1932

Abstract

The use of pharmaceuticals has grown substantially and their consequential release via wastewaters poses a potential threat to aquatic and terrestrial environments. While transportation prediction models for aquatic environments are well established, they cannot be universally extrapolated to terrestrial systems. Pharmaceuticals and their metabolites are, for example, readily detected in the excreta of terrestrial organisms (including humans). Furthermore, the trophic transfer of pharmaceuticals to and from food webs is often overlooked, which in turn highlights a public health concern and emphasizes the pressing need to elucidate how today's potpourri of pharmaceuticals affect the terrestrial system, their biophysical behaviors, and their interactions with soil metazoans. This review explores the existing knowledge base of pharmaceutical exposure sources, mobility, persistence, (bio)availability, (bio)accumulation, (bio)magnification, and trophic transfer of pharmaceuticals through the soil and terrestrial food chains.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030124-111214
2025-01-23
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-030124-111214.html?itemId=/content/journals/10.1146/annurev-pharmtox-030124-111214&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    European Comm. 2022.. Commission Implementing Decision (EU) 2022/1307 of 22 July 2022 Establishing a Watch List of Substances for Union-wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document C(2022) 5098). Brussels/Luxembourg:: Off. J. Eur. Union. http://data.europa.eu/eli/dec_impl/2022/1307/oj
    [Google Scholar]
  2. 2.
    Directorate-General for Environment. 2022.. Proposal for a Directive Amending the Water Framework Directive, the Groundwater Directive and the Environmental Quality Standards Directive. Brussels:: Eur. Comm. https://environment.ec.europa.eu/publications/proposal-amending-water-directives_en
    [Google Scholar]
  3. 3.
    EPA (US Environ. Prot. Agency). 2024.. National Recommended Water Quality Criteria - Aquatic Life Criteria Table. Washington, DC:: EPA. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table
    [Google Scholar]
  4. 4.
    Bhagat C, Kumar M, Tyagi VK, Mohapatra PK. 2020.. Proclivities for prevalence and treatment of antibiotics in the ambient water: a review. . NPJ Clean Water 3:(1):42
    [Crossref] [Google Scholar]
  5. 5.
    European Comm. 2006.. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Thematic Strategy for Soil Protection [SEC(2006)620] [SEC(2006)1165]. Brussels:: Eur. Comm. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN
    [Google Scholar]
  6. 6.
    European Comm. 2020.. Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council. C/2020/5205. Brussels/Luxembourg:: Off. J. Eur. Union. https://eur-lex.europa.eu/eli/dec_impl/2020/1161/oj
    [Google Scholar]
  7. 7.
    Suda KJ, Kim KC, Hernandez I, Gellad WF, Rothenberger S, et al. 2022.. The global impact of COVID-19 on drug purchases: a cross-sectional time series analysis. . J. Am. Pharm. Assoc. 62:(3):76674.e6
    [Crossref] [Google Scholar]
  8. 8.
    González Peña OI, López Zavala , Cabral Ruelas H. 2021.. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. . Int. J. Environ. Res. Public Health 18:(5):2532
    [Crossref] [Google Scholar]
  9. 9.
    Sánchez-Sánchez E, Fernández-Cerezo FL, Díaz-Jimenez J, Rosety-Rodriguez M, Díaz AJ, et al. 2021.. Consumption of over-the-counter drugs: prevalence and type of drugs. . Int. J. Environ. Res. Public Health 18:(11):5530
    [Crossref] [Google Scholar]
  10. 10.
    Rogowska J, Zimmermann A. 2022.. Household pharmaceutical waste disposal as a global problem—a review. . Int. J. Environ. Res. Public Health 19:(23):15798
    [Crossref] [Google Scholar]
  11. 11.
    Küster A, Adler N. 2014.. Pharmaceuticals in the environment: scientific evidence of risks and its regulation. . Philos. Trans. R. Soc. B 369:(1656):20130587
    [Crossref] [Google Scholar]
  12. 12.
    European Commission. 2023.. Proposal for a Directive of the European Parliament and of the Council on Soil Monitoring and Resilience (Soil Monitoring Law). Doc. 52023PC0416 . Brussels/Luxembourg:: Off. J. Eur. Union. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52023PC0416&qid=1706624227744
    [Google Scholar]
  13. 13.
    Uluseker C, Kaster KM, Thorsen K, Basiry D, Shobana S, et al. 2021.. A review on occurrence and spread of antibiotic resistance in wastewaters and in wastewater treatment plants: mechanisms and perspectives. . Front. Microbiol. 12::717809
    [Crossref] [Google Scholar]
  14. 14.
    Barron L, Tobin J, Paull B. 2008.. Multi-residue determination of pharmaceuticals in sludge and sludge enriched soils using pressurized liquid extraction, solid phase extraction and liquid chromatography with tandem mass spectrometry. . J. Environ. Monit. 10:(3):35361
    [Crossref] [Google Scholar]
  15. 15.
    Yahaya SM, Mahmud AA, Abdu N. 2023.. The use of wastewater for irrigation: pros and cons for human health in developing countries. . Total Environ. Res. Themes 6::100044
    [Crossref] [Google Scholar]
  16. 16.
    Gworek B, Kijeńska M, Wrzosek J, Graniewska M. 2021.. Pharmaceuticals in the soil and plant environment: a review. . Water Air Soil Pollut. 232:(4):145
    [Crossref] [Google Scholar]
  17. 17.
    Salgot M, Priestley GK, Folch M. 2012.. Golf course irrigation with reclaimed water in the Mediterranean: a risk management matter. . Water 4:(2):389429
    [Crossref] [Google Scholar]
  18. 18.
    Calderón-Preciado D, Jiménez-Cartagena C, Matamoros V, Bayona JM. 2011.. Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. . Water Res. 45:(1):22131
    [Crossref] [Google Scholar]
  19. 19.
    aus der Beek T, Weber F, Bergmann A, Hickmann S, Ebert I, et al. 2016.. Pharmaceuticals in the environment—global occurrences and perspectives. . Environ. Toxicol. Chem. 35:(4):82335
    [Crossref] [Google Scholar]
  20. 20.
    Triebskorn R, Casper H, Scheil V, Schwaiger J. 2007.. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). . Anal. Bioanal. Chem. 387:(4):140516
    [Crossref] [Google Scholar]
  21. 21.
    Shultz S, Baral HS, Charman S, Cunningham AA, Das D, et al. 2004.. Diclofenac poisoning is widespread in declining vulture populations across the Indian subcontinent. . Proc. R. Soc. B 271:(Suppl_6):S45860
    [Crossref] [Google Scholar]
  22. 22.
    Drinking Water Inspectorate. 2023.. Drinking Water 2023 – Summary of the Chief Inspector's Report for Drinking Water in England. London:: Drinking Water Inspectorate. https://www.dwi.gov.uk/what-we-do/annual-report/drinking-water-2023/
    [Google Scholar]
  23. 23.
    Shah A, Arjunan A, Baroutaji A, Zakharova J. 2023.. A review of physicochemical and biological contaminants in drinking water and their impacts on human health. . Water Sci. Eng. 16:(4):33344
    [Crossref] [Google Scholar]
  24. 24.
    Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS. 2006.. Uptake of veterinary medicines from soils into plants. . J. Agric. Food Chem. 54:(6):228897
    [Crossref] [Google Scholar]
  25. 25.
    Li WC. 2014.. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. . Environ. Pollut. 187::193201
    [Crossref] [Google Scholar]
  26. 26.
    Thebo AL, Drechsel P, Lambin EF, Nelson KL. 2017.. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows. . Environ. Res. Lett. 12:(7):074008
    [Crossref] [Google Scholar]
  27. 27.
    Thelusmond J-R, Strathmann TJ, Cupples AM. 2016.. The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. . Sci. Total Environ. 571::124152
    [Crossref] [Google Scholar]
  28. 28.
    Gao P, Mao D, Luo Y, Wang L, Xu B, Xu L. 2012.. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. . Water Res. 46:(7):235564
    [Crossref] [Google Scholar]
  29. 29.
    Durán-Alvarez JC, Becerril-Bravo E, Castro VS, Jiménez B, Gibson R. 2009.. The analysis of a group of acidic pharmaceuticals, carbamazepine, and potential endocrine disrupting compounds in wastewater irrigated soils by gas chromatography-mass spectrometry. . Talanta 78:(3):115966
    [Crossref] [Google Scholar]
  30. 30.
    Franklin AM, Williams CF, Watson JE. 2018.. Assessment of soil to mitigate antibiotics in the environment due to release of wastewater treatment plant effluent. . J. Environ. Qual. 47:(6):134755
    [Crossref] [Google Scholar]
  31. 31.
    Hu S, Hu H, Li W, Hong X, Cai D, et al. 2019.. Investigating the biodegradation of sulfadiazine in soil using Enterobacter cloacae T2 immobilized on bagasse. . RSC Adv. 10:(2):114251
    [Crossref] [Google Scholar]
  32. 32.
    Butler E, Whelan MJ, Ritz K, Sakrabani R, Van Egmond R. 2011.. Effects of triclosan on soil microbial respiration. . Environ. Toxicol. Chem. 30:(2):36066
    [Crossref] [Google Scholar]
  33. 33.
    Carrizales L, Razo I, Téllez-Hernández JI, Torres-Nerio R, Torres A, et al. 2006.. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children. . Environ. Res. 101:(1):110
    [Crossref] [Google Scholar]
  34. 34.
    Kinney CA, Furlong ET, Zaugg SD, Burkhardt MR, Werner SL, et al. 2006.. Survey of organic wastewater contaminants in biosolids destined for land application. . Environ. Sci. Technol. 40:(23):720715
    [Crossref] [Google Scholar]
  35. 35.
    Sharma P, Pagilla K, Hanigan D, Singletary L. 2020.. Pharmaceuticals and personal care products (PPCPs) in alfalfa irrigated with reclaimed water. Spec. Publ. SP-20-05, Ext. 1, Univ. Nev., Reno . https://extension.unr.edu/publication.aspx?PubID=3677
    [Google Scholar]
  36. 36.
    Chen F, Ying GG, Kong LX, Wang L, Zhao JL, et al. 2011.. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. . Environ. Pollut. 159:(6):149098
    [Crossref] [Google Scholar]
  37. 37.
    Barron L, Purcell M, Havel J, Thomas K, Tobin J, Paull B. 2005.. Occurrence and fate of pharmaceuticals and personal care products within sewage sludge and sludge-enriched soils. STRIVE Rep. 34, Environ. Prot. Agency, Wexford, Irel . https://www.epa.ie/publications/research/waste/STRIVE_34_Barron_PCPs_web.pdf.pdf
    [Google Scholar]
  38. 38.
    Heidler J, Halden RU. 2007.. Mass balance assessment of triclosan removal during conventional sewage treatment. . Chemosphere 66:(2):36269
    [Crossref] [Google Scholar]
  39. 39.
    Park JY, Huwe B. 2016.. Sulfadimethoxine transport in soil columns in relation to sorbable and non-sorbable tracers. . Environ. Sci. Pollut. Res. 23:(12):1245666
    [Crossref] [Google Scholar]
  40. 40.
    Barron L, Havel J, Purcell M, Szpak M, Kelleher B, Paull B. 2009.. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks. . Analyst 134:(4):66370
    [Crossref] [Google Scholar]
  41. 41.
    Carter LJ, Harris E, Williams M, Ryan JJ, Kookana RS, Boxall ABA. 2014.. Fate and uptake of pharmaceuticals in soil-plant systems. . J. Agric. Food Chem. 62:(4):81625
    [Crossref] [Google Scholar]
  42. 42.
    Paz A, Tadmor G, Malchi T, Blotevogel J, Borch T, et al. 2016.. Fate of carbamazepine, its metabolites, and lamotrigine in soils irrigated with reclaimed wastewater: sorption, leaching and plant uptake. . Chemosphere 160::2229
    [Crossref] [Google Scholar]
  43. 43.
    Wu X, Dodgen LK, Conkle JL, Gan J. 2015.. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review. . Sci. Total Environ. 536::65566
    [Crossref] [Google Scholar]
  44. 44.
    Tang T, Yang C, Wang L, Jiang X, Dang Z, Huang W. 2018.. Complexation of sulfamethazine with Cd(II) and Pb(II): implication for co-adsorption of SMT and Cd(II) on goethite. . Environ. Sci. Pollut. Res. 25:(12):1157683
    [Crossref] [Google Scholar]
  45. 45.
    Borgman O, Chefetz B. 2013.. Combined effects of biosolids application and irrigation with reclaimed wastewater on transport of pharmaceutical compounds in arable soils. . Water Res. 47:(10):343143
    [Crossref] [Google Scholar]
  46. 46.
    Xu Y, Yu X, Xu B, Peng D, Guo X. 2021.. Sorption of pharmaceuticals and personal care products on soil and soil components: influencing factors and mechanisms. . Sci. Total Environ. 753::141891
    [Crossref] [Google Scholar]
  47. 47.
    Delle Site A. 2001.. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. . J. Phys. Chem. Ref. Data 30:(1):187439
    [Crossref] [Google Scholar]
  48. 48.
    Zhang Y, Price GW, Jamieson R, Burton D, Khosravi K. 2017.. Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil. . Chemosphere 174::62837
    [Crossref] [Google Scholar]
  49. 49.
    Koba O, Golovko O, Kodešová R, Klement A, Grabic R. 2016.. Transformation of atenolol, metoprolol, and carbamazepine in soils: the identification, quantification, and stability of the transformation products and further implications for the environment. . Environ. Pollut. 218::57485
    [Crossref] [Google Scholar]
  50. 50.
    Qin X, Liu F, Zhao L, Hou H, Wang G, et al. 2016.. Adsorption of levofloxacin to goethite: batch and column studies. . Environ. Eng. Sci. 33:(4):23541
    [Crossref] [Google Scholar]
  51. 51.
    Call JJ, Rakshit S, Essington ME. 2019.. The adsorption of tylosin by montmorillonite and vermiculite: exchange selectivity and intercalation. . Soil Sci. Soc. Am. J. 83:(3):58496
    [Crossref] [Google Scholar]
  52. 52.
    Haham H, Oren A, Chefetz B. 2012.. Insight into the role of dissolved organic matter in sorption of sulfapyridine by semiarid soils. . Environ. Sci. Technol. 46:(21):1187077
    [Crossref] [Google Scholar]
  53. 53.
    Thiele-Bruhn S. 2003.. Pharmaceutical antibiotic compounds in soils – a review. . J. Plant Nutr. Soil Sci. 166:(2):14567
    [Crossref] [Google Scholar]
  54. 54.
    Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD. 2016.. A diverse intrinsic antibiotic resistome from a cave bacterium. . Nat. Commun. 7:(1):13803
    [Crossref] [Google Scholar]
  55. 55.
    Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, et al. 2015.. Ecotoxicological assessment of antibiotics: a call for improved consideration of microorganisms. . Environ. Int. 85::189205
    [Crossref] [Google Scholar]
  56. 56.
    Larsson DGJ. 2014.. Pollution from drug manufacturing: review and perspectives. . Philos. Trans. R. Soc. B 369:(1656):20130571
    [Crossref] [Google Scholar]
  57. 57.
    Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ. 2005.. Antibiotic uptake by plants from soil fertilized with animal manure. . J. Environ. Qual. 34:(6):208285
    [Crossref] [Google Scholar]
  58. 58.
    Hamscher G, Sczesny S, Höper H, Nau H. 2002.. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. . Anal. Chem. 74:(7):150918
    [Crossref] [Google Scholar]
  59. 59.
    Grenni P, Ancona V, Barra Caracciolo A. 2018.. Ecological effects of antibiotics on natural ecosystems: a review. . Microchem. J. 136::2539
    [Crossref] [Google Scholar]
  60. 60.
    Conde-Cid M, Núñez-Delgado A, Fernández-Sanjurjo M, Álvarez-Rodríguez E, Fernández-Calviño D, Arias-Estévez M. 2020.. Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks. . Processes 8:(11):1479
    [Crossref] [Google Scholar]
  61. 61.
    Jia W-L, Song C, He L-Y, Wang B, Gao F-Z, et al. 2023.. Antibiotics in soil and water: occurrence, fate, and risk. . Curr. Opin. Environ. Sci. Health 32::100437
    [Crossref] [Google Scholar]
  62. 62.
    Zeng Q, Sun J, Zhu L. 2019.. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China. . Chemosphere 224::9009
    [Crossref] [Google Scholar]
  63. 63.
    Harrower J, McNaughtan M, Hunter C, Hough R, Zhang Z, Helwig K. 2021.. Chemical fate and partitioning behavior of antibiotics in the aquatic environment—a review. . Environ. Toxicol. Chem. 40:(12):327598
    [Crossref] [Google Scholar]
  64. 64.
    Figueroa-Diva RA, Vasudevan D, MacKay AA. 2010.. Trends in soil sorption coefficients within common antimicrobial families. . Chemosphere 79:(8):78693
    [Crossref] [Google Scholar]
  65. 65.
    Golbaz S, Zamanzadeh M, Yaghmaeian K, Nabizadeh R, Rastkari N, Esfahani H. 2022.. Occurrence and removal of psychiatric pharmaceuticals in the Tehran South Municipal wastewater treatment plant. . Environ. Sci. Pollut. Res. 30:(10):2704155
    [Crossref] [Google Scholar]
  66. 66.
    Klement A, Kodešová R, Bauerová M, Golovko O, Kočárek M, et al. 2018.. Sorption of citalopram, irbesartan and fexofenadine in soils: estimation of sorption coefficients from soil properties. . Chemosphere 195::61523
    [Crossref] [Google Scholar]
  67. 67.
    Kodešová R, Grabic R, Kočárek M, Klement A, Golovko O, et al. 2015.. Pharmaceuticals’ sorptions relative to properties of thirteen different soils. . Sci. Total Environ. 511::43543
    [Crossref] [Google Scholar]
  68. 68.
    Loos R, Carvalho R, António DC, Comero S, Locoro G, et al. 2013.. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. . Water Res. 47:(17):647587
    [Crossref] [Google Scholar]
  69. 69.
    Bojanowska-Czajka A, Pyszynska M, Majkowska-Pilip A, Wawrowicz K. 2021.. Degradation of selected antidepressants sertraline and citalopram in ultrapure water and surface water using gamma radiation. . Processes 10:(1):63
    [Crossref] [Google Scholar]
  70. 70.
    Celiz MD, Tso J, Aga DS. 2009.. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. . Environ. Toxicol. Chem. 28:(12):247384
    [Crossref] [Google Scholar]
  71. 71.
    Macherey A-C, Dansette PM. 2015.. Biotransformations leading to toxic metabolites: chemical aspects. . In The Practice of Medicinal Chemistry, ed. CG Wermuth, D Aldous, P Raboisson, D Rognan , pp. 67496. Amsterdam:: Elsevier. , 4th ed..
    [Google Scholar]
  72. 72.
    Durán-Álvarez JC, Prado B, González D, Sánchez Y, Jiménez-Cisneros B. 2015.. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil - results of laboratory scale experiments. . Sci. Total Environ. 538::35062
    [Crossref] [Google Scholar]
  73. 73.
    Thiele-Bruhn S, Peters D. 2007.. Photodegradation of pharmaceutical antibiotics on slurry and soil surfaces. Landbauforsch. . Volkenrode 57:(1):1323
    [Google Scholar]
  74. 74.
    Frank MP, Graebing P, Chib JS. 2002.. Effect of soil moisture and sample depth on pesticide photolysis. . J. Agric. Food Chem. 50:(9):260714
    [Crossref] [Google Scholar]
  75. 75.
    Kramlinger VM, Dalvie D, Heck CJS, Kalgutkar AS, O'Neill J, et al. 2022.. Future of biotransformation science in the pharmaceutical industry. . Drug Metab. Dispos. 50:(3):25867
    [Crossref] [Google Scholar]
  76. 76.
    Kim S, Rossmassler K, Broeckling CD, Galloway S, Prenni J, De Long SK. 2017.. Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products. . Water Res. 125::22736
    [Crossref] [Google Scholar]
  77. 77.
    Bessa VS, Moreira IS, Tiritan ME, Castro PML. 2017.. Enrichment of bacterial strains for the biodegradation of diclofenac and carbamazepine from activated sludge. . Int. Biodeterior. Biodegrad. 120::13542
    [Crossref] [Google Scholar]
  78. 78.
    Challis JK, Carlson JC, Friesen KJ, Hanson ML, Wong CS. 2013.. Aquatic photochemistry of the sulfonamide antibiotic sulfapyridine. . J. Photochem. Photobiol. A Chem. 262::1421
    [Crossref] [Google Scholar]
  79. 79.
    López-Peñalver JJ, Sánchez-Polo M, Gómez-Pacheco CV, Rivera-Utrilla J. 2010.. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. . J. Chem. Technol. Biotechnol. 85:(10):132533
    [Crossref] [Google Scholar]
  80. 80.
    Mountacer H, Atifi A, Wong-Wah-Chung P, Sarakha M. 2014.. Degradation of the pesticide carbofuran on clay and soil surfaces upon sunlight exposure. . Environ. Sci. Pollut. Res. 21:(5):344351
    [Crossref] [Google Scholar]
  81. 81.
    Zhang Y, Hu S, Zhang H, Shen G, Yuan Z, Zhang W. 2017.. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. . Sci. Total Environ. 6078:134856
    [Google Scholar]
  82. 82.
    Pan M, Chu LM. 2016.. Adsorption and degradation of five selected antibiotics in agricultural soil. . Sci. Total Environ. 545–46::4856
    [Crossref] [Google Scholar]
  83. 83.
    Braschi I, Blasioli S, Fellet C, Lorenzini R, Garelli A, et al. 2013.. Persistence and degradation of new β-lactam antibiotics in the soil and water environment. . Chemosphere 93:(1):15259
    [Crossref] [Google Scholar]
  84. 84.
    Cela-Dablanca R, Barreiro A, Rodríguez-López L, Santás-Miguel V, Arias-Estévez M, et al. 2022.. Amoxicillin retention/release in agricultural soils amended with different bio-adsorbent materials. . Materials 15:(9):3200
    [Crossref] [Google Scholar]
  85. 85.
    Yang L, Wu L, Liu W, Huang Y, Luo Y, Christie P. 2018.. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids. . Environ. Sci. Pollut. Res. 25:(1):10414
    [Crossref] [Google Scholar]
  86. 86.
    Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B. 2016.. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. . Environ. Sci. Pollut. Res. 23:(8):791118
    [Crossref] [Google Scholar]
  87. 87.
    Li Y, Tang H, Hu Y, Wang X, Ai X, et al. 2016.. Enrofloxacin at environmentally relevant concentrations enhances uptake and toxicity of cadmium in the earthworm Eisenia fetida in farm soils. . J. Hazard. Mater. 308::31220
    [Crossref] [Google Scholar]
  88. 88.
    Moffett BF, Nicholson FA, Uwakwe NC, Chambers BJ, Harris JA, Hill TCJ. 2003.. Zinc contamination decreases the bacterial diversity of agricultural soil. . FEMS Microbiol. Ecol. 43:(1):1319
    [Crossref] [Google Scholar]
  89. 89.
    Neuvonen PJ. 1976.. Interactions with the absorption of tetracyclines. . Drugs 11:(1):4554
    [Crossref] [Google Scholar]
  90. 90.
    Chen H, Ma LQ, Gao B, Gu C. 2013.. Influence of Cu and Ca cations on ciprofloxacin transport in saturated porous media. . J. Hazard. Mater. 262::80511
    [Crossref] [Google Scholar]
  91. 91.
    Rapp-Wright H, Regan F, White B, Barron LP. 2023.. A year-long study of the occurrence and risk of over 140 contaminants of emerging concern in wastewater influent, effluent and receiving waters in the Republic of Ireland. . Sci. Total Environ. 860::160379
    [Crossref] [Google Scholar]
  92. 92.
    Li J, Dodgen L, Ye Q, Gan J. 2013.. Degradation kinetics and metabolites of carbamazepine in soil. . Environ. Sci. Technol. 47:(8):367884
    [Crossref] [Google Scholar]
  93. 93.
    Achazi RK, Flenner C, Livingstone DR, Peters L, Schaub K, Scheiwe E. 1998.. Cytochrome P450 and dependent activities in unexposed and PAH-exposed terrestrial annelids. . Comp. Biochem. Physiol. C 121:(1–3):33950
    [Google Scholar]
  94. 94.
    Bertilsson L, Toon T. 1986.. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide: an update. . Clin. Pharmacokinet. 11:(3):17798
    [Crossref] [Google Scholar]
  95. 95.
    Fenet H, Mathieu O, Mahjoub O, Li Z, Hillaire-Buys D, et al. 2012.. Carbamazepine, carbamazepine epoxide and dihydroxycarbamazepine sorption to soil and occurrence in a wastewater reuse site in Tunisia. . Chemosphere 88:(1):4954
    [Crossref] [Google Scholar]
  96. 96.
    Paltiel O, Fedorova G, Tadmor G, Kleinstern G, Maor Y, Chefetz B. 2016.. Human exposure to wastewater-derived pharmaceuticals in fresh produce: a randomized controlled trial focusing on carbamazepine. . Environ. Sci. Technol. 50:(8):447682
    [Crossref] [Google Scholar]
  97. 97.
    Gauthier H, Yargeau V, Cooper DG. 2010.. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. . Sci. Total Environ. 408:(7):17016
    [Crossref] [Google Scholar]
  98. 98.
    Kodešová R, Klement A, Golovko O, Fér M, Kočárek M, et al. 2019.. Soil influences on uptake and transfer of pharmaceuticals from sewage sludge amended soils to spinach. . J. Environ. Manag. 250::109407
    [Crossref] [Google Scholar]
  99. 99.
    Silva LJG, Pereira AMPT, Meisel LM, Lino CM, Pena A. 2015.. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: uptake, bioaccumulation and ecotoxicology. . Environ. Pollut. 197::12743
    [Crossref] [Google Scholar]
  100. 100.
    Gulde R, Meier U, Schymanski EL, Kohler H-PE, Helbling DE, et al. 2016.. Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge. . Environ. Sci. Technol. 50:(6):290820
    [Crossref] [Google Scholar]
  101. 101.
    Armitage JM, Gobas FAPC. 2007.. A terrestrial food-chain bioaccumulation model for POPs. . Environ. Sci. Technol. 41:(11):401925
    [Crossref] [Google Scholar]
  102. 102.
    Ding J, Lu G, Liu J, Zhang Z. 2015.. Evaluation of the potential for trophic transfer of roxithromycin along an experimental food chain. . Environ. Sci. Pollut. Res. 22:(14):10592600
    [Crossref] [Google Scholar]
  103. 103.
    Vernouillet G, Eullaffroy P, Lajeunesse A, Blaise C, Gagné F, Juneau P. 2010.. Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. . Chemosphere 80:(9):106268
    [Crossref] [Google Scholar]
  104. 104.
    Li M, Ding T, Wang H, Wang W, Li J, Ye Q. 2018.. Uptake and translocation of 14C-carbamazepine in soil-plant systems. . Environ. Pollut. 243:(Part B):135259
    [Crossref] [Google Scholar]
  105. 105.
    Knight ER, Carter LJ, McLaughlin MJ. 2018.. Bioaccumulation, uptake, and toxicity of carbamazepine in soil–plant systems. . Environ. Toxicol. Chem. 37:(4):112230
    [Crossref] [Google Scholar]
  106. 106.
    Wu X, Conkle JL, Gan J. 2012.. Multi-residue determination of pharmaceutical and personal care products in vegetables. . J. Chromatogr. A 1254::7886
    [Crossref] [Google Scholar]
  107. 107.
    Wu X, Ernst F, Conkle JL, Gan J. 2013.. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. . Environ. Int. 60::1522
    [Crossref] [Google Scholar]
  108. 108.
    Dodgen LK, Li J, Parker D, Gan JJ. 2013.. Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. . Environ. Pollut. 182::15056
    [Crossref] [Google Scholar]
  109. 109.
    Malchi T, Maor Y, Tadmor G, Shenker M, Chefetz B. 2014.. Irrigation of root vegetables with treated wastewater: evaluating uptake of pharmaceuticals and the associated human health risks. . Environ. Sci. Technol. 48:(16):932533
    [Crossref] [Google Scholar]
  110. 110.
    Marshall BM, Levy SB. 2011.. Food animals and antimicrobials: impacts on human health. . Clin. Microbiol. Rev. 24:(4):71833
    [Crossref] [Google Scholar]
  111. 111.
    Cerqueira F, Matamoros V, Bayona JM, Berendonk TU, Elsinga G, et al. 2019.. Antibiotic resistance gene distribution in agricultural fields and crops. A soil-to-food analysis. . Environ. Res. 177::108608
    [Crossref] [Google Scholar]
  112. 112.
    Roodbergen M, Klok C, van der Hout A. 2008.. Transfer of heavy metals in the food chain earthworm black-tailed godwit (Limosa limosa): comparison of a polluted and a reference site in The Netherlands. . Sci. Total Environ. 406:(3):40712
    [Crossref] [Google Scholar]
  113. 113.
    Fremlin KM, Elliott JE, Green DJ, Drouillard KG, Harner T, et al. 2020.. Trophic magnification of legacy persistent organic pollutants in an urban terrestrial food web. . Sci. Total Environ. 714::136746
    [Crossref] [Google Scholar]
  114. 114.
    Borgå K, Kidd KA, Muir DCG, Berglund O, Conder JM, et al. 2012.. Trophic magnification factors: considerations of ecology, ecosystems, and study design. . Integr. Environ. Assess. Manag. 8:(1):6484
    [Crossref] [Google Scholar]
  115. 115.
    Conder JM, Gobas FAPC, Borgå K, Muir DCG, Powell DE. 2012.. Use of trophic magnification factors and related measures to characterize bioaccumulation potential of chemicals. . Integr. Environ. Assess. Manag. 8:(1):8597
    [Crossref] [Google Scholar]
  116. 116.
    Thanner S, Drissner D, Walsh F. 2016.. Antimicrobial resistance in agriculture. . mBio 7:(2):e02227-15
    [Crossref] [Google Scholar]
  117. 117.
    EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Álvarez-Ordóñez A, Bolton D, et al. 2021.. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. . EFSA J. 19:(6):e06651
    [Google Scholar]
  118. 118.
    Gouin T, Armitage JM, Cousins IT, Muir DCG, Ng CA, et al. 2013.. Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models. . Environ. Toxicol. Chem. 32:(1):2031
    [Crossref] [Google Scholar]
  119. 119.
    WHO (World Health Organ.). 2023.. Climate change fact sheet, Oct. 12, WHO, Geneva . https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health
    [Google Scholar]
  120. 120.
    Bethke K, Kropidłowska K, Stepnowski P, Caban M. 2023.. Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change. . Sci. Total Environ. 877::162829
    [Crossref] [Google Scholar]
  121. 121.
    O'Flynn D, Lawler J, Yusuf A, Parle-McDermott A, Harold D, et al. 2021.. A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic. . Anal. Methods 13:(5):57594
    [Crossref] [Google Scholar]
  122. 122.
    Chakraborty A, Adhikary S, Bhattacharya S, Dutta S, Chatterjee S, et al. 2023.. Pharmaceuticals and personal care products as emerging environmental contaminants: prevalence, toxicity, and remedial approaches. . ACS Chem. Health Saf. 30:(6):36288
    [Crossref] [Google Scholar]
  123. 123.
    Redshaw CH, Stahl-Timmins WM, Fleming LE, Davidson I, Depledge MH. 2013.. Potential changes in disease patterns and pharmaceutical use in response to climate change. . J. Toxicol. Environ. Health Part B 16:(5):285320
    [Crossref] [Google Scholar]
  124. 124.
    Haygarth PM, Heathwaite AL, Jarvis SC, Harrod TR. 1999.. Hydrological factors for phosphorus transfer from agricultural soils. . Adv. Agron. 69::15378
    [Crossref] [Google Scholar]
  125. 125.
    Topp E, Monteiro SC, Beck A, Coelho BB, Boxall ABA, et al. 2008.. Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. . Sci. Total Environ. 396:(1):5259
    [Crossref] [Google Scholar]
  126. 126.
    Donald DB, Hunter FG, Sverko E, Hill BD, Syrgiannis J. 2005.. Mobilization of pesticides on an agricultural landscape flooded by a torrential storm. . Environ. Toxicol. Chem. 24:(1):210
    [Crossref] [Google Scholar]
  127. 127.
    Boxall ABA, Hardy A, Beulke S, Boucard T, Burgin L, et al. 2009.. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. . Environ. Health Perspect. 117:(4):50814
    [Crossref] [Google Scholar]
  128. 128.
    Biswas B, Qi F, Biswas J, Wijayawardena A, Khan M, Naidu R. 2018.. The fate of chemical pollutants with soil properties and processes in the climate change paradigm—a review. . Soil Syst. 2:(3):51
    [Crossref] [Google Scholar]
  129. 129.
    Schapira M, Manor O, Golan N, Kalo D, Mordehay V, et al. 2020.. Involuntary human exposure to carbamazepine: a cross-sectional study of correlates across the lifespan and dietary spectrum. . Environ. Int. 143::105951
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030124-111214
Loading
/content/journals/10.1146/annurev-pharmtox-030124-111214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error