1932

Abstract

Although plastic pollution and exposure to plastic-related compounds have received worldwide attention, health risks associated with micro- and nanoplastics (MNPs) are largely unknown. Emerging evidence suggests MNPs are present in human biofluids and tissue, including blood, breast milk, stool, lung tissue, and placenta; however, exposure assessment is limited and the extent of human exposure to MNPs is not well known. While there is a critical need to establish robust and scalable biomonitoring strategies to assess human exposure to MNPs and plastic-related chemicals, over 10,000 chemicals have been linked to plastic manufacturing with no existing standardized approaches to account for even a fraction of these exposures. This review provides an overview of the status of methods for measuring MNPs and associated plastic-related chemicals in humans, with a focus on approaches that could be adapted for population-wide biomonitoring and integration with biological response measures to develop hypotheses on potential health effects of plastic exposures. We also examine the exposure risks associated with the widespread use of chemical additives in plastics. Despite advancements in analytical techniques, there remains a pressing need for standardized measurement protocols and untargeted, high-throughput analysis methods to enable comprehensive MNP biomonitoring to identify key MNP exposures in human populations. This review aims to merge insights into the toxicological effects of MNPs and plastic additives with an evaluation of analytical challenges, advocating for enhanced research methods to fully assess, understand, and mitigate the public health implications of MNPs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030424-112828
2025-01-23
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-030424-112828.html?itemId=/content/journals/10.1146/annurev-pharmtox-030424-112828&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Koelmans AA, Redondo-Hasselerharm PE, Nor NHM, de Ruijter VN, Mintenig SM, Kooi M. 2022.. Risk assessment of microplastic particles. . Nat. Rev. Mater. 7:(2):13852
    [Google Scholar]
  2. 2.
    Akdogan Z, Guven B. 2019.. Microplastics in the environment: a critical review of current understanding and identification of future research needs. . Environ. Pollut. 254::113011
    [Google Scholar]
  3. 3.
    Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, et al. 2022.. A review on microplastics and nanoplastics in the environment: their occurrence, exposure routes, toxic studies, and potential effects on human health. . Mar. Pollut. Bull. 181::113832
    [Google Scholar]
  4. 4.
    Lai H, Liu X, Qu M. 2022.. Nanoplastics and human health: hazard identification and biointerface. . Nanomaterials 12:(8):1298
    [Google Scholar]
  5. 5.
    Ziani K, Ioni C-B, Mititelu M, SM, Negrei C, et al. 2023.. Microplastics: a real global threat for environment and food safety: a state of the art review. . Nutrients 15:(3):617
    [Google Scholar]
  6. 6.
    Kwon G, Cho D-W, Park J, Bhatnagar A, Song H. 2023.. A review of plastic pollution and their treatment technology: a circular economy platform by thermochemical pathway. . Chem. Eng. J. 464::142771
    [Google Scholar]
  7. 7.
    Wiesinger H, Wang Z, Hellweg S. 2021.. Deep dive into plastic monomers, additives, and processing aids. . Environ. Sci. Technol. 55:(13):933951
    [Google Scholar]
  8. 8.
    Castelvetro V, Corti A, Biale G, Ceccarini A, Degano I, et al. 2021.. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products. . Environ. Sci. Pollut. Res. 28:(34):4676480
    [Google Scholar]
  9. 9.
    de Guzman MK, Andjelković M, Jovanović V, Jung J, Kim J, et al. 2022.. Comparative profiling and exposure assessment of microplastics in differently sized Manila clams from South Korea by μFTIR and Nile Red staining. . Mar. Pollut. Bull. 181::113846
    [Google Scholar]
  10. 10.
    Volgare M, Santonicola S, Cocca M, Avolio R, Castaldo R, et al. 2022.. A versatile approach to evaluate the occurrence of microfibers in mussels Mytilus galloprovincialis. . Sci. Rep. 12:(1):21827
    [Google Scholar]
  11. 11.
    Cetin M, Miloglu FD, Baygutalp NK, Ceylan O, Yildirim S, et al. 2023.. Higher number of microplastics in tumoral colon tissues from patients with colorectal adenocarcinoma. . Environ. Chem. Lett. 21::63946
    [Google Scholar]
  12. 12.
    Dusza HM, Katrukha EA, Nijmeijer SM, Akhmanova A, Vethaak AD, et al. 2022.. Uptake, transport, and toxicity of pristine and weathered micro- and nanoplastics in human placenta cells. . Environ. Health Perspect. 130:(9):97006
    [Google Scholar]
  13. 13.
    Zarus GM, Muianga C, Brenner S, Stallings K, Casillas G, et al. 2023.. Worker studies suggest unique liver carcinogenicity potential of polyvinyl chloride microplastics. . Am. J. Ind. Med. 66:(12):103347
    [Google Scholar]
  14. 14.
    Halfar J, Čabanová K, Vávra K, Delongová P, Motyka O, et al. 2023.. Microplastics and additives in patients with preterm birth: the first evidence of their presence in both human amniotic fluid and placenta. . Chemosphere 343::140301
    [Google Scholar]
  15. 15.
    Zhang J, Wang L, Trasande L, Kannan K. 2021.. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. . Environ. Sci. Technol. Lett. 8:(11):98994
    [Google Scholar]
  16. 16.
    Yan Z, Zhao H, Zhao Y, Zhu Q, Qiao R, et al. 2020.. An efficient method for extracting microplastics from feces of different species. . J. Hazard. Mater. 384::121489
    [Google Scholar]
  17. 17.
    Zhu L, Zhu J, Zuo R, Xu Q, Qian Y, An L. 2023.. Identification of microplastics in human placenta using laser direct infrared spectroscopy. . Sci. Total Environ. 856::159060
    [Google Scholar]
  18. 18.
    Liu S, Liu X, Guo J, Yang R, Wang H, et al. 2022.. The association between microplastics and microbiota in placentas and meconium: the first evidence in humans. . Environ. Sci. Technol. 57:(46):1777485
    [Google Scholar]
  19. 19.
    Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, et al. 2022.. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. . Polymers 14:(13):2700
    [Google Scholar]
  20. 20.
    Liu S, Guo J, Liu X, Yang R, Wang H, et al. 2023.. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: a pilot prospective study. . Sci. Total Environ. 854::158699
    [Google Scholar]
  21. 21.
    Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, et al. 2021.. Detection of microplastic in human placenta and meconium in a clinical setting. . Pharmaceutics 13:(7):921
    [Google Scholar]
  22. 22.
    Cho Y, Shim WJ, Jang M, Han GM, Hong SH. 2021.. Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea. . Environ. Pollut. 270::116175
    [Google Scholar]
  23. 23.
    Cho Y, Shim WJ, Jang M, Han GM, Hong SH. 2019.. Abundance and characteristics of microplastics in market bivalves from South Korea. . Environ. Pollut. 245::110716
    [Google Scholar]
  24. 24.
    Horvatits T, Tamminga M, Liu B, Sebode M, Carambia A, et al. 2022.. Microplastics detected in cirrhotic liver tissue. . EBioMedicine 82::104147
    [Google Scholar]
  25. 25.
    Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. 2022.. Detection of microplastics in human lung tissue using μFTIR spectroscopy. . Sci. Total Environ. 831::154907
    [Google Scholar]
  26. 26.
    Rotchell JM, Jenner LC, Chapman E, Bennett RT, Bolanle IO, et al. 2023.. Detection of microplastics in human saphenous vein tissue using μFTIR: a pilot study. . PLOS ONE 18:(2):e0280594
    [Google Scholar]
  27. 27.
    Montano L, Giorgini E, Notarstefano V, Notari T, Ricciardi M, et al. 2023.. Raman microspectroscopy evidence of microplastics in human semen. . Sci. Total Environ. 901::165922
    [Google Scholar]
  28. 28.
    Hong Y, Wu S, Wei G. 2023.. Adverse effects of microplastics and nanoplastics on the reproductive system: a comprehensive review of fertility and potential harmful interactions. . Sci. Total Environ. 903::166258
    [Google Scholar]
  29. 29.
    Zhang C, Chen J, Ma S, Sun Z, Wang Z. 2022.. Microplastics may be a significant cause of male infertility. . Am. J. Mens Health 16:(3):15579883221096548
    [Google Scholar]
  30. 30.
    Zhao Q, Zhu L, Weng J, Jin Z, Cao Y, et al. 2023.. Detection and characterization of microplastics in the human testis and semen. . Sci. Total Environ. 877::162713
    [Google Scholar]
  31. 31.
    Garcia-Torné M, Abad E, Almeida D, Llorca M, Farré M. 2023.. Assessment of micro- and nanoplastic composition (polymers and additives) in the gastrointestinal tracts of Ebro River fishes. . Molecules 28:(1):239
    [Google Scholar]
  32. 32.
    Al Rashed N, Gerlach C, Guenther K. 2023.. Determination of nonylphenol in selected foods and identification of single isomers in a coffee sample by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry. . Anal. Lett. 56:(16):2586604
    [Google Scholar]
  33. 33.
    Amran NH, Zaid SSM, Mokhtar MH, Manaf LA, Othman S. 2022.. Exposure to microplastics during early developmental stage: review of current evidence. . Toxics 10:(10):597
    [Google Scholar]
  34. 34.
    Akoueson F, Sheldon LM, Danopoulos E, Morris S, Hotten J, et al. 2020.. A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples. . Environ. Pollut. 263:(Part A):114452
    [Google Scholar]
  35. 35.
    Di Giacinto F, Di Renzo L, Mascilongo G, Notarstefano V, Gioacchini G, et al. 2023.. Detection of microplastics, polymers and additives in edible muscle of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) caught in the Mediterranean Sea. . J. Sea Res. 192::102359
    [Google Scholar]
  36. 36.
    Da Costa Filho PA, Andrey D, Eriksen B, Peixoto RP, Carreres BM, et al. 2021.. Detection and characterization of small-sized microplastics (≥5 μm) in milk products. . Sci. Rep. 11:(1):24046
    [Google Scholar]
  37. 37.
    Castro-Jiménez J, Ratola N. 2020.. An innovative approach for the simultaneous quantitative screening of organic plastic additives in complex matrices in marine coastal areas. . Environ. Sci. Pollut. Res. 27:(10):1145057
    [Google Scholar]
  38. 38.
    Villacorta A, Rubio L, Alaraby M, López-Mesas M, Fuentes-Cebrian V, et al. 2022.. A new source of representative secondary PET nanoplastics. Obtention, characterization, and hazard evaluation. . J. Hazard. Mater. 439::129593
    [Google Scholar]
  39. 39.
    Gao H, Lin Y, Wei J, Zhang Y, Pan H, et al. 2021.. A novel extraction protocol of nano-polystyrene from biological samples. . Sci. Total Environ. 790::148085
    [Google Scholar]
  40. 40.
    Li Y, Tao L, Wang Q, Wang F, Li G, Song M. 2023.. Potential health impact of microplastics: a review of environmental distribution, human exposure, and toxic effects. . Environ. Health 1:(4):24957
    [Google Scholar]
  41. 41.
    Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018.. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. . J. Hazard. Mater. 344::17999
    [Google Scholar]
  42. 42.
    Han S, Bang J, Choi DH, Hwang J, Kim T, et al. 2020.. Surface pattern analysis of microplastics and their impact on human-derived cells. . ACS Appl. Polym. Mater. 2:(11):454150
    [Google Scholar]
  43. 43.
    Akoueson F, Chbib C, Brémard A, Monchy S, Paul-Pont I, et al. 2022.. Identification of plastic additives: Py/TD-GC-HRMS method development and application on food containers. . J. Anal. Appl. Pyrolysis 168::105745
    [Google Scholar]
  44. 44.
    García Ibarra V, Rodríguez Bernaldo de Quirós A, Paseiro Losada P, Sendón R. 2018.. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. . Anal. Bioanal. Chem. 410:(16):3789803
    [Google Scholar]
  45. 45.
    Wagner M, Monclús L, Arp HPH, Groh KJ, Løseth ME, et al. 2024.. State of the Science on Plastic Chemicals: Identifying and Addressing Chemicals and Polymers of Concern. N.p.:: PlastChem. https://plastchem-project.org/
    [Google Scholar]
  46. 46.
    Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, et al. 2019.. Overview of known plastic packaging-associated chemicals and their hazards. . Sci. Total Environ. 651::325368
    [Google Scholar]
  47. 47.
    Cañadas R, Garrido Gamarro E, Garcinuño Martínez RM, Paniagua González G, Fernández Hernando P. 2021.. Occurrence of common plastic additives and contaminants in mussel samples: validation of analytical method based on matrix solid-phase dispersion. . Food Chem. 349::129169
    [Google Scholar]
  48. 48.
    Yusà V, López A, Dualde P, Pardo O, Fochi I, et al. 2021.. Identification of 24 unknown substances (NIAS/IAS) from food contact polycarbonate by LC-Orbitrap Tribrid HRMS-DDMS3: safety assessment. . Int. J. Anal. Chem. 2021::6654611
    [Google Scholar]
  49. 49.
    Aigotti R, Giannone N, Asteggiano A, Mecarelli E, Dal Bello F, Medana C. 2022.. Release of selected non-intentionally added substances (NIAS) from PET food contact materials: a new online SPE-UHPLC-MS/MS multiresidue method. . Separations 9:(8):188
    [Google Scholar]
  50. 50.
    Li Y, Lu Z, Abrahamsson DP, Song W, Yang C, et al. 2022.. Non-targeted analysis for organic components of microplastic leachates. . Sci. Total Environ. 816::151598
    [Google Scholar]
  51. 51.
    Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, et al. 2017.. Occurrence and effects of plastic additives on marine environments and organisms: a review. . Chemosphere 182::78193
    [Google Scholar]
  52. 52.
    Dube E, Okuthe GE. 2023.. Plastics and micro/nano-plastics (MNPs) in the environment: occurrence, impact, and toxicity. . Int. J. Environ. Res. Public Health 20:(17):6667
    [Google Scholar]
  53. 53.
    Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, et al. 2024.. In vivo tissue distribution of polystyrene or mixed polymer microspheres and metabolomic analysis after oral exposure in mice. . Environ. Health Perspect. 132:(4):47005
    [Google Scholar]
  54. 54.
    Fang M, Liao Z, Ji X, Zhu X, Wang Z, et al. 2022.. Microplastic ingestion from atmospheric deposition during dining/drinking activities. . J. Hazard. Mater. 432::128674
    [Google Scholar]
  55. 55.
    Pandey D, Banerjee T, Badola N, Chauhan JS. 2022.. Evidences of microplastics in aerosols and street dust: a case study of Varanasi City, India. . Environ. Sci. Pollut. Res. 29:(54):8200613
    [Google Scholar]
  56. 56.
    Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, et al. 2020.. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. . Environ. Res. 187::109677
    [Google Scholar]
  57. 57.
    Yedier S, Yalçınkaya SK, Bostancı D. 2023.. Exposure to polypropylene microplastics via diet and water induces oxidative stress in Cyprinus carpio. . Aquat. Toxicol. 259::106540
    [Google Scholar]
  58. 58.
    Marfella R, Prattichizzo F, Sardu C, Fulgenzi G, Graciotti L, et al. 2024.. Microplastics and nanoplastics in atheromas and cardiovascular events. . N. Engl. J. Med. 390:(10):90010
    [Google Scholar]
  59. 59.
    Li Y, Xu M, Zhang Z, Halimu G, Li Y, et al. 2022.. In vitro study on the toxicity of nanoplastics with different charges to murine splenic lymphocytes. . J. Hazard. Mater. 424::127508
    [Google Scholar]
  60. 60.
    Li L, Li S, Xu Y, Ren L, Yang L, et al. 2023.. Distinguishing the nanoplastic-cell membrane interface by polymer type and aging properties: translocation, transformation and perturbation. . Environ. Sci. Nano 10:(2):44053
    [Google Scholar]
  61. 61.
    Shi X, Wang X, Huang R, Tang C, Hu C, et al. 2022.. Cytotoxicity and genotoxicity of polystyrene micro- and nanoplastics with different size and surface modification in A549 cells. . Int. J. Nanomed. 17::450923
    [Google Scholar]
  62. 62.
    Cheng H, Duan Z, Wu Y, Wang Y, Zhang H, et al. 2022.. Immunotoxicity responses to polystyrene nanoplastics and their related mechanisms in the liver of zebrafish (Danio rerio) larvae. . Environ. Int. 161::107128
    [Google Scholar]
  63. 63.
    Tang X, Fan X, Xu T, He Y, Chi Q, et al. 2022.. Polystyrene nanoplastics exacerbated lipopolysaccharide-induced necroptosis and inflammation via the ROS/MAPK pathway in mice spleen. . Environ. Toxicol. 37:(10):255265
    [Google Scholar]
  64. 64.
    Hao T, Gao Y, Li Z-C, Zhou X-X, Yan B. 2023.. Size-dependent uptake and depuration of nanoplastics in tilapia (Oreochromis niloticus) and distinct intestinal impacts. . Environ. Sci. Technol. 57:(7):280412
    [Google Scholar]
  65. 65.
    Shan S, Zhang Y, Zhao H, Zeng T, Zhao X. 2022.. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. . Chemosphere 298::134261
    [Google Scholar]
  66. 66.
    Liu X, Zhao Y, Dou J, Hou Q, Cheng J, Jiang X. 2022.. Bioeffects of inhaled nanoplastics on neurons and alteration of animal behaviors through deposition in the brain. . Nano Lett. 22:(3):109199
    [Google Scholar]
  67. 67.
    Barguilla I, Domenech J, Ballesteros S, Rubio L, Marcos R, Hernández A. 2022.. Long-term exposure to nanoplastics alters molecular and functional traits related to the carcinogenic process. . J. Hazard. Mater. 438::129470
    [Google Scholar]
  68. 68.
    Wright SL, Thompson RC, Galloway TS. 2013.. The physical impacts of microplastics on marine organisms: a review. . Environ. Pollut. 178::48392
    [Google Scholar]
  69. 69.
    Mandemaker LDB, Meirer F. 2023.. Spectro-microscopic techniques for studying nanoplastics in the environment and in organisms. . Angew. Chem. Int. Ed. 62:(2):e202210494
    [Google Scholar]
  70. 70.
    Thiele CJ, Hudson MD, Russell AE. 2019.. Evaluation of existing methods to extract microplastics from bivalve tissue: adapted KOH digestion protocol improves filtration at single-digit pore size. . Mar. Pollut. Bull. 142::38493
    [Google Scholar]
  71. 71.
    Tsangaris C, Panti C, Compa M, Pedà C, Digka N, et al. 2021.. Interlaboratory comparison of microplastic extraction methods from marine biota tissues: a harmonization exercise of the Plastic Busters MPAs project. . Mar. Pollut. Bull. 164::111992
    [Google Scholar]
  72. 72.
    Costa CQV, Cruz J, Martins J, Teodósio MAA, Jockusch S, et al. 2021.. Fluorescence sensing of microplastics on surfaces. . Environ. Chem. Lett. 19:(2):1797802
    [Google Scholar]
  73. 73.
    Bilal M, Taj M, Ul Hassan H, Yaqub A, Shah MIA, et al. 2023.. First report on microplastics quantification in poultry chicken and potential human health risks in Pakistan. . Toxics 11:(7):612
    [Google Scholar]
  74. 74.
    Mikac L, Rigó I, Himics L, Tolić A, Ivanda M, Veres M. 2023.. Surface-enhanced Raman spectroscopy for the detection of microplastics. . Appl. Surf. Sci. 608::155239
    [Google Scholar]
  75. 75.
    Carreras-Colom E, Cartes JE, Constenla M, Welden NA, Soler-Membrives A, Carrassón M. 2022.. An affordable method for monitoring plastic fibre ingestion in Nephrops norvegicus (Linnaeus, 1758) and implementation on wide temporal and geographical scale comparisons. . Sci. Total Environ. 810::152264
    [Google Scholar]
  76. 76.
    Caldwell J, Loussert-Fonta C, Toullec G, Heidelberg Lyndby N, Haenni B, et al. 2023.. Correlative light, electron microscopy and Raman spectroscopy workflow to detect and observe microplastic interactions with whole jellyfish. . Environ. Sci. Technol. 57:(16):666472
    [Google Scholar]
  77. 77.
    Chaisrikhwun B, Ekgasit S, Pienpinijtham P. 2023.. Size-independent quantification of nanoplastics in various aqueous media using surfaced-enhanced Raman scattering. . J. Hazard. Mater. 442::130046
    [Google Scholar]
  78. 78.
    Quinzi V, Orilisi G, Vitiello F, Notarstefano V, Marzo G, Orsini G. 2023.. A spectroscopic study on orthodontic aligners: first evidence of secondary microplastic detachment after seven days of artificial saliva exposure. . Sci. Total Environ. 866::161356
    [Google Scholar]
  79. 79.
    Genchi L, Martin C, Laptenok SP, Baalkhuyur F, Duarte CM, Liberale C. 2023.. When microplastics are not plastic: chemical characterization of environmental microfibers using stimulated Raman microspectroscopy. . Sci. Total Environ. 892::164671
    [Google Scholar]
  80. 80.
    Guan Q, Jiang J, Huang Y, Wang Q, Liu Z, et al. 2023.. The landscape of micron-scale particles including microplastics in human enclosed body fluids. . J. Hazard. Mater. 442::130138
    [Google Scholar]
  81. 81.
    Wu D, Feng Y, Wang R, Jiang J, Guan Q, et al. 2023.. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence. . J. Adv. Res. 49::14150
    [Google Scholar]
  82. 82.
    Xu G, Cheng H, Jones R, Feng Y, Gong K, et al. 2020.. Surface-enhanced Raman spectroscopy facilitates the detection of microplastics <1 μm in the environment. . Environ. Sci. Technol. 54:(24):15594603
    [Google Scholar]
  83. 83.
    Song YK, Hong SH, Eo S, Shim WJ. 2021.. A comparison of spectroscopic analysis methods for microplastics: manual, semi-automated, and automated Fourier transform infrared and Raman techniques. . Mar. Pollut. Bull. 173::113101
    [Google Scholar]
  84. 84.
    Jung S, Raghavendra AJ, Patri AK. 2023.. Comprehensive analysis of common polymers using hyphenated TGA-FTIR-GC/MS and Raman spectroscopy towards a database for micro- and nanoplastics identification, characterization, and quantitation. . NanoImpact 30::100467
    [Google Scholar]
  85. 85.
    Fang C, Luo Y, Naidu R. 2023.. Super-resolution imaging of micro- and nanoplastics using confocal Raman with Gaussian surface fitting and deconvolution. . Talanta 265::124886
    [Google Scholar]
  86. 86.
    Zhu C, Kanaya Y, Nakajima R, Tsuchiya M, Nomaki H, et al. 2020.. Characterization of microplastics on filter substrates based on hyperspectral imaging: laboratory assessments. . Environ. Pollut. 263::114296
    [Google Scholar]
  87. 87.
    Nel HA, Chetwynd AJ, Kelly CA, Stark C, Valsami-Jones E, et al. 2021.. An untargeted thermogravimetric analysis-Fourier transform infrared-gas chromatography-mass spectrometry approach for plastic polymer identification. . Environ. Sci. Technol. 55:(13):872129
    [Google Scholar]
  88. 88.
    Chalmers JM. 2006.. Infrared spectroscopy in analysis of polymers and rubbers. . In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, ed. RA Meyers, T Provder . Hoboken, NJ:: Wiley
    [Google Scholar]
  89. 89.
    Caputo F, Vogel R, Savage J, Vella G, Law A, et al. 2021.. Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. . J. Colloid Interface Sci. 588::40117
    [Google Scholar]
  90. 90.
    Uurasjärvi E, Sainio E, Setälä O, Lehtiniemi M, Koistinen A. 2021.. Validation of an imaging FTIR spectroscopic method for analyzing microplastics ingestion by Finnish lake fish (Perca fluviatilis and Coregonus albula). . Environ. Pollut. 288::117780
    [Google Scholar]
  91. 91.
    Veerasingam S, Ranjani M, Venkatachalapathy R, Bagaev A, Mukhanov V, et al. 2021.. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: a review. . Crit. Rev. Environ. Sci. Technol. 51:(22):2681743
    [Google Scholar]
  92. 92.
    Xu J-L, Thomas KV, Luo Z, Gowen AA. 2019.. FTIR and Raman imaging for microplastics analysis: state of the art, challenges and prospects. . Trends Anal. Chem. 119::115629
    [Google Scholar]
  93. 93.
    Yusà V, López A, Dualde P, Pardo O, Fochi I, et al. 2020.. Analysis of unknowns in recycled LDPE plastic by LC-Orbitrap Tribrid HRMS using MS3 with an intelligent data acquisition mode. . Microchem. J. 158::105256
    [Google Scholar]
  94. 94.
    Huysman S, Van Meulebroek L, Janssens O, Vanryckeghem F, Van Langenhove H, et al. 2019.. Targeted quantification and untargeted screening of alkylphenols, bisphenol A and phthalates in aquatic matrices using ultra-high-performance liquid chromatography coupled to hybrid Q-Orbitrap mass spectrometry. . Anal. Chim. Acta 1049::14151
    [Google Scholar]
  95. 95.
    Fries E, Sühring R. 2023.. The unusual suspects: screening for persistent, mobile, and toxic plastic additives in plastic leachates. . Environ. Pollut. 335::122263
    [Google Scholar]
  96. 96.
    Chen Y, Shi Y, Liu X, Liu R, Chen D. 2021.. The high complexity of plastic additives in hand wipes. . Environ. Sci. Technol. Lett. 8:(8):63944
    [Google Scholar]
  97. 97.
    Thomas SN, French D, Jannetto PJ, Rappold BA, Clarke WA. 2022.. Liquid chromatography-tandem mass spectrometry for clinical diagnostics. . Nat. Rev. Methods Primers 2:(1):96
    [Google Scholar]
  98. 98.
    Chun S, Muthu M, Gopal J. 2022.. Mass spectrometry as an analytical tool for detection of microplastics in the environment. . Chemosensors 10:(12):530
    [Google Scholar]
  99. 99.
    Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, et al. 2018.. Review of recent developments in GC-MS approaches to metabolomics-based research. . Metabolomics 14:(11):152
    [Google Scholar]
  100. 100.
    Wu S, Wu X, Li H, Li D, Zheng J, et al. 2022.. The characterization and influence factors of semi-volatile compounds from mechanically recycled polyethylene terephthalate (rPET) by combining GC×GC-TOFMS and chemometrics. . J. Hazard. Mater. 439::129583
    [Google Scholar]
  101. 101.
    Peñalver R, Arroyo-Manzanares N, Campillo N, Viñas P. 2021.. Targeted and untargeted gas chromatography-mass spectrometry analysis of honey samples for determination of migrants from plastic packages. . Food Chem. 334::127547
    [Google Scholar]
  102. 102.
    Galmán Graíño S, Sendón R, López Hernández J, Rodríguez-Bernaldo de Quirós A. 2018.. GC-MS screening analysis for the identification of potential migrants in plastic and paper-based candy wrappers. . Polymers 10:(7):802
    [Google Scholar]
  103. 103.
    Cui H, Gao W, Lin Y, Zhang J, Yin R, et al. 2021.. Development of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry for the determination of organic additives in biodegradable mulch films. . Microchem. J. 160::105722
    [Google Scholar]
  104. 104.
    Blázquez-Blázquez E, Cerrada ML, Benavente R, Pérez E. 2020.. Identification of additives in polypropylene and their degradation under solar exposure studied by gas chromatography-mass spectrometry. . ACS Omega 5:(16):905563
    [Google Scholar]
  105. 105.
    Akoueson F, Paul-Pont I, Tallec K, Huvet A, Doyen P, et al. 2023.. Additives in polypropylene and polylactic acid food packaging: Chemical analysis and bioassays provide complementary tools for risk assessment. . Sci. Total Environ. 857::159318
    [Google Scholar]
  106. 106.
    Seeley ME, Lynch JM. 2023.. Previous successes and untapped potential of pyrolysis-GC/MS for the analysis of plastic pollution. . Anal. Bioanal. Chem. 415:(15):287390
    [Crossref] [Google Scholar]
  107. 107.
    Song YK, Hong SH, Jang M, Han GM, Rani M, et al. 2015.. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. . Mar. Pollut. Bull. 93:(1):2029
    [Crossref] [Google Scholar]
  108. 108.
    Santos LHMLM, Insa S, Arxé M, Buttiglieri G, Rodríguez-Mozaz S, Barceló D. 2023.. Analysis of microplastics in the environment: Identification and quantification of trace levels of common types of plastic polymers using pyrolysis-GC/MS. . MethodsX 10::102143
    [Crossref] [Google Scholar]
  109. 109.
    Zhou XX, He S, Gao Y, Chi HY, Wang DJ, et al. 2021.. Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals. . Environ. Sci. Technol. 55:(5):303240
    [Crossref] [Google Scholar]
  110. 110.
    Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. 2022.. Discovery and quantification of plastic particle pollution in human blood. . Environ. Int. 163::107199
    [Crossref] [Google Scholar]
  111. 111.
    Deshpande AD, Freeman D, Lascelles N, Drayton D. 2023.. Pyrolysis GC-MS characterization of plastic debris from the Northern Gulf of Alaska shorelines. . ACS ES&T Water 3:(5):136473
    [Crossref] [Google Scholar]
  112. 112.
    Zuri G, Karanasiou A, Lacorte S. 2023.. Human biomonitoring of microplastics and health implications: a review. . Environ. Res. 237::116966
    [Crossref] [Google Scholar]
  113. 113.
    Huang Z, Hu B, Wang H. 2023.. Analytical methods for microplastics in the environment: a review. . Environ. Chem. Lett. 21:(1):383401
    [Crossref] [Google Scholar]
  114. 114.
    Gomes J, Batra J, Chopda VR, Kathiresan P, Rathore AS. 2018.. Monitoring and control of bioethanol production from lignocellulosic biomass. . In WasteBiorefinery, ed. T Bhaskar, A Pandey, SV Mohan, D-J Lee, SK Khanal , pp. 72749. Amsterdam:: Elsevier
    [Google Scholar]
  115. 115.
    Wild CP. 2005.. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. . Cancer Epidemiol. Biomarkers Prev. 14:(8):184750
    [Crossref] [Google Scholar]
  116. 116.
    Miller GW, Jones DP. 2014.. The nature of nurture: refining the definition of the exposome. . Toxicol. Sci. 137:(1):12
    [Crossref] [Google Scholar]
  117. 117.
    Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau-Hyam M, Jones DP, Miller GW. 2019.. The exposome: molecules to populations. . Annu. Rev. Pharmacol. Toxicol. 59::10727
    [Crossref] [Google Scholar]
  118. 118.
    Liang D, Moutinho JL, Golan R, Yu T, Ladva CN, et al. 2018.. Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. . Environ. Int. 120::14554
    [Crossref] [Google Scholar]
  119. 119.
    Go Y-M, Walker DI, Liang Y, Uppal K, Soltow QA, et al. 2015.. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. . Toxicol. Sci. 148:(2):53143
    [Crossref] [Google Scholar]
  120. 120.
    Walker DI, Lane KJ, Liu K, Uppal K, Patton AP, et al. 2019.. Metabolomic assessment of exposure to near-highway ultrafine particles. . J. Expo. Sci. Environ. Epidemiol. 29:(4):46983
    [Crossref] [Google Scholar]
  121. 121.
    Walker DI, Uppal K, Zhang L, Vermeulen R, Smith M, et al. 2016.. High-resolution metabolomics of occupational exposure to trichloroethylene. . Int. J. Epidemiol. 45:(5):151727
    [Crossref] [Google Scholar]
  122. 122.
    Walker DI, Perry-Walker K, Finnell RH, Pennell KD, Tran V, et al. 2019.. Metabolome-wide association study of anti-epileptic drug treatment during pregnancy. . Toxicol. Appl. Pharmacol. 363::12230
    [Crossref] [Google Scholar]
  123. 123.
    Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP. 2019.. The metabolome: a key measure for exposome research in epidemiology. . Curr. Epidemiol. Rep. 6:(2):93103
    [Crossref] [Google Scholar]
  124. 124.
    Di Bella G, Porretti M, Cafarelli M, Litrenta F, Potortì AG, et al. 2023.. Screening of phthalate and non-phthalate plasticizers and bisphenols in Sicilian women's blood. . Environ. Toxicol. Pharmacol. 100::104166
    [Crossref] [Google Scholar]
  125. 125.
    Miralles P, Yusà V, Pineda A, Coscollà C. 2021.. A fast and automated strategy for the identification and risk assessment of unknown substances (IAS/NIAS) in plastic food contact materials by GC-Q-Orbitrap HRMS: recycled LDPE as a proof-of-concept. . Toxics 9:(11):283
    [Crossref] [Google Scholar]
  126. 126.
    García Ibarra V, Rodríguez Bernaldo de Quirós A, Paseiro Losada P, Sendón R. 2019.. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. . Food Packag. Shelf Life 21::100325
    [Crossref] [Google Scholar]
  127. 127.
    Carrero-Carralero C, Escobar-Arnanz J, Ros M, Jiménez-Falcao S, Sanz ML, Ramos L. 2019.. An untargeted evaluation of the volatile and semi-volatile compounds migrating into food simulants from polypropylene food containers by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. . Talanta 195::8006
    [Crossref] [Google Scholar]
  128. 128.
    Picó Y, Barceló D. 2020.. Pyrolysis gas chromatography-mass spectrometry in environmental analysis: focus on organic matter and microplastics. . Trends Anal. Chem. 130::115964
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030424-112828
Loading
/content/journals/10.1146/annurev-pharmtox-030424-112828
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error