHugh D, Kumar B et al. 2004. Human TRPC5 channel activated by a multiplicity of signals in a single cell. J. Physiol. 559:3739–50
    [Google Scholar]
  11. 11. 
    Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. 2000. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275:2317517–26
    [Google Scholar]
  12. 12. 
    Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. 2001. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:3645–55
    [Google Scholar]
  13. 13. 
    Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A et al. 2008. TRPC channel activation by extracellular thioredoxin. Nature 451:717469–72
    [Google Scholar]
  14. 14. 
    Obukhov AG, Nowycky MC. 2005. A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. J. Neurosci. 25:51234–39
    [Google Scholar]
  15. 15. 
    Sukumar P, Sedo A, Li J, Wilson LA, Regan DO et al. 2012. Constitutively active TRPC channels of adipocytes confer a mechanism for sensing dietary fatty acids and regulating adiponectin. Circ. Res. 111:2191–200
    [Google Scholar]
  16. 16. 
    Beech DJ. 2007. Canonical transient receptor potential 5. Handb. Exp. Pharmacol. 179:109–23
    [Google Scholar]
  17. 17. 
    Jeon J-P, Hong C, Park EJ, Jeon J-H, Cho N-H et al. 2012. Selective Gαi subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels. J. Biol. Chem. 287:2117029–39
    [Google Scholar]
  18. 18. 
    Xu S-Z, Muraki K, Zeng F, Li J, Sukumar P et al. 2006. A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circ. Res. 98:111381–89
    [Google Scholar]
  19. 19. 
    Large WA, Saleh SN, Albert AP. 2009. Role of phosphoinositol 4,5-bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium 45:574–82
    [Google Scholar]
  20. 20. 
    Zhu MH, Chae M, Kim HJ, Lee YM, Kim MJ et al. 2005. Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am. J. Physiol. Cell Physiol. 289:3C591–600
    [Google Scholar]
  21. 21. 
    Hui H, McHugh D, Hannan M, Zeng F, Xu S-Z et al. 2006. Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J. Physiol. 572:1165–72
    [Google Scholar]
  22. 22. 
    Blair NT, Kaczmarek JS, Clapham DE. 2009. Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J. Gen. Physiol. 133:5525–46
    [Google Scholar]
  23. 23. 
    Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. 1999. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:6716259–63
    [Google Scholar]
  24. 24. 
    Storch U, Forst A-L, Pardatscher F, Erdogmus S, Philipp M et al. 2017. Dynamic NHERF interaction with TRPC4/5 proteins is required for channel gating by diacylglycerol. PNAS 114:1E37–46
    [Google Scholar]
  25. 25. 
    Mederos y Schnitzler M, Gudermann T, Storch U. 2018. Emerging roles of diacylglycerol-sensitive TRPC4/5 channels. Cells 7:11218
    [Google Scholar]
  26. 26. 
    AL-Shawaf E, Tumova S, Naylor J, Majeed Y, Li J, Beech DJ 2011. GVI phospholipase A2 role in the stimulatory effect of sphingosine-1-phosphate on TRPC5 cationic channels. Cell Calcium 50:4343–50
    [Google Scholar]
  27. 27. 
    Semtner M, Schaefer M, Pinkenburg O, Plant TD. 2007. Potentiation of TRPC5 by protons. J. Biol. Chem. 282:4633868–78
    [Google Scholar]
  28. 28. 
    Thakur DP, Wang Q, Jeon J, Tian J, Zhu MX. 2020. Intracellular acidification facilitates receptor-operated TRPC4 activation through PLCδ1 in a Ca2+-dependent manner. J. Physiol. 598:132651–67
    [Google Scholar]
  29. 29. 
    Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS et al. 2011. Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. PNAS 108:4418114–19
    [Google Scholar]
  30. 30. 
    Basbaum AI, Bautista DM, Scherrer G, Julius D 2009. Cellular and molecular mechanisms of pain. Cell 139:2267–84
    [Google Scholar]
  31. 31. 
    Bernal L, Sotelo-Hitschfeld P, König C, Sinica V, Wyatt A et al. 2021. Odontoblast TRPC5 channels signal cold pain in teeth. Sci. Adv. 7:13eabf5567
    [Google Scholar]
  32. 32. 
    Hofmann T, Schaefer M, Schultz G, Gudermann T. 2002. Subunit composition of mammalian transient receptor potential channels in living cells. PNAS 99:117461–66
    [Google Scholar]
  33. 33. 
    Beech DJ, Xu SZ, McHugh D, Flemming R. 2003. TRPC1 store-operated cationic channel subunit. Cell Calcium 33:5–6433–40
    [Google Scholar]
  34. 34. 
    Storch U, Forst AL, Philipp M, Gudermann T, Mederos Y, Schnitzler M. 2012. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J. Biol. Chem. 287:53530–40
    [Google Scholar]
  35. 35. 
    Bocksteins E, Snyders DJ. 2012. Electrically silent Kv subunits: their molecular and functional characteristics. Physiology 27:273–84
    [Google Scholar]
  36. 36. 
    Minard A, Bauer C, Wright D, Rubaiy H, Muraki K et al. 2018. Remarkable progress with small-molecule modulation of TRPC1/4/5 channels: implications for understanding the channels in health and disease. Cells 7:652
    [Google Scholar]
  37. 37. 
    Bon RS, Beech DJ. 2013. In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels—mirage or pot of gold?. Br. J. Pharmacol. 170:3459–74
    [Google Scholar]
  38. 38. 
    Camacho Londoño JE, Marx A, Kraft AE, Schürger A, Richter C et al. 2020. Angiotensin-II-evoked Ca2+ entry in murine cardiac fibroblasts does not depend on TRPC channels. Cells 9:2322
    [Google Scholar]
  39. 39. 
    Wang H, Cheng X, Tian J, Xiao Y, Tian T et al. 2020. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol. Ther. 209:107497
    [Google Scholar]
  40. 40. 
    Sharma S, Hopkins CR. 2019. Review of transient receptor potential canonical (TRPC5) channel modulators and diseases. J. Med. Chem. 62:177589–602
    [Google Scholar]
  41. 41. 
    Tiapko O, Groschner K. 2018. TRPC3 as a target of novel therapeutic interventions. Cells 7:783
    [Google Scholar]
  42. 42. 
    Curcic S, Tiapko O, Groschner K. 2019. Photopharmacology and opto-chemogenetics of TRPC channels—some therapeutic visions. Pharmacol. Ther. 200:13–26
    [Google Scholar]
  43. 43. 
    Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS et al. 2015.. (−)- EnglerinA is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew. Chem. Int. Ed. Engl. 54:123787–91
    [Google Scholar]
  44. 44. 
    Ludlow MJ, Gaunt HJ, Rubaiy HN, Musialowski KE, Blythe NM et al. 2017. (−)-Englerin A-evoked cytotoxicity is mediated by Na+ influx and counteracted by Na+/K+ -ATPase. J. Biol. Chem. 292:2723–31
    [Google Scholar]
  45. 45. 
    Carson C, Raman P, Tullai J, Xu L, Henault M et al. 2015. Englerin A agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation. PLOS ONE 10:6e0127498
    [Google Scholar]
  46. 46. 
    Muraki K, Ohnishi K, Takezawa A, Suzuki H, Hatano N et al. 2017. Na+ entry through heteromeric TRPC4/C1 channels mediates (−)Englerin A-induced cytotoxicity in synovial sarcoma cells. Sci. Rep. 7:116988
    [Google Scholar]
  47. 47. 
    Melnyk MI, Dryn DO, Al Kury LT, Dziuba DO, Zholos AV 2020. Suppression of mICAT in mouse small intestinal myocytes by general anaesthetic ketamine and its recovery by TRPC4 agonist (-)-englerin A. Front. Pharmacol. 11:594882
    [Google Scholar]
  48. 48. 
    Wang X, Dande RR, Yu H, Samelko B, Miller RE et al. 2018. TRPC5 does not cause or aggravate glomerular disease. J. Am. Soc. Nephrol. 29:2409–15
    [Google Scholar]
  49. 49. 
    Cheung SY, Henrot M, Al-Saad M, Baumann M, Muller H et al. 2018. TRPC4/TRPC5 channels mediate adverse reaction to the cancer cell cytotoxic agent (-)-Englerin A. Oncotarget 9:5129634–43
    [Google Scholar]
  50. 50. 
    Minard A, Bauer CC, Chuntharpursat-Bon E, Pickles IB, Wright DJ et al. 2019. Potent, selective, and subunit-dependent activation of TRPC5 channels by a xanthine derivative. Br. J. Pharmacol. 176:203924–38
    [Google Scholar]
  51. 51. 
    Bauer CC, Minard A, Pickles IB, Simmons KJ, Chuntharpursat-Bon E et al. 2020. Xanthine-based photoaffinity probes allow assessment of ligand engagement by TRPC5 channels. RSC Chem. Biol. 1:5436–48
    [Google Scholar]
  52. 52. 
    Richter JM, Schaefer M, Hill K. 2014. Riluzole activates TRPC5 channels independently of PLC activity. Br. J. Pharmacol. 171:1158–70
    [Google Scholar]
  53. 53. 
    Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M et al. 2017. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358:63681332–36
    [Google Scholar]
  54. 54. 
    Bellingham MC. 2011. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: What have we learned in the last decade?. CNS Neurosci. Ther. 17:14–31
    [Google Scholar]
  55. 55. 
    Qu C, Ding M, Zhu Y, Lu Y, Du J et al. 2017. Pyrazolopyrimidines as potent stimulators for transient receptor potential canonical 3/6/7 channels. J. Med. Chem. 60:114680–92
    [Google Scholar]
  56. 56. 
    Ding M, Wang H, Qu C, Xu F, Zhu Y et al. 2018. Pyrazolo[1,5-a]pyrimidine TRPC6 antagonists for the treatment of gastric cancer. Cancer Lett 432:47–55
    [Google Scholar]
  57. 57. 
    Xu X, Lozinskaya I, Costell M, Lin Z, Ball JA et al. 2013. Characterization of small molecule TRPC3 and TRPC6 agonist and antagonists. Biophys. J. 104:2454a
    [Google Scholar]
  58. 58. 
    Doleschal B, Primessnig U, Wolkart G, Wolf S, Schernthaner M et al. 2015. TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1. Cardiovasc. Res. 106:1163–73
    [Google Scholar]
  59. 59. 
    Tiapko O, Shrestha N, Lindinger S, Guedes de la Cruz G, Graziani A et al. 2019. Lipid-independent control of endothelial and neuronal TRPC3 channels by light. Chem. Sci. 10:92837–42
    [Google Scholar]
  60. 60. 
    Lichtenegger M, Tiapko O, Svobodova B, Stockner T, Glasnov TN et al. 2018. An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nat. Chem. Biol. 14:4396–404
    [Google Scholar]
  61. 61. 
    Bai Y, Yu X, Chen H, Horne D, White R et al. 2020. Structural basis for pharmacological modulation of the TRPC6 channel. eLife 9:e53311
    [Google Scholar]
  62. 62. 
    Chenard BL, Gallaschun RJ. 2014. Substituted xanthines and methods of use thereof WO Patent 2014/143799
    [Google Scholar]
  63. 63. 
    Rubaiy HN, Ludlow MJ, Henrot M, Gaunt HJ, Miteva K et al. 2017. Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. J. Biol. Chem. 292:208158–73
    [Google Scholar]
  64. 64. 
    Just S, Chenard BL, Ceci A, Strassmaier T, Chong A et al. 2018. Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice. PLOS ONE 13:1e0191225
    [Google Scholar]
  65. 65. 
    Bauer C, Minard A, Pickles I, Burnham M, Kapur N et al. 2020. Xanthine-based photoaffinity probes allow assessment of ligand engagement by TRPC5 channels. RSC Chem. Biol. 1:436–48
    [Google Scholar]
  66. 66. 
    Wright DJ, Simmons KJ, Johnson RM, Beech DJ, Muench SP, Bon RS. 2020. Human TRPC5 structures reveal interaction of a xanthine-based TRPC1/4/5 inhibitor with a conserved lipid binding site. Commun. Biol. 3:1704
    [Google Scholar]
  67. 67. 
    Yu Y, Liang Q, Liu H, Luo Z, Hu H et al. 2019. Development of a carbon-11 PET radiotracer for imaging TRPC5 in the brain. Org. Biomol. Chem. 17:5586–94
    [Google Scholar]
  68. 68. 
    Yu Y, Liang Q, Du L, Jiang H, Gu J et al. 2020. Synthesis and characterization of a specific iodine-125-labeled TRPC5 radioligand. ChemMedChem 15:191854–60
    [Google Scholar]
  69. 69. 
    Song K, Wei M, Guo W, Quan L, Kang Y et al. 2021. Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. eLife 10:e63429
    [Google Scholar]
  70. 70. 
    Martín-Aragón Baudel MAS, Shi J, Large WA, Albert AP. 2020. Obligatory role for PKCδ in PIP2-mediated activation of store-operated TRPC1 channels in vascular smooth muscle cells. J. Physiol 598:183911–25
    [Google Scholar]
  71. 71. 
    Lepannetier S, Gualdani R, Tempesta S, Schakman O, Seghers F et al. 2018. Activation of TRPC1 channel by metabotropic glutamate receptor mGluR5 modulates synaptic plasticity and spatial working memory. Front. Cell. Neurosci 12:318
    [Google Scholar]
  72. 72. 
    Arboit A, Reboreda A, Yoshida M. 2020. Involvement of TRPC4 and 5 channels in persistent firing in hippocampal CA1 pyramidal cells. Cells 9:2365
    [Google Scholar]
  73. 73. 
    Blum T, Moreno-Pérez A, Pyrski M, Bufe B, Arifovic A et al. 2019. Trpc5 deficiency causes hypoprolactinemia and altered function of oscillatory dopamine neurons in the arcuate nucleus. PNAS 116:3015236–43
    [Google Scholar]
  74. 74. 
    Yerna X, Schakman O, Ratbi I, Kreis A, Lepannetier S et al. 2020. Role of the TRPC1 channel in hippocampal long-term depression and in spatial memory extinction. Int. J. Mol. Sci. 21:51712
    [Google Scholar]
  75. 75. 
    Beech DJ, Foster RJ, Cheung SY, Rode BM. 2018. TRPC ion channel inhibitors for use in therapy WO Patent 2018/146485
    [Google Scholar]
  76. 76. 
    Yu M, Ledeboer MW, Daniels M, Malojcic G, Tibbitts TT et al. 2019. Discovery of a potent and selective TRPC5 inhibitor, efficacious in a focal segmental glomerulosclerosis model. ACS Med. Chem. Lett 10:111579–85
    [Google Scholar]
  77. 77. 
    Vinayagam D, Quentin D, Yu-Strzelczyk J, Sitsel O, Merino F et al. 2020. Structural basis of TRPC4 regulation by calmodulin and pharmacological agents. eLife 9:e60603
    [Google Scholar]
  78. 78. 
    Miller M, Shi J, Zhu Y, Kustov M, Tian J et al. 2011. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J. Biol. Chem 286:3833436–46
    [Google Scholar]
  79. 79. 
    Rubaiy HN, Ludlow MJ, Henrot M, Gaunt HJ, Miteva K et al. 2017. Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. J. Biol. Chem. 292:208158–73
    [Google Scholar]
  80. 80. 
    Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T et al. 2009. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. PNAS 106:135400–5
    [Google Scholar]
  81. 81. 
    Schleifer H, Doleschal B, Lichtenegger M, Oppenrieder R, Derler I et al. 2012. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca2+ entry pathways. Br. J. Pharmacol. 167:81712–22
    [Google Scholar]
  82. 82. 
    Seo K, Rainer PP, Hahn VS, Lee D, Jo S-H et al. 2014. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. PNAS 111:1551–56
    [Google Scholar]
  83. 83. 
    Washburn DG, Holt DA, Dodson J, McAtee JJ, Terrell LR et al. 2013. The discovery of potent blockers of the canonical transient receptor channels, TRPC3 and TRPC6, based on an anilino-thiazole pharmacophore. Bioorg. Med. Chem. Lett. 23:174979–84
    [Google Scholar]
  84. 84. 
    Tang Q, Guo W, Zheng L, Wu J-X, Liu M et al. 2018. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res 28:7746–55
    [Google Scholar]
  85. 85. 
    Lin BL, Matera D, Doerner JF, Zheng N, Del Camino D et al. 2019. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. PNAS 116:2010156–61
    [Google Scholar]
  86. 86. 
    Urban N, Wang L, Kwiek S, Rademann J, Kuebler WM, Schaefer M. 2016. Identification and validation of larixyl acetate as a potent TRPC6 inhibitor. Mol. Pharmacol. 89:1197–213
    [Google Scholar]
  87. 87. 
    Häfner S, Burg F, Kannler M, Urban N, Mayer P et al. 2018. A (+)-larixol congener with high affinity and subtype selectivity toward TRPC6. ChemMedChem 13:101028–35
    [Google Scholar]
  88. 88. 
    Maier T, Follmann M, Hessler G, Kleemann H-W, Hachtel S et al. 2015. Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br. J. Pharmacol. 172:143650–60
    [Google Scholar]
  89. 89. 
    Motoyama K, Nagata T, Kobayashi J, Nakamura A, Miyoshi N et al. 2018. Discovery of a bicyclo[4.3.0]nonane derivative DS88790512 as a potent, selective, and orally bioavailable blocker of transient receptor potential canonical 6 (TRPC6). Bioorg. Med. Chem. Lett. 28:122222–27
    [Google Scholar]
  90. 90. 
    Li J, Zhang X, Song X, Liu R, Zhang J, Li Z. 2019. The structure of TRPC ion channels. Cell Calcium 80:25–28
    [Google Scholar]
  91. 91. 
    Zhao Y, McVeigh BM, Moiseenkova-Bell VY. 2021. Structural pharmacology of TRP channels. J. Mol. Biol. 433:17166914
    [Google Scholar]
  92. 92. 
    Fan C, Choi W, Sun W, Du J, Lu W 2018. Structure of the human lipid-gated cation channel TRPC3. eLife 7:e36852
    [Google Scholar]
  93. 93. 
    Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F et al. 2018. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 7:e36615
    [Google Scholar]
  94. 94. 
    Duan J, Li J, Zeng B, Chen G-L, Peng X et al. 2018. Structure of the mouse TRPC4 ion channel. Nat. Commun. 9:13102
    [Google Scholar]
  95. 95. 
    Duan J, Li J, Chen G-L, Ge Y, Liu J et al. 2019. Cryo-EM structure of TRPC5 at 2.8-Å resolution reveals unique and conserved structural elements essential for channel function. Sci. Adv. 5:7eaaw7935
    [Google Scholar]
  96. 96. 
    Jung S, Mühle A, Schaefer M, Strotmann R, Schultz G, Plant TD. 2003. Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J. Biol. Chem. 278:63562–71
    [Google Scholar]
  97. 97. 
    Goretzki B, Guhl C, Tebbe F, Harder J-M, Hellmich UA. 2021. Unstructural biology of TRP ion channels: the role of intrinsically disordered regions in channel function and regulation. J. Mol. Biol. 433:17166931
    [Google Scholar]
  98. 98. 
    Cao E, Liao M, Cheng Y, Julius D 2013. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:7478113–18
    [Google Scholar]
  99. 99. 
    Sabourin J, Robin E, Raddatz E 2011. A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc. Res. 92:2226–36
    [Google Scholar]
  100. 100. 
    Zhu Z, Xiong S, Li Q. 2016. The role of transient receptor potential channels in hypertension and metabolic vascular damage. Exp. Physiol. 101:1338–44
    [Google Scholar]
  101. 101. 
    Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL et al. 2007. Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ. Res. 100:111605–14
    [Google Scholar]
  102. 102. 
    Earley S, Brayden JE. 2015. Transient receptor potential channels in the vasculature. Physiol. Rev. 95:2645–90
    [Google Scholar]
  103. 103. 
    Lau O-C, Shen B, Wong C-O, Tjong Y-W, Lo C-Y et al. 2016. TRPC5 channels participate in pressure-sensing in aortic baroreceptors. Nat. Commun. 7:11947
    [Google Scholar]
  104. 104. 
    Thakore P, Brain SD, Beech DJ. 2018. Correspondence: challenging a proposed role for TRPC5 in aortic baroreceptor pressure-sensing. Nat. Commun. 9:11245
    [Google Scholar]
  105. 105. 
    Lau O-C, Shen B, Wong C-O, Yao X. 2018. Correspondence: reply to ‘Challenging a proposed role for TRPC5 in aortic baroreceptor pressure-sensing. .’ Nat. Commun. 9:11244
    [Google Scholar]
  106. 106. 
    Beech DJ. 2019. Triskelion channels might bring Star Wars to the global problem of hypertension. Cell Calcium 77:77–78
    [Google Scholar]
  107. 107. 
    Antigny F, Girardin N, Frieden M. 2012. Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J. Biol. Chem. 287:85917–27
    [Google Scholar]
  108. 108. 
    Zhu Y, Gao M, Zhou T, Xie M, Mao A et al. 2019. The TRPC5 channel regulates angiogenesis and promotes recovery from ischemic injury in mice. J. Biol. Chem. 294:128–37
    [Google Scholar]
  109. 109. 
    Freichel M, Berlin M, Schürger A, Mathar I, Bacmeister L et al. 2017. TRP channels in the heart. Neurobiology of TRP Channels TLR Emir 149–85 Boca Raton, FL: CRC Press
    [Google Scholar]
  110. 110. 
    Firth AL, Remillard CV, Yuan JX-J. 2007. TRP channels in hypertension. Biochim. Biophys. Acta Mol. Basis Dis. 1772:8895–906
    [Google Scholar]
  111. 111. 
    Yue Z, Xie J, Yu AS, Stock J, Du J, Yue L. 2015. Role of TRP channels in the cardiovascular system. Am. J. Physiol. Circ. Physiol. 308:3H157–82
    [Google Scholar]
  112. 112. 
    Xiao X, Liu H-X, Shen K, Cao W, Li X-Q. 2017. Canonical transient receptor potential channels and their link with cardio/cerebro-vascular diseases. Biomol. Ther. 25:5471–81
    [Google Scholar]
  113. 113. 
    Hof T, Chaigne S, Récalde A, Sallé L, Brette F, Guinamard R. 2019. Transient receptor potential channels in cardiac health and disease. Nat. Rev. Cardiol. 16:344–60
    [Google Scholar]
  114. 114. 
    Camacho Londoño JE, Tian Q, Hammer K, Schröder L, Camacho Londoño J et al. 2015. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur. Heart J. 36:332257–66
    [Google Scholar]
  115. 115. 
    He X, Li S, Liu B, Susperreguy S, Formoso K et al. 2017. Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/reoxygenation injuries. PNAS 114:23E4582–91
    [Google Scholar]
  116. 116. 
    Domínguez-Rodríguez A, Mayoral-Gonzalez I, Avila-Medina J, de Rojas-de Pedro ES, Calderón-Sánchez E et al. 2018. Urocortin-2 prevents dysregulation of Ca2+ homeostasis and improves early cardiac remodeling after ischemia and reperfusion. Front. Physiol. 9:813
    [Google Scholar]
  117. 117. 
    Ward ML, Williams IA, Chu Y, Cooper PJ, Ju YK, Allen DG. 2008. Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Prog. Biophys. Mol. Biol. 97:2–3232–49
    [Google Scholar]
  118. 118. 
    Wu X, Eder P, Chang B, Molkentin JD 2010. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. PNAS 107:157000–5
    [Google Scholar]
  119. 119. 
    Eder P, Molkentin JD. 2011. TRPC channels as effectors of cardiac hypertrophy. Circ. Res. 108:2265–72
    [Google Scholar]
  120. 120. 
    Vennekens R. 2018. Recent insights on the role of TRP channels in cardiac muscle. Curr. Opin. Physiol. 1:172–84
    [Google Scholar]
  121. 121. 
    Bartoli F, Moradi Bachiller S, Antigny F, Bedouet K, Gerbaud P et al. 2019. Specific upregulation of TRPC1 and TRPC5 channels by mineralocorticoid pathway in adult rat ventricular cardiomyocytes. Cells 9:147
    [Google Scholar]
  122. 122. 
    Numaga-Tomita T, Nishida M. 2020. TRPC channels in cardiac plasticity. Cells 9:2454
    [Google Scholar]
  123. 123. 
    Oda S, Numaga-Tomita T, Kitajima N, Toyama T, Harada E et al. 2017. TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. Sci. Rep. 7:17511
    [Google Scholar]
  124. 124. 
    Kitajima N, Numaga-Tomita T, Watanabe M, Kuroda T, Nishimura A et al. 2016. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci. Rep. 6:137001
    [Google Scholar]
  125. 125. 
    Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W et al. 2006. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J. Biol. Chem. 281:4433487–96
    [Google Scholar]
  126. 126. 
    Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R et al. 2006. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Investig. 116:123114–26
    [Google Scholar]
  127. 127. 
    Watanabe H, Iino K, Ohba T, Ito H. 2013. Possible involvement of TRP channels in cardiac hypertrophy and arrhythmia. Curr. Top. Med. Chem. 13:3283–94
    [Google Scholar]
  128. 128. 
    Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP. 2016. Transient receptor potential canonical (TRPC)/Orai1-dependent store-operated Ca2+ channels: new targets of aldosterone in cardiomyocytes. J. Biol. Chem. 291:2513394–409
    [Google Scholar]
  129. 129. 
    Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H et al. 2006. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:225305–16
    [Google Scholar]
  130. 130. 
    Nikolova-Krstevski V, Wagner S, Yu ZY, Cox CD, Cvetkovska J et al. 2017. Endocardial TRPC-6 channels act as atrial mechanosensors and load-dependent modulators of endocardial/myocardial cross-talk. JACC Basic Transl. Sci. 2:5575–90
    [Google Scholar]
  131. 131. 
    Falcón D, Galeano-Otero I, Martín-Bórnez M, Fernández-Velasco M, Gallardo-Castillo I et al. 2020. TRPC channels: dysregulation and Ca2+ mishandling in ischemic heart disease. Cells 9:1173
    [Google Scholar]
  132. 132. 
    Bergdahl A, Gomez MF, Wihlborg AK, Erlinge D, Eyjolfson A et al. 2005. Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am. J. Physiol. Cell Physiol. 288:872–80
    [Google Scholar]
  133. 133. 
    Beech DJ. 2007. Ion channel switching and activation in smooth-muscle cells of occlusive vascular diseases. Biochem. Soc. Trans. 35:5890–94
    [Google Scholar]
  134. 134. 
    Kumar B, Dreja K, Shah SS, Cheong A, Xu S-Z et al. 2006. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ. Res. 98:4557–63
    [Google Scholar]
  135. 135. 
    Tran QK, Ohashi K, Watanabe H. 2000. Calcium signalling in endothelial cells. Cardiovasc. Res. 48:113–22
    [Google Scholar]
  136. 136. 
    Dalal PJ, Muller WA, Sullivan DP. 2020. Endothelial cell calcium signaling during barrier function and inflammation. Am. J. Pathol. 190:3535–42
    [Google Scholar]
  137. 137. 
    House SJ, Potier M, Bisaillon J, Singer HA, Trebak M. 2008. The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456:5769–85
    [Google Scholar]
  138. 138. 
    Görlach A, Bertram K, Hudecova S, Krizanova O. 2015. Calcium and ROS: a mutual interplay. Redox Biol 6:260–71
    [Google Scholar]
  139. 139. 
    Fleckenstein-Grün G, Fleckenstein A. 1991. Calcium—a neglected key factor in arteriosclerosis. The pathogenetic role of arterial calcium overload and its prevention by calcium antagonists. Ann. Med. 23:5589–99
    [Google Scholar]
  140. 140. 
    Hernández RH, Armas-Hernández MJ, Velasco M, Israili AH, Armas-Padilla MC. 2003. Calcium antagonists and atherosclerosis protection in hypertension. Am. J. Ther. 10:6409–14
    [Google Scholar]
  141. 141. 
    Smedlund K, Tano JY, Vazquez G. 2010. The constitutive function of native TRPC3 channels modulates vascular cell adhesion molecule-1 expression in coronary endothelial cells through nuclear factor κB signaling. Circ. Res. 106:91479–88
    [Google Scholar]
  142. 142. 
    Ampem PT, Smedlund K, Vazquez G. 2015. Pharmacological evidence for a role of the transient receptor potential canonical 3 (TRPC3) channel in endoplasmic reticulum stress-induced apoptosis of human coronary artery endothelial cells. Vascul. Pharmacol. 76:42–52
    [Google Scholar]
  143. 143. 
    Tano J-YK, Lee RH, Vazquez G. 2012. Macrophage function in atherosclerosis. Channels 6:3141–48
    [Google Scholar]
  144. 144. 
    Takahashi N, Mori Y. 2011. TRP channels as sensors and signal integrators of redox status changes. Front. Pharmacol. 2:58
    [Google Scholar]
  145. 145. 
    Chaudhuri P, Rosenbaum MA, Sinharoy P, Damron DS, Birnbaumer L, Graham LM 2016. Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. PNAS 113:82110–15
    [Google Scholar]
  146. 146. 
    Rosenbaum MA, Chaudhuri P, Graham LM. 2015. Hypercholesterolemia inhibits re-endothelialization of arterial injuries by TRPC channel activation. J. Vasc. Surg. 62:41040–47.e2
    [Google Scholar]
  147. 147. 
    Dietrich A, Mederos y Schnitzler M, Gollasch M, Gross V, Storch U et al. 2005. Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol. Cell. Biol. 25:166980–89
    [Google Scholar]
  148. 148. 
    Bae YM, Kim A, Lee YJ, Lim W, Noh Y-H et al. 2007. Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens. 25:4809–17
    [Google Scholar]
  149. 149. 
    McLaughlin VV, McGoon MD. 2006. Pulmonary arterial hypertension. Circulation 114:131417–31
    [Google Scholar]
  150. 150. 
    Malczyk M, Erb A, Veith C, Ghofrani HA, Schermuly RT et al. 2017. The role of transient receptor potential channel 6 channels in the pulmonary vasculature. Front. Immunol. 8:707
    [Google Scholar]
  151. 151. 
    Ranchoux B, Harvey LD, Ayon RJ, Babicheva A, Bonnet S et al. 2018. Endothelial dysfunction in pulmonary arterial hypertension: an evolving landscape (2017 Grover Conference Series). Pulm. Circ 8:12045893217752912
    [Google Scholar]
  152. 152. 
    Urban N, Hill K, Wang L, Kuebler WM, Schaefer M. 2012. Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. Cell Calcium 51:2194–206
    [Google Scholar]
  153. 153. 
    Reyes RV, Castillo-Galán S, Hernandez I, Herrera EA, Ebensperger G, Llanos AJ. 2018. Revisiting the role of TRP, Orai, and ASIC channels in the pulmonary arterial response to hypoxia. Front. Physiol. 9:486
    [Google Scholar]
  154. 154. 
    Chrétien C, Fenech C, Liénard F, Grall S, Chevalier C et al. 2017. Transient receptor potential canonical 3 (TRPC3) channels are required for hypothalamic glucose detection and energy homeostasis. Diabetes 66:2314–24
    [Google Scholar]
  155. 155. 
    Park SH, Ryu SY, Yu WJ, Han YE, Ji YS et al. 2013. Leptin promotes KATP channel trafficking by AMPK signaling in pancreatic β-cells. PNAS 110:3112673–78
    [Google Scholar]
  156. 156. 
    Liu B, He X, Li S, Xu B, Birnbaumer L, Liao Y. 2017. Deletion of diacylglycerol-responsive TRPC genes attenuates diabetic nephropathy by inhibiting activation of the TGFβ1 signaling pathway. Am. J. Transl. Res. 9:125619–30
    [Google Scholar]
  157. 157. 
    Naziroǧlu M, Dikici DM, Dursun Ş. 2012. Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem. Res. 37:102065–75
    [Google Scholar]
  158. 158. 
    Roa-Coria JE, Pineda-Farias JB, Barragán-Iglesias P, Quiñonez-Bastidas GN, Zúñiga-Romero Á et al. 2019. Possible involvement of peripheral TRP channels in the hydrogen sulfide-induced hyperalgesia in diabetic rats. BMC Neurosci 20:11
    [Google Scholar]
  159. 159. 
    Sachdeva R, Schlotterer A, Schumacher D, Matka C, Mathar I et al. 2018. TRPC proteins contribute to development of diabetic retinopathy and regulate glyoxalase 1 activity and methylglyoxal accumulation. Mol. Metab. 9:156–67
    [Google Scholar]
  160. 160. 
    Graham S, Yuan JP, Ma R. 2012. Canonical transient receptor potential channels in diabetes. Exp. Biol. Med. 237:2111–18
    [Google Scholar]
  161. 161. 
    Smani T, Shapovalov G, Skryma R, Prevarskaya N, Rosado JA. 2015. Functional and physiopathological implications of TRP channels. Biochim. Biophys. Acta 1853:81772–82
    [Google Scholar]
  162. 162. 
    Dryer SE, Roshanravan H, Kim EY. 2019. TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 1865:61041–66
    [Google Scholar]
  163. 163. 
    Wang L, Chang JH, Buckley AF, Spurney RF. 2019. Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice. Kidney Int 95:2321–32
    [Google Scholar]
  164. 164. 
    Rode B, Yuldasheva NY, Baxter PD, Sedo A, Ainscough JF et al. 2019. TRPC5 ion channel permeation promotes weight gain in hypercholesterolaemic mice. Sci. Rep. 9:1773
    [Google Scholar]
  165. 165. 
    Krout D, Schaar A, Sun Y, Sukumaran P, Roemmich JN et al. 2017. The TRPC1 Ca2+-permeable channel inhibits exercise-induced protection against high-fat diet-induced obesity and type II diabetes. J. Biol. Chem. 292:5020799–807
    [Google Scholar]
  166. 166. 
    Wolfrum C, Kiehlmann E, Pelczar P. 2018. TRPC1 regulates brown adipose tissue activity in a PPARγ-dependent manner. Am. J. Physiol. Metab. 315:5E825–32
    [Google Scholar]
  167. 167. 
    Gao Y, Yao T, Deng Z, Sohn JW, Sun J et al. 2017. TrpC5 mediates acute leptin and serotonin effects via Pomc neurons. Cell Rep 18:3583–92
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030121-122314
Loading
/content/journals/10.1146/annurev-pharmtox-030121-122314
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error