1932

Abstract

The abuse of illicit psychostimulants such as cocaine and methamphetamine continues to pose significant health and societal challenges. Despite considerable efforts to develop medications to treat psychostimulant use disorders, none have proven effective, leaving an underserved patient population and unanswered questions about what mechanism(s) of action should be targeted for developing pharmacotherapies. As both cocaine and methamphetamine rapidly increase dopamine (DA) levels in mesolimbic brain regions, leading to euphoria that in some can lead to addiction, targets in which this increased dopaminergic tone may be mitigated have been explored. Further, understanding and targeting mechanisms underlying relapse are fundamental to the success of discovering medications that reduce the reinforcing effects of the drug of abuse, decrease the negative reinforcement or withdrawal/negative affect that occurs during abstinence, or both. Atypical inhibitors of the DA transporter and partial agonists/antagonists at DA D receptors are described as two promising targets for future drug development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030220-124205
2021-01-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-030220-124205.html?itemId=/content/journals/10.1146/annurev-pharmtox-030220-124205&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    NIDA (Natl. Inst. Drug Abuse). 2019. Overdose death rates. National Institute on Drug Abuse https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates
    [Google Scholar]
  2. 2. 
    DEA (US Drug Enforc. Agency). 2017. 2017 national drug threat assessment Rep., DEA Springfield, VA: https://www.dea.gov/sites/default/files/2018-07/DIR-040-17_2017-NDTA.pdf
  3. 3. 
    Dembosky A. 2019. Meth vs. opioids: America has two drug epidemics, but focuses on one. Kaiser Health News, May 7. https://khn.org/news/meth-vs-opioids-america-has-two-drug-epidemics-but-focuses-on-one/
  4. 4. 
    Twillman RK, Dawson E, LaRue L, Guevara MG, Whitley P, Huskey A 2020. Evaluation of trends of near-real-time urine drug test results for methamphetamine, cocaine, heroin, and fentanyl. JAMA Netw. Open 3:e1918514
    [Google Scholar]
  5. 5. 
    CDC (Cent. Dis. Control Prev.). 2020. Provisional drug overdose death counts Vital Stat., CDC Atlanta, GA: https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm
  6. 6. 
    LaRue L, Twillman RK, Dawson E, Whitley P, Frasco MA et al. 2019. Rate of fentanyl positivity among urine drug test results positive for cocaine or methamphetamine. JAMA Netw. Open 2:e192851
    [Google Scholar]
  7. 7. 
    DEA (US Drug Enforc. Agency). 2018. Cocaine laced with fentanyl leads to multiple deaths, overdoses Press Release Sept. 14. https://www.dea.gov/press-releases/2018/09/14/cocaine-laced-fentanyl-leads-multiple-deaths-overdoses
  8. 8. 
    Nolan ML, Shamasunder S, Colon-Berezin C, Kunins HV, Paone D 2019. Increased presence of fentanyl in cocaine-involved fatal overdoses: implications for prevention. J. Urban Health 96:49–54
    [Google Scholar]
  9. 9. 
    McCall Jones C, Baldwin GT, Compton WM 2017. Recent increases in cocaine-related overdose deaths and the role of opioids. Am. J. Public Health 107:430–32
    [Google Scholar]
  10. 10. 
    Lopez G. 2020. The rise in meth and cocaine overdoses, explained: America's drug overdose crisis could be reaching a new phase. Vox Jan. 30. https://www.vox.com/policy-and-politics/2020/1/9/21055113/opioid-epidemic-stimulants-cocaine-meth-drug-overdose-death
    [Google Scholar]
  11. 11. 
    Ellis MS, Kasper ZA, Cicero TJ 2018. Twin epidemics: the surging rise of methamphetamine use in chronic opioid users. Drug Alcohol Depend 193:14–20
    [Google Scholar]
  12. 12. 
    Glei DA, Preston SH. 2020. Estimating the impact of drug use on US mortality, 1999–2016. PLOS ONE 15:e0226732
    [Google Scholar]
  13. 13. 
    Am. Heart Assoc. 2018. Illegal drugs and heart disease. American Heart Association https://www.heart.org/en/health-topics/consumer-healthcare/what-is-cardiovascular-disease/illegal-drugs-and-heart-disease
    [Google Scholar]
  14. 14. 
    NIDA (Natl. Inst. Drug Abus.). 2017. Health consequences of drug misuse. National Institute on Drug Abuse https://www.drugabuse.gov/drug-topics/health-consequences-drug-misuse/introduction
    [Google Scholar]
  15. 15. 
    Rusyniak DE. 2013. Neurologic manifestations of chronic methamphetamine abuse. Psychiatr. Clin. 36:261–75
    [Google Scholar]
  16. 16. 
    Akindipe T, Wilson D, Stein DJ 2014. Psychiatric disorders in individuals with methamphetamine dependence: prevalence and risk factors. Metab. Brain Dis. 29:351–57
    [Google Scholar]
  17. 17. 
    Mattick RP, Breen C, Kimber J, Davoli M 2003. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst. Rev. 2:CD002209
    [Google Scholar]
  18. 18. 
    Mattick RP, Breen C, Kimber J, Davoli M 2004. Buprenorphine maintenance versus placebo or methadone maintenance for opioid dependence. Cochrane Database Syst. Rev. 3:CD002207
    [Google Scholar]
  19. 19. 
    Schwartz RP, Gryczynski J, O'Grady KE, Sharfstein JM, Warren G et al. 2013. Opioid agonist treatments and heroin overdose deaths in Baltimore, Maryland, 1995–2009. Am. J. Public Health 103:917–22
    [Google Scholar]
  20. 20. 
    Jordan CJ, Cao J, Newman AH, Xi ZX 2019. Progress in agonist therapy for substance use disorders: lessons learned from methadone and buprenorphine. Neuropharmacology 158:107609
    [Google Scholar]
  21. 21. 
    Newman AH, Cao J, Keighron JD, Jordan CJ, Bi GH et al. 2019. Translating the atypical dopamine uptake inhibitor hypothesis toward therapeutics for treatment of psychostimulant use disorders. Neuropsychopharmacology 44:1435–44
    [Google Scholar]
  22. 22. 
    Koob G, Hicks MJ, Wee S, Rosenberg JB, De BP et al. 2011. Anti-cocaine vaccine based on coupling a cocaine analog to a disrupted adenovirus. CNS Neurol. Disord. Drug Targets 10:899–904
    [Google Scholar]
  23. 23. 
    Hicks MJ, Kaminsky SM, De BP, Rosenberg JB, Evans SM et al. 2014. Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE anticocaine vaccine. Hum. Gene Ther. Clin. Dev. 25:40–49
    [Google Scholar]
  24. 24. 
    Evans SM, Foltin RW, Hicks MJ, Rosenberg JB, De BP et al. 2016. Efficacy of an adenovirus-based anti-cocaine vaccine to reduce cocaine self-administration and reacquisition using a choice procedure in rhesus macaques. Pharmacol. Biochem. Behav. 150–151:76–86
    [Google Scholar]
  25. 25. 
    Havlicek DF, De B, Rosenberg J, Pagovich O, Sondhi D et al. 2016. Translation of an adenovirus-based cocaine vaccine dAd5GNE to a clinical trial. Mol. Ther. 24:S16
    [Google Scholar]
  26. 26. 
    Gaval-Cruz M, Weinshenker D. 2009. Mechanisms of disulfiram-induced cocaine abstinence: Antabuse and cocaine relapse. Mol. Interv. 9:175–87
    [Google Scholar]
  27. 27. 
    Carroll KM, Fenton LR, Ball SA, Nich C, Frankforter TL et al. 2004. Efficacy of disulfiram and cognitive behavior therapy in cocaine-dependent outpatients: a randomized placebo-controlled trial. Arch. Gen. Psychiatry 61:264–72
    [Google Scholar]
  28. 28. 
    DeVito EE, Babuscio TA, Nich C, Ball SA, Carroll KM 2014. Gender differences in clinical outcomes for cocaine dependence: randomized clinical trials of behavioral therapy and disulfiram. Drug Alcohol Depend 145:156–67
    [Google Scholar]
  29. 29. 
    Carroll KM, Nich C, Ball SA, McCance E, Rounsavile BJ 1998. Treatment of cocaine and alcohol dependence with psychotherapy and disulfiram. Addiction 93:713–27
    [Google Scholar]
  30. 30. 
    Kampangkaew JP, Spellicy CJ, Nielsen EM, Harding MJ, Ye A et al. 2019. Pharmacogenetic role of dopamine transporter (SLC6A3) variation on response to disulfiram treatment for cocaine addiction. Am. J. Addict. 28:311–17
    [Google Scholar]
  31. 31. 
    Kampman KM. 2019. The treatment of cocaine use disorder. Sci. Adv. 5:10eaax1532
    [Google Scholar]
  32. 32. 
    Margolin A, Kosten TR, Avants SK, Wilkins J, Ling W et al. 1995. A multicenter trial of bupropion for cocaine dependence in methadone-maintained patients. Drug Alcohol Depend 40:125–31
    [Google Scholar]
  33. 33. 
    Elkashef AM, Rawson RA, Anderson AL, Li SH, Holmes T et al. 2008. Bupropion for the treatment of methamphetamine dependence. Neuropsychopharmacology 33:1162–70
    [Google Scholar]
  34. 34. 
    Colfax GN, Santos GM, Das M, Santos DM, Matheson T et al. 2011. Mirtazapine to reduce methamphetamine use: a randomized controlled trial. Arch. Gen. Psychiatry 68:1168–75
    [Google Scholar]
  35. 35. 
    Coffin PO, Santos GM, Hern J, Vittinghoff E, Walker JE et al. 2020. Effects of mirtazapine for methamphetamine use disorder among cisgender men and transgender women who have sex with men: a placebo-controlled randomized clinical trial. JAMA Psychiatry 77:3246–55
    [Google Scholar]
  36. 36. 
    Mariani JJ, Levin FR. 2012. Psychostimulant treatment of cocaine dependence. Psychiatr. Clin. 35:425–39
    [Google Scholar]
  37. 37. 
    Negus SS, Henningfield J. 2015. Agonist medications for the treatment of cocaine use disorder. Neuropsychopharmacology 40:1815–25
    [Google Scholar]
  38. 38. 
    Beuming T, Kniazeff J, Bergmann ML, Shi L, Gracia L et al. 2008. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11:780–89
    [Google Scholar]
  39. 39. 
    Wang KH, Penmatsa A, Gouaux E 2015. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521:322–27
    [Google Scholar]
  40. 40. 
    Razavi AM, Khelashvili G, Weinstein H 2017. A Markov state-based quantitative kinetic model of sodium release from the dopamine transporter. Sci. Rep. 7:40076
    [Google Scholar]
  41. 41. 
    Cheng MH, Kaya C, Bahar I 2018. Quantitative assessment of the energetics of dopamine translocation by human dopamine transporter. J. Phys. Chem. B 122:5336–46
    [Google Scholar]
  42. 42. 
    Balster RL, Kuhar MJ, Schuster CR 1996. Pharmacological Aspects of Drug Dependence: Toward an Integrated Neurobehavioral Approach New York: Springer
  43. 43. 
    Schmitt KC, Zhen J, Kharkar P, Mishra M, Chen N et al. 2008. Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wildtype and mutant human dopamine transporters: molecular features that differentially determine antagonist binding properties. J. Neurochem. 107:4928–40
    [Google Scholar]
  44. 44. 
    Schmitt KC, Reith MEA. 2010. Regulation of the dopamine transporter: aspects relevant to psycho-stimulant drugs of abuse. Ann. N. Y. Acad. Sci. 1187:316–40
    [Google Scholar]
  45. 45. 
    Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR 2007. New insights into the mechanism of action of amphetamines. Annu. Rev. Pharmacol. Toxicol. 47:681–98
    [Google Scholar]
  46. 46. 
    Wood S, Sage JR, Shuman T, Anagnostaras SG 2014. Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol. Rev. 66:193–221
    [Google Scholar]
  47. 47. 
    Madras B, Kuhar MJ. 2014. The Effects of Drug Abuse on the Human Nervous System Amsterdam: Elsevier
  48. 48. 
    Wise RA, Robble MA. 2020. Dopamine and addiction. Annu. Rev. Psychol. 71:79–106
    [Google Scholar]
  49. 49. 
    Newman AH, Allen AC, Izenwasser S, Katz JL 1994. Novel 3α-(diphenylmethoxy)tropane analogs: potent dopamine uptake inhibitors without cocaine-like behavioral profiles. J. Med. Chem. 37:2258–61
    [Google Scholar]
  50. 50. 
    Newman AH, Kline RH, Allen AC, Izenwasser S, George C, Katz JL 1995. Novel 4′-substituted and 4′,4′′-disubstituted 3α-(diphenylmethoxy)tropane analogs as potent and selective dopamine uptake inhibitors. J. Med. Chem. 38:3933–40
    [Google Scholar]
  51. 51. 
    Kline RH, Izenwasser S, Katz JL, Joseph DB, Bowen WD, Newman AH 1997. 3′-Chloro-3α-(diphenylmethoxy)tropane but not 4′-chloro-3α-(diphenylmethoxy)tropane produces a cocaine-like behavioral profile. J. Med. Chem. 40:851–57
    [Google Scholar]
  52. 52. 
    Agoston GE, Wu JH, Izenwasser S, George C, Katz J et al. 1997. Novel N-substituted 3α-[bis(4′-fluorophenyl)methoxy]tropane analogues: selective ligands for the dopamine transporter. J. Med. Chem. 40:4329–39
    [Google Scholar]
  53. 53. 
    Katz JL, Izenwasser S, Kline RH, Allen AC, Newman AH 1999. Novel 3α-diphenylmethoxytropane analogs: selective dopamine uptake inhibitors with behavioral effects distinct from those of cocaine. J. Pharmacol. Exp. Ther. 288:302–15
    [Google Scholar]
  54. 54. 
    Robarge MJ, Agoston GE, Izenwasser S, Kopajtic T, George C et al. 2000. Highly selective chiral N-substituted 3α-[bis(4′-fluorophenyl)methoxy]tropane analogues for the dopamine transporter: synthesis and comparative molecular field analysis. J. Med. Chem. 43:1085–93
    [Google Scholar]
  55. 55. 
    Newman AH, Robarge MJ, Howard IM, Wittkopp SL, George C et al. 2001. Structure-activity relationships at monoamine transporters and muscarinic receptors for N-substituted-3α-(3′-chloro-, 4′-chloro-, and 4′,4′′-dichloro-substituted-diphenyl)methoxytropanes. J. Med. Chem. 44:633–40
    [Google Scholar]
  56. 56. 
    Katz JL, Agoston GE, Alling KL, Kline RH, Forster MJ et al. 2001. Dopamine transporter binding without cocaine-like behavioral effects: synthesis and evaluation of benztropine analogs alone and in combination with cocaine in rodents. Psychopharmacology 154:362–74
    [Google Scholar]
  57. 57. 
    Zou MF, Kopajtic T, Katz JL, Newman AH 2003. Structure-activity relationship comparison of (S)-2β-substituted 3α-(bis[4-fluorophenyl]methoxy)tropanes and (R)-2β-substituted 3β-(3,4-dichlorophenyl)tropanes at the dopamine transporter. J. Med. Chem. 46:2908–16
    [Google Scholar]
  58. 58. 
    Katz JL, Kopajtic TA, Agoston GE, Newman AH 2004. Effects of N-substituted analogs of benztropine: diminished cocaine-like effects in dopamine transporter ligands. J. Pharmacol. Exp. Ther. 309:650–60
    [Google Scholar]
  59. 59. 
    Grundt P, Kopajtic TA, Katz JL, Newman AH 2004. The effect of 6-substituted-4′,4′′-difluorobenztropines on monoamine transporters and the muscarinic M1 receptor. Bioorg. Med. Chem. Lett. 14:3295–98
    [Google Scholar]
  60. 60. 
    Kulkarni SS, Grundt P, Kopajtic T, Katz JL, Newman AH 2004. Structure-activity relationships at monoamine transporters for a series of N-substituted 3α-(bis[4-fluorophenyl]methoxy)tropanes: comparative molecular field analysis, synthesis, and pharmacological evaluation. J. Med. Chem. 47:3388–98
    [Google Scholar]
  61. 61. 
    Grundt P, Kopajtic TA, Katz JL, Newman AH 2005. N-8-substituted benztropinamine analogs as selective dopamine transporter ligands. Bioorg. Med. Chem. Lett. 15:5419–23
    [Google Scholar]
  62. 62. 
    Zou MF, Cao J, Kopajtic T, Desai RI, Katz JL, Newman AH 2006. Structure-activity relationship studies on a novel series of (S)-2β-substituted 3α-[bis(4-fluoro- or 4-chlorophenyl)methoxy]tropane analogues for in vivo investigation. J. Med. Chem. 49:6391–99
    [Google Scholar]
  63. 63. 
    Newman AH, Kulkarni S. 2002. Probes for the dopamine transporter: new leads toward a cocaine-abuse therapeutic—a focus on analogues of benztropine and rimcazole. Med. Res. Rev. 22:429–64
    [Google Scholar]
  64. 64. 
    Desai RI, Kopajtic TA, Koffarnus M, Newman AH, Katz JL 2005. Identification of a dopamine transporter ligand that blocks the stimulant effects of cocaine. J. Neurosci. 25:1889–93
    [Google Scholar]
  65. 65. 
    Velazquez-Sanchez C, Garcia-Verdugo JM, Murga J, Canales JJ 2013. The atypical dopamine transport inhibitor, JHW 007, prevents amphetamine-induced sensitization and synaptic reorganization within the nucleus accumbens. Prog. Neuropsychopharmacol. Biol. Psychiatry 44:73–80
    [Google Scholar]
  66. 66. 
    Hiranita T, Wilkinson DS, Hong WC, Zou MF, Kopajtic TA et al. 2014. 2-Isoxazol-3-phenyltropane derivatives of cocaine: molecular and atypical system effects at the dopamine transporter. J. Pharmacol. Exp. Ther. 349:297–309
    [Google Scholar]
  67. 67. 
    Desai RI, Grandy DK, Lupica CR, Katz JL 2014. Pharmacological characterization of a dopamine transporter ligand that functions as a cocaine antagonist. J. Pharmacol. Exp. Ther. 348:106–15
    [Google Scholar]
  68. 68. 
    Kohut SJ, Hiranita T, Hong SK, Ebbs AL, Tronci V et al. 2014. Preference for distinct functional conformations of the dopamine transporter alters the relationship between subjective effects of cocaine and stimulation of mesolimbic dopamine. Biol. Psychiatry 76:802–9
    [Google Scholar]
  69. 69. 
    Avelar AJ, Cao J, Newman AH, Beckstead MJ 2017. Atypical dopamine transporter inhibitors R-modafinil and JHW 007 differentially affect D2 autoreceptor neurotransmission and the firing rate of midbrain dopamine neurons. Neuropharmacology 123:410–19
    [Google Scholar]
  70. 70. 
    Husbands SM, Izenwasser S, Kopajtic T, Bowen WD, Vilner BJ et al. 1999. Structure-activity relationships at the monoamine transporters and σ receptors for a novel series of 9-[3-(cis-3, 5-dimethyl-1-piperazinyl)propyl]carbazole (rimcazole) analogues. J. Med. Chem. 42:4446–55
    [Google Scholar]
  71. 71. 
    Cao J, Husbands SM, Kopajtic T, Katz JL, Newman AH 2001. [3-cis-3,5-Dimethyl-(1-piperazinyl)alkyl]-bis-(4′-fluorophenyl)amine analogues as novel probes for the dopamine transporter. Bioorg. Med. Chem. Lett. 11:3169–73
    [Google Scholar]
  72. 72. 
    Cao J, Kulkarni SS, Husbands SM, Bowen WD, Williams W et al. 2003. Dual probes for the dopamine transporter and σ1 receptors: novel piperazinyl alkyl-bis(4′-fluorophenyl)amine analogues as potential cocaine-abuse therapeutic agents. J. Med. Chem. 46:2589–98
    [Google Scholar]
  73. 73. 
    Cao J, Kopajtic T, Katz JL, Newman AH 2008. Dual DAT/σ1 receptor ligands based on 3-(4-(3-(bis(4-fluorophenyl)amino)propyl)piperazin-1-yl)-1-phenylpropan-1-ol. Bioorg. Med. Chem. Lett. 18:5238–41
    [Google Scholar]
  74. 74. 
    Matsumoto RR, Hewett KL, Pouw B, Bowen WD, Husbands SM et al. 2001. Rimcazole analogs attenuate the convulsive effects of cocaine: correlation with binding to sigma receptors rather than dopamine transporters. Neuropharmacology 41:878–86
    [Google Scholar]
  75. 75. 
    Katz JL, Libby TA, Kopajtic T, Husbands SM, Newman AH 2003. Behavioral effects of rimcazole analogues alone and in combination with cocaine. Eur. J. Pharmacol. 468:109–19
    [Google Scholar]
  76. 76. 
    Hiranita T, Soto PL, Kohut SJ, Kopajtic T, Cao J et al. 2011. Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and σ receptors. J. Pharmacol. Exp. Ther. 339:662–77
    [Google Scholar]
  77. 77. 
    Hiranita T, Hong WC, Kopajtic T, Katz JL 2017. σ receptor effects of N-substituted benztropine analogs: implications for antagonism of cocaine self-administration. J. Pharmacol. Exp. Ther. 362:2–13
    [Google Scholar]
  78. 78. 
    Contreras PC, Bremer ME, Rao TS 1990. GBR-12909 and fluspirilene potently inhibited binding of [3H] (+)3-PPP to sigma receptors in rat brain. Life Sci 47:PL133–37
    [Google Scholar]
  79. 79. 
    Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC et al. 2015. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147:1–19
    [Google Scholar]
  80. 80. 
    Hong WC, Kopajtic TA, Xu L, Lomenzo SA, Jean B et al. 2016. 2-Substituted 3β-aryltropane cocaine analogs produce atypical effects without inducing inward-facing dopamine transporter conformations. J. Pharmacol. Exp. Ther. 356:624–34
    [Google Scholar]
  81. 81. 
    Penetar DM, Looby AR, Su Z, Lundahl LH, Eros-Sarnyai M et al. 2006. Benztropine pretreatment does not affect responses to acute cocaine administration in human volunteers. Hum. Psychopharmacol. 21:549–59
    [Google Scholar]
  82. 82. 
    Sambo DO, Lin M, Owens A, Lebowitz JJ, Richardson B et al. 2017. The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat. Commun. 8:2228
    [Google Scholar]
  83. 83. 
    Jamieson C, Moir EM, Rankovic Z, Wishart G 2006. Medicinal chemistry of hERG optimizations: highlights and hang-ups. J. Med. Chem. 49:5029–46
    [Google Scholar]
  84. 84. 
    Perrin MJ, Kuchel PW, Campbell TJ, Vandenberg JI 2008. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-à-go-go-related gene channels. Mol. Pharmacol. 74:1443–52
    [Google Scholar]
  85. 85. 
    Gintant G, Sager PT, Stockbridge N 2016. Evolution of strategies to improve preclinical cardiac safety testing. Nat. Rev. Drug Discov. 15:457–71
    [Google Scholar]
  86. 86. 
    Kalyaanamoorthy S, Barakat KH. 2018. Binding modes of hERG blockers: an unsolved mystery in the drug design arena. Expert Opin. Drug Discov. 13:207–10
    [Google Scholar]
  87. 87. 
    Kadric S, Mohler H, Kallioniemi O, Altmann KH 2019. A multicenter, randomized, placebo-controlled study to evaluate the efficacy and safety of long-acting injectable formulation of vanoxerine (Vanoxerine Consta 394.2 mg) for cocaine relapse prevention. World J. Neurosci. 9:113–37
    [Google Scholar]
  88. 88. 
    Tanda G, Newman AH, Katz JL 2009. Discovery of drugs to treat cocaine dependence: behavioral and neurochemical effects of atypical dopamine transport inhibitors. Adv. Pharmacol. 57:253–89
    [Google Scholar]
  89. 89. 
    Beuming T, Kniazeff J, Bergmann ML, Shi L, Gracia L et al. 2008. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11:780–89
    [Google Scholar]
  90. 90. 
    Desai RI, Kopajtic TA, French D, Newman AH, Katz JL 2005. Relationship between in vivo occupancy at the dopamine transporter and behavioral effects of cocaine, GBR 12909 [1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine], and benztropine analogs. J. Pharmacol. Exp. Ther. 315:397–404
    [Google Scholar]
  91. 91. 
    Volkow ND, Ding YS, Fowler JS, Wang GJ 1996. Cocaine addiction: hypothesis derived from imaging studies with PET. J. Addict. Dis. 15:55–71
    [Google Scholar]
  92. 92. 
    Dackis CA, Kampman KM, Lynch KG, Pettinati HM, O'Brien CP 2005. A double-blind, placebo-controlled trial of modafinil for cocaine dependence. Neuropsychopharmacology 30:205–11
    [Google Scholar]
  93. 93. 
    Ballon JS, Feifel D. 2006. A systematic review of modafinil: potential clinical uses and mechanisms of action. J. Clin. Psychiatry 67:554–66
    [Google Scholar]
  94. 94. 
    Hart CL, Haney M, Vosburg SK, Rubin E, Foltin RW 2008. Smoked cocaine self-administration is decreased by modafinil. Neuropsychopharmacology 33:761–68
    [Google Scholar]
  95. 95. 
    Anderson AL, Reid MS, Li SH, Holmes T, Shemanski L et al. 2009. Modafinil for the treatment of cocaine dependence. Drug Alcohol Depend 104:133–39
    [Google Scholar]
  96. 96. 
    Loland CJ, Mereu M, Okunola OM, Cao J, Prisinzano TE et al. 2012. R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol. Psychiatry 72:405–13
    [Google Scholar]
  97. 97. 
    Mereu M, Bonci A, Newman AH, Tanda G 2013. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology 229:415–34
    [Google Scholar]
  98. 98. 
    Mereu M, Chun LE, Prisinzano TE, Newman AH, Katz JL, Tanda G 2017. The unique psychostimulant profile of (±)-modafinil: investigation of behavioral and neurochemical effects in mice. Eur. J. Neurosci. 45:167–74
    [Google Scholar]
  99. 99. 
    Cao J, Prisinzano TE, Okunola OM, Kopajtic T, Shook M et al. 2010. Structure-activity relationships at the monoamine transporters for a novel series of modafinil (2-[(diphenylmethyl)sulfinyl]acetamide) analogues. ACS Med. Chem. Lett. 2:48–52
    [Google Scholar]
  100. 100. 
    Okunola-Bakare OM, Cao J, Kopajtic T, Katz JL, Loland CJ et al. 2014. Elucidation of structural elements for selectivity across monoamine transporters: novel 2-[(diphenylmethyl)sulfinyl]acetamide (modafinil) analogues. J. Med. Chem. 57:1000–13
    [Google Scholar]
  101. 101. 
    Zhang HY, Bi GH, Yang HJ, He Y, Xue G et al. 2017. The novel modafinil analog, JJC8-016, as a potential cocaine abuse pharmacotherapeutic. Neuropsychopharmacology 42:1871–83
    [Google Scholar]
  102. 102. 
    Tunstall BJ, Ho CP, Cao J, Vendruscolo JCM, Schmeichel BE et al. 2018. Atypical dopamine transporter inhibitors attenuate compulsive-like methamphetamine self-administration in rats. Neuropharmacology 131:96–103
    [Google Scholar]
  103. 103. 
    Fant AD, Wacker S, Jung J, Guo J, Abramyan AM et al. 2019. Toward reducing hERG affinities for DAT inhibitors with a combined machine learning and molecular modeling approach. Biophys. J. 116:Suppl. 1562a
    [Google Scholar]
  104. 104. 
    Johannesen L, Vicente J, Mason JW, Erato C, Sanabria C et al. 2016. Late sodium current block for drug-induced long QT syndrome: results from a prospective clinical trial. Clin. Pharmacol. Ther. 99:214–23
    [Google Scholar]
  105. 105. 
    Bolleddula J, DeMent K, Driscoll JP, Worboys P, Brassil PJ, Bourdet DL 2014. Biotransformation and bioactivation reactions of alicyclic amines in drug molecules. Drug Metab. Rev. 46:379–419
    [Google Scholar]
  106. 106. 
    Reilly SW, Griffin S, Taylor M, Sahlholm K, Weng CC et al. 2017. Highly selective dopamine D3 receptor antagonists with arylated diazaspiro alkane cores. J. Med. Chem. 60:9905–10
    [Google Scholar]
  107. 107. 
    Aronov AM. 2005. Predictive in silico modeling for hERG channel blockers. Drug Discov. Today 10:149–55
    [Google Scholar]
  108. 108. 
    Cao J, Slack RD, Bakare OM, Burzynski C, Rais R et al. 2016. Novel and high affinity 2-[(diphenylmethyl)sulfinyl]acetamide (modafinil) analogues as atypical dopamine transporter inhibitors. J. Med. Chem. 59:10676–91
    [Google Scholar]
  109. 109. 
    Slack RD, Ku TC, Cao J, Giancola JB, Bonifazi A et al. 2020. Structure-activity relationships for a series of (bis(4-fluorophenyl)methyl)sulfinyl alkyl alicyclic amines at the dopamine transporter: Functionalizing the terminal nitrogen affects affinity, selectivity, and metabolic stability. J. Med. Chem. 63:52343–57
    [Google Scholar]
  110. 110. 
    Giancola JB, Bonifazi A, Cao J, Ku T, Haraczy AJ et al. 2020. Structure-activity relationships for a series of (bis(4-fluorophenyl)methyl)sulfinylethyl-aminopiperidines and -piperidine amines at the dopamine transporter: Bioisosteric replacement of the piperazine improves metabolic stability. Eur. J. Med. Chem. 208:112674
    [Google Scholar]
  111. 111. 
    Kalaba P, Aher NY, Ilic M, Dragacevic V, Wieder M et al. 2017. Heterocyclic analogues of modafinil as novel, atypical dopamine transporter inhibitors. J. Med. Chem. 60:9330–48
    [Google Scholar]
  112. 112. 
    Kalaba P, Ilic M, Aher NY, Dragacevic V, Wieder M et al. 2020. Structure-activity relationships of novel thiazole-based modafinil analogues acting at monoamine transporters. J. Med. Chem. 63:391–417
    [Google Scholar]
  113. 113. 
    Di Chiara G, Acquas E, Tanda G, Cadoni C 1993. Drugs of abuse: biochemical surrogates of specific aspects of natural reward. ? Biochem. Soc. Symp. 59:65–81
    [Google Scholar]
  114. 114. 
    Landwehrmeyer B, Mengod G, Palacios JM 1993. Dopamine D3 receptor mRNA and binding sites in human brain. Brain Res. Mol. Brain Res. 18:187–92
    [Google Scholar]
  115. 115. 
    Landwehrmeyer B, Mengod G, Palacios JM 1993. Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur. J. Neurosci. 5:145–53
    [Google Scholar]
  116. 116. 
    Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC 1990. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–51
    [Google Scholar]
  117. 117. 
    Caine SB, Koob GF. 1993. Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–16
    [Google Scholar]
  118. 118. 
    Mash DC, Staley JK. 1999. D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims. Ann. N. Y. Acad. Sci. 877:507–22
    [Google Scholar]
  119. 119. 
    Segal DM, Moraes CT, Mash DC 1997. Up-regulation of D3 dopamine receptor mRNA in the nucleus accumbens of human cocaine fatalities. Brain Res. Mol. Brain Res. 45:335–39
    [Google Scholar]
  120. 120. 
    Staley JK, Mash DC. 1996. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J. Neurosci. 16:6100–6
    [Google Scholar]
  121. 121. 
    Matuskey D, Gallezot JD, Pittman B, Williams W, Wanyiri J et al. 2014. Dopamine D3 receptor alterations in cocaine-dependent humans imaged with [11C](+)PHNO. Drug Alcohol Depend 139:100–5
    [Google Scholar]
  122. 122. 
    Payer D, Balasubramaniam G, Boileau I 2014. What is the role of the D3 receptor in addiction? A mini review of PET studies with [11C]-(+)-PHNO. Prog. Neuropsychopharmacol. Biol. Psychiatry 52:4–8
    [Google Scholar]
  123. 123. 
    Aujla H, Sokoloff P, Beninger RJ 2002. A dopamine D3 receptor partial agonist blocks the expression of conditioned activity. Neuroreport 13:173–76
    [Google Scholar]
  124. 124. 
    Cervo L, Carnovali F, Stark JA, Mennini T 2003. Cocaine-seeking behavior in response to drug-associated stimuli in rats: involvement of D3 and D2 dopamine receptors. Neuropsychopharmacology 28:1150–59
    [Google Scholar]
  125. 125. 
    Gal K, Gyertyan I. 2006. Dopamine D3 as well as D2 receptor ligands attenuate the cue-induced cocaine-seeking in a relapse model in rats. Drug Alcohol Depend 81:63–70
    [Google Scholar]
  126. 126. 
    Le Foll B, Frances H, Diaz J, Schwartz JC, Sokoloff P 2002. Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur. J. Neurosci. 15:2016–26
    [Google Scholar]
  127. 127. 
    Pilla M, Perachon S, Sautel F, Garrido F, Mann A et al. 1999. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400:371–75
    [Google Scholar]
  128. 128. 
    Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE et al. 2000. Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011-A. J. Pharmacol. Exp. Ther. 294:1154–65
    [Google Scholar]
  129. 129. 
    Guerrero-Bautista R, Do Couto BR, Hidalgo JM, Carceles-Moreno FJ, Molina G et al. 2019. Modulation of stress- and cocaine prime-induced reinstatement of conditioned place preference after memory extinction through dopamine D3 receptor. Prog. Neuropsychopharmacol. Biol. Psychiatry 92:308–20
    [Google Scholar]
  130. 130. 
    Vorel SR, Ashby CR Jr., Paul M, Liu X, Hayes R et al. 2002. Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J. Neurosci. 22:9595–603
    [Google Scholar]
  131. 131. 
    Di Ciano P, Underwood RJ, Hagan JJ, Everitt BJ 2003. Attenuation of cue-controlled cocaine-seeking by a selective D3 dopamine receptor antagonist SB-277011-A. Neuropsychopharmacology 28:329–38
    [Google Scholar]
  132. 132. 
    Austin NE, Baldwin SJ, Cutler L, Deeks N, Kelly PJ et al. 2001. Pharmacokinetics of the novel, high-affinity and selective dopamine D3 receptor antagonist SB-277011 in rat, dog and monkey: in vitro/in vivo correlation and the role of aldehyde oxidase. Xenobiotica 31:677–86
    [Google Scholar]
  133. 133. 
    Remington G, Kapur S. 2001. SB-277011 GlaxoSmithKline. Curr. Opin. Investig. Drugs 2:946–49
    [Google Scholar]
  134. 134. 
    Xi ZX, Gardner EL. 2007. Pharmacological actions of NGB 2904, a selective dopamine D3 receptor antagonist, in animal models of drug addiction. CNS Drug Rev 13:240–59
    [Google Scholar]
  135. 135. 
    Pritchard LM, Newman AH, McNamara RK, Logue AD, Taylor B et al. 2007. The dopamine D3 receptor antagonist NGB 2904 increases spontaneous and amphetamine-stimulated locomotion. Pharmacol. Biochem. Behav. 86:718–26
    [Google Scholar]
  136. 136. 
    Higley AE, Spiller K, Grundt P, Newman AH, Kiefer SW et al. 2011. PG01037, a novel dopamine D3 receptor antagonist, inhibits the effects of methamphetamine in rats. J. Psychopharmacol. 25:263–73
    [Google Scholar]
  137. 137. 
    John WS, Newman AH, Nader MA 2015. Differential effects of the dopamine D3 receptor antagonist PG01037 on cocaine and methamphetamine self-administration in rhesus monkeys. Neuropharmacology 92:34–43
    [Google Scholar]
  138. 138. 
    Keck TM, John WS, Czoty PW, Nader MA, Newman AH 2015. Identifying medication targets for psychostimulant addiction: unraveling the dopamine D3 receptor hypothesis. J. Med. Chem. 58:5361–80
    [Google Scholar]
  139. 139. 
    Appel NM, Li SH, Holmes TH, Acri JB 2015. Dopamine D3 receptor antagonist (GSK598809) potentiates the hypertensive effects of cocaine in conscious, freely-moving dogs. J. Pharmacol. Exp. Ther. 354:484–92
    [Google Scholar]
  140. 140. 
    Jordan CJ, Humburg BA, Thorndike EB, Shaik AB, Xi ZX et al. 2019. Newly developed dopamine D3 receptor antagonists, R-VK4-40 and R-VK4-116, do not potentiate cardiovascular effects of cocaine or oxycodone in rats. J. Pharmacol. Exp. Ther. 371:602–14
    [Google Scholar]
  141. 141. 
    Shaik AB, Kumar V, Bonifazi A, Guerrero AM, Cemaj SL et al. 2019. Investigation of novel primary and secondary pharmacophores and 3-substitution in the linking chain of a series of highly selective and bitopic dopamine D3 receptor antagonists and partial agonists. J. Med. Chem. 62:9061–77
    [Google Scholar]
  142. 142. 
    Kumar V, Bonifazi A, Ellenberger MP, Keck TM, Pommier E et al. 2016. Highly selective dopamine D3 receptor (D3R) antagonists and partial agonists based on eticlopride and the D3R crystal structure: new leads for opioid dependence treatment. J. Med. Chem. 59:7634–50
    [Google Scholar]
  143. 143. 
    You ZB, Bi GH, Galaj E, Kumar V, Cao J et al. 2019. Dopamine D3R antagonist VK4-116 attenuates oxycodone self-administration and reinstatement without compromising its antinociceptive effects. Neuropsychopharmacology 44:1415–24
    [Google Scholar]
  144. 144. 
    Jordan CJ, Cao J, Newman AH, Xi ZX 2019. Progress in agonist therapy for substance use disorders: lessons learned from methadone and buprenorphine. Neuropharmacology 158:107609
    [Google Scholar]
  145. 145. 
    Jordan CJ, Xi ZX. 2018. Discovery and development of varenicline for smoking cessation. Expert Opin. Drug Discov. 13:671–83
    [Google Scholar]
  146. 146. 
    Roman V, Gyertyan I, Saghy K, Kiss B, Szombathelyi Z 2013. Cariprazine (RGH-188), a D3-preferring dopamine D3/D2 receptor partial agonist antipsychotic candidate demonstrates anti-abuse potential in rats. Psychopharmacology 226:285–93
    [Google Scholar]
  147. 147. 
    Orio L, Wee S, Newman AH, Pulvirenti L, Koob GF 2010. The dopamine D3 receptor partial agonist CJB090 and antagonist PG01037 decrease progressive ratio responding for methamphetamine in rats with extended-access. Addict. Biol. 15:312–23
    [Google Scholar]
  148. 148. 
    Martelle JL, Claytor R, Ross JT, Reboussin BA, Newman AH, Nader MA 2007. Effects of two novel D3-selective compounds, NGB 2904 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide] and CJB 090 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide], on the reinforcing and discriminative stimulus effects of cocaine in rhesus monkeys. J. Pharmacol. Exp. Ther. 321:573–82
    [Google Scholar]
  149. 149. 
    Garcia-Ladona FJ, Cox BF. 2003. BP 897, a selective dopamine D3 receptor ligand with therapeutic potential for the treatment of cocaine-addiction. CNS Drug Rev 9:141–58
    [Google Scholar]
  150. 150. 
    Achat-Mendes C, Platt DM, Newman AH, Spealman RD 2009. The dopamine D3 receptor partial agonist CJB 090 inhibits the discriminative stimulus but not the reinforcing or priming effects of cocaine in squirrel monkeys. Psychopharmacology 206:73–84
    [Google Scholar]
  151. 151. 
    Hachimine P, Seepersad N, Ananthan S, Ranaldi R 2014. The novel dopamine D3 receptor antagonist, SR 21502, reduces cocaine conditioned place preference in rats. Neurosci. Lett. 569:137–41
    [Google Scholar]
  152. 152. 
    Gyertyan I, Kiss B, Gal K, Laszlovszky I, Horvath A et al. 2007. Effects of RGH-237 [N-{4-[4-(3-aminocarbonyl-phenyl)-piperazin-1-yl]-butyl}-4-bromo-benzamide], an orally active, selective dopamine D3 receptor partial agonist in animal models of cocaine abuse. J. Pharmacol. Exp. Ther. 320:1268–78
    [Google Scholar]
  153. 153. 
    Jordan CJ, He Y, Bi G-H, You Z-B, Cao J et al. 2020. (±)VK4-40, a novel D3R partial agonist, attenuates cocaine reward and relapse in rodents. Br. J. Pharmacol. 20:4796807
    [Google Scholar]
  154. 154. 
    Czoty PW, Stoops WW, Rush CR 2016. Evaluation of the “pipeline” for development of medications for cocaine use disorder: a review of translational preclinical, human laboratory, and clinical trial research. Pharmacol. Rev. 68:533–62
    [Google Scholar]
  155. 155. 
    Jordan CJ, Xi ZX. 2019. Progress in brain cannabinoid CB2 receptor research: from genes to behavior. Neurosci. Biobehav. Rev. 98:208–20
    [Google Scholar]
  156. 156. 
    Newman AH, Battiti FO, Bonifazi A 2020. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing bivalent or bitopic molecules for G-protein coupled receptors. The whole is greater than the sum of its parts. J. Med. Chem. 63:51779–97
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030220-124205
Loading
/content/journals/10.1146/annurev-pharmtox-030220-124205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error