1932

Abstract

The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031120-115815
2021-01-06
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-031120-115815.html?itemId=/content/journals/10.1146/annurev-pharmtox-031120-115815&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Boyett MR, Honjo H, Kodama I 2000. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc. Res. 47:658–87
    [Google Scholar]
  2. 2. 
    Mangoni ME, Nargeot J. 2008. Genesis and regulation of the heart automaticity. Physiol. Rev. 88:919–82
    [Google Scholar]
  3. 3. 
    Lamas GA, Lee K, Sweeney M, Leon A, Yee R et al. 2000. The Mode Selection Trial (MOST) in sinus node dysfunction: design, rationale, and baseline characteristics of the first 1000 patients. Am. Heart J. 140:541–51
    [Google Scholar]
  4. 4. 
    Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA et al. 2018. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. J. Am. Coll. Cardiol. 140:e333–81
    [Google Scholar]
  5. 5. 
    Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G et al. 2013. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur. Heart J. 34:2281–329
    [Google Scholar]
  6. 6. 
    Rodriguez RD, Schocken DD. 1990. Update on sick sinus syndrome, a cardiac disorder of aging. Geriatrics 45:26–3033–36
    [Google Scholar]
  7. 7. 
    Jensen PN, Gronroos NN, Chen LY, Folsom AR, deFilippi C et al. 2014. Incidence of and risk factors for sick sinus syndrome in the general population. J. Am. Coll. Cardiol. 64:531–38
    [Google Scholar]
  8. 8. 
    Greenspon AJ, Patel JD, Lau E, Ochoa JA, Frisch DR et al. 2012. Trends in permanent pacemaker implantation in the United States from 1993 to 2009: increasing complexity of patients and procedures. J. Am. Coll. Cardiol. 60:1540–45
    [Google Scholar]
  9. 9. 
    Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G et al. 2003. Pacemaker channel dysfunction in a patient with sinus node disease. J. Clin. Investig. 111:1537–45
    [Google Scholar]
  10. 10. 
    Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D 2006. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N. Engl. J. Med. 354:151–57
    [Google Scholar]
  11. 11. 
    Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO et al. 2014. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 64:745–56
    [Google Scholar]
  12. 12. 
    Schweizer PA, Schröter J, Greiner S, Haas J, Yampolsky P et al. 2014. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J. Am. Coll. Cardiol. 64:757–67
    [Google Scholar]
  13. 13. 
    Schweizer PA, Duhme N, Thomas D, Becker R, Zehelein J et al. 2010. cAMP sensitivity of HCN pacemaker channels determines basal heart rate but is not critical for autonomic rate control. Circ. Arrhythm. Electrophysiol. 3:542–52
    [Google Scholar]
  14. 14. 
    Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C et al. 2011. Loss of Cav1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat. Neurosci. 14:77–84
    [Google Scholar]
  15. 15. 
    Liaqat K, Schrauwen I, Raza SI, Lee K, Hussain S et al. 2019. Identification of CACNA1D variants associated with sinoatrial node dysfunction and deafness in additional Pakistani families reveals a clinical significance. J. Hum. Genet. 64:153–60
    [Google Scholar]
  16. 16. 
    Kuss J, Stallmeyer B, Goldstein M, Rinne S, Pees C et al. 2019. Familial sinus node disease caused by a gain of GIRK (G-protein activated inwardly rectifying K+ channel) channel function. Circ. Genom. Precis. Med. 12:e002238
    [Google Scholar]
  17. 17. 
    Stallmeyer B, Kuß J, Kotthoff S, Zumhagen S, Vowinkel K et al. 2017. A mutation in the G-protein gene GNB2 causes familial sinus node and atrioventricular conduction dysfunction. Circ. Res. 120:e33–44
    [Google Scholar]
  18. 18. 
    Lodder EM, De Nittis P, Koopman CD, Wiszniewski W, Moura de Souza CF et al. 2016. GNB5 mutations cause an autosomal-recessive multisystem syndrome with sinus bradycardia and cognitive disability. Am. J. Hum. Genet. 99:704–10
    [Google Scholar]
  19. 19. 
    Veldkamp MW, Wilders R, Baartscheer A, Zegers JG, Bezzina CR, Wilde AA 2003. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ. Res. 92:976–83
    [Google Scholar]
  20. 20. 
    Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T et al. 2005. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J. Mol. Cell. Cardiol. 38:969–81
    [Google Scholar]
  21. 21. 
    Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R et al. 2011. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13:1077–109
    [Google Scholar]
  22. 22. 
    Le Scouarnec S, Bhasin N, Vieyres C, Hund TJ, Cunha SR et al. 2008. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. PNAS 105:15617–22
    [Google Scholar]
  23. 23. 
    Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G et al. 2010. Several common variants modulate heart rate, PR interval and QRS duration. Nat. Genet. 42:117–22
    [Google Scholar]
  24. 24. 
    Ishikawa T, Tsuji Y, Makita N 2016. Inherited bradyarrhythmia: a diverse genetic background. J. Arrhythm. 32:352–58
    [Google Scholar]
  25. 25. 
    Mesirca P, Alig J, Torrente AG, Müller JC, Marger L et al. 2014. Cardiac arrhythmia induced by genetic silencing of ‘funny’ (f) channels is rescued by GIRK4 inactivation. Nat. Commun. 5:4664
    [Google Scholar]
  26. 26. 
    Mesirca P, Bidaud I, Briec F, Evain S, Torrente AG et al. 2016. G protein-gated IKACh channels as therapeutic targets for treatment of sick sinus syndrome and heart block. PNAS 113:E932–41
    [Google Scholar]
  27. 27. 
    Lou Q, Hansen BJ, Fedorenko O, Csepe TA, Kalyanasundaram A et al. 2014. Upregulation of adenosine A1 receptors facilitates sinoatrial node dysfunction in chronic canine heart failure by exacerbating nodal conduction abnormalities revealed by novel dual-sided intramural optical mapping. Circulation 130:315–24
    [Google Scholar]
  28. 28. 
    Long VP III, Bonilla IM, Baine S, Glynn P, Kumar S et al. 2020. Chronic heart failure increases negative chronotropic effects of adenosine in canine sinoatrial cells via A1R stimulation and GIRK-mediated IKado. Life Sci 240:117068
    [Google Scholar]
  29. 29. 
    Li N, Hansen BJ, Csepe TA, Zhao J, Ignozzi AJ et al. 2017. Redundant and diverse intranodal pacemakers and conduction pathways protect the human sinoatrial node from failure. Sci. Transl. Med. 9:eaam5607
    [Google Scholar]
  30. 30. 
    Weisbrod D, Peretz A, Ziskind A, Menaker N, Oz S et al. 2013. SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells. PNAS 110:E1685–94
    [Google Scholar]
  31. 31. 
    Haron-Khun S, Weisbrod D, Bueno H, Yadin D, Behar J et al. 2017. SK4 K+ channels are therapeutic targets for the treatment of cardiac arrhythmias. EMBO Mol. Med. 9:415–29
    [Google Scholar]
  32. 32. 
    Torrente AG, Zhang R, Wang H, Zaini A, Kim B et al. 2017. Contribution of small conductance K+ channels to sinoatrial node pacemaker activity: insights from atrial-specific Na+/Ca2+ exchange knockout mice. J. Physiol. 595:3847–65
    [Google Scholar]
  33. 33. 
    Adán V, Crown LA. 2003. Diagnosis and treatment of sick sinus syndrome. Am. Fam. Physician 67:1725–32
    [Google Scholar]
  34. 34. 
    Ferrer MI. 1968. The sick sinus syndrome in atrial disease. JAMA 206:645–46
    [Google Scholar]
  35. 35. 
    Bigger JT Jr., Reiffel JA. 1979. Sick sinus syndrome. Annu. Rev. Med. 30:91–118
    [Google Scholar]
  36. 36. 
    Mangrum JM, DiMarco JP. 2000. The evaluation and management of bradycardia. N. Engl. J. Med. 342:703–9
    [Google Scholar]
  37. 37. 
    Page RL, Joglar JA, Caldwell MA, Calkins H, Conti JB et al. 2016. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 133:e506–74
    [Google Scholar]
  38. 38. 
    Lown B. 1967. Electrical reversion of cardiac arrhythmias. Br. Heart J. 29:469–89
    [Google Scholar]
  39. 39. 
    Brubaker PH, Kitzman DW. 2011. Chronotropic incompetence: causes, consequences, and management. Circulation 123:1010–20
    [Google Scholar]
  40. 40. 
    Menozzi C, Brignole M, Alboni P, Boni L, Paparella N et al. 1998. The natural course of untreated sick sinus syndrome and identification of the variables predictive of unfavorable outcome. Am. J. Cardiol. 82:1205–9
    [Google Scholar]
  41. 41. 
    John RM, Kumar S. 2016. Sinus node and atrial arrhythmias. Circulation 133:1892–900
    [Google Scholar]
  42. 42. 
    Alonso A, Jensen PN, Lopez FL, Chen LY, Psaty BM et al. 2014. Association of sick sinus syndrome with incident cardiovascular disease and mortality: the Atherosclerosis Risk in Communities Study and Cardiovascular Health Study. PLOS ONE 9:e109662
    [Google Scholar]
  43. 43. 
    Verheijck EE, Wessels A, van Ginneken AC, Bourier J, Markman MW et al. 1998. Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition. Circulation 97:1623–31
    [Google Scholar]
  44. 44. 
    De Mazière AM, van Ginneken AC, Wilders R, Jongsma HJ, Bouman LN 1992. Spatial and functional relationship between myocytes and fibroblasts in the rabbit sinoatrial node. J. Mol. Cell. Cardiol. 24:567–78
    [Google Scholar]
  45. 45. 
    Linscheid N, Logantha S, Poulsen PC, Zhang S, Schrölkamp M et al. 2019. Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat. Commun. 10:2889
    [Google Scholar]
  46. 46. 
    ten Velde I, de Jonge B, Verheijck EE, van Kempen MJ, Analbers L et al. 1995. Spatial distribution of connexin43, the major cardiac gap junction protein, visualizes the cellular network for impulse propagation from sinoatrial node to atrium. Circ. Res. 76:802–11
    [Google Scholar]
  47. 47. 
    Verheijck EE, van Kempen MJ, Veereschild M, Lurvink J, Jongsma HJ, Bouman LN 2001. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc. Res. 52:40–50
    [Google Scholar]
  48. 48. 
    Boyett MR, Inada S, Yoo S, Li J, Liu J et al. 2006. Connexins in the sinoatrial and atrioventricular nodes. Adv. Cardiol. 42:175–97
    [Google Scholar]
  49. 49. 
    Csepe TA, Zhao J, Hansen BJ, Li N, Sul LV et al. 2016. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog. Biophys. Mol. Biol. 120:164–78
    [Google Scholar]
  50. 50. 
    Bouman LN, Duivenvoorden JJ, Bukauskas FF, Jongsma HJ 1989. Anisotropy of electrotonus in the sinoatrial node of the rabbit heart. J. Mol. Cell. Cardiol. 21:407–18
    [Google Scholar]
  51. 51. 
    Dobrzynski H, Li J, Tellez J, Greener ID, Nikolski VP et al. 2005. Computer three-dimensional reconstruction of the sinoatrial node. Circulation 111:846–54
    [Google Scholar]
  52. 52. 
    Lakatta EG, Maltsev VA, Vinogradova TM 2010. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circ. Res. 106:659–73
    [Google Scholar]
  53. 53. 
    Wickman K, Nemec J, Gendler SJ, Clapham DE 1998. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–14
    [Google Scholar]
  54. 54. 
    Monfredi O, Maltsev VA, Lakatta EG 2013. Modern concepts concerning the origin of the heartbeat. Physiology 28:74–92
    [Google Scholar]
  55. 55. 
    DiFrancesco D. 2010. The role of the funny current in pacemaker activity. Circ. Res. 106:434–46
    [Google Scholar]
  56. 56. 
    DiFrancesco D, Tortora P. 1991. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351:145–47
    [Google Scholar]
  57. 57. 
    DiFrancesco D, Mangoni M. 1994. Modulation of single hyperpolarization-activated channels (if) by cAMP in the rabbit sino-atrial node. J. Physiol. 474:473–82
    [Google Scholar]
  58. 58. 
    Shi W, Wymore R, Yu H, Wu J, Wymore RT et al. 1999. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ. Res. 85:e1–6
    [Google Scholar]
  59. 59. 
    Li N, Csepe TA, Hansen BJ, Dobrzynski H, Higgins RS et al. 2015. Molecular mapping of sinoatrial node HCN channel expression in the human heart. Circ. Arrhythm. Electrophysiol. 8:1219–27
    [Google Scholar]
  60. 60. 
    Mangoni ME, Traboulsie A, Leoni A-L, Couette B, Marger L et al. 2006. Bradycardia and slowing of the atrioventricular conduction in mice lacking Cav3.1/α1G T-type calcium channels. Circ. Res. 98:1422–30
    [Google Scholar]
  61. 61. 
    Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D et al. 2003. Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. PNAS 100:5543–48
    [Google Scholar]
  62. 62. 
    Torrente AG, Mesirca P, Neco P, Rizzetto R, Dubel S et al. 2016. L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc. Res. 109:451–61
    [Google Scholar]
  63. 63. 
    Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR et al. 2003. An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. PNAS 100:3507–12
    [Google Scholar]
  64. 64. 
    Baruscotti M, DiFrancesco D, Robinson RB 1996. A TTX-sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino-atrial node cells. J. Physiol. 492:Part 121–30
    [Google Scholar]
  65. 65. 
    Lei M, Jones SA, Liu J, Lancaster MK, Fung SS et al. 2004. Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J. Physiol. 559:835–48
    [Google Scholar]
  66. 66. 
    Li N, Kalyanasundaram A, Hansen BJ, Artiga EJ, Sharma R et al. 2020. Impaired neuronal sodium channels cause intranodal conduction failure and reentrant arrhythmias in human sinoatrial node. Nat. Commun. 11:512
    [Google Scholar]
  67. 67. 
    Lei M, Goddard C, Liu J, Léoni A-L, Royer A et al. 2005. Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. J. . Physiol 567:387–400
    [Google Scholar]
  68. 68. 
    Demion M, Bois P, Launay P, Guinamard R 2007. TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc. Res. 73:531–38
    [Google Scholar]
  69. 69. 
    Sah R, Mesirca P, Van den Boogert M, Rosen J, Mably J et al. 2013. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. PNAS 110:E3037–46
    [Google Scholar]
  70. 70. 
    Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL et al. 2007. Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ. Res. 100:1605–14
    [Google Scholar]
  71. 71. 
    Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C et al. 2013. Timing of myocardial Trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation 128:101–14
    [Google Scholar]
  72. 72. 
    Lai MH, Wu Y, Gao Z, Anderson ME, Dalziel JE, Meredith AL 2014. BK channels regulate sinoatrial node firing rate and cardiac pacing in vivo. Am. J. Physiol. Heart Circ. Physiol. 307:H1327–38
    [Google Scholar]
  73. 73. 
    Chen WT, Chen YC, Lu YY, Kao YH, Huang JH et al. 2013. Apamin modulates electrophysiological characteristics of the pulmonary vein and the sinoatrial node. Eur. J. Clin. Investig. 43:957–63
    [Google Scholar]
  74. 74. 
    Guéguinou M, Chantôme A, Fromont G, Bougnoux P, Vandier C, Potier-Cartereau M 2014. KCa and Ca2+ channels: the complex thought. Biochim. Biophys. Acta Mol. Cell Res. 1843:2322–33
    [Google Scholar]
  75. 75. 
    Zhang Q, Timofeyev V, Lu L, Li N, Singapuri A et al. 2008. Functional roles of a Ca2+-activated K+ channel in atrioventricular nodes. Circ. Res. 102:465–71
    [Google Scholar]
  76. 76. 
    Zhang X-D, Coulibaly ZA, Chen WC, Ledford HA, Lee JH et al. 2018. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes. Sci. Rep. 8:4670
    [Google Scholar]
  77. 77. 
    Monfredi O, Boyett MR. 2015. Sick sinus syndrome and atrial fibrillation in older persons—a view from the sinoatrial nodal myocyte. J. Mol. Cell. Cardiol. 83:88–100
    [Google Scholar]
  78. 78. 
    Monfredi O, Dobrzynski H, Mondal T, Boyett MR, Morris GM 2010. The anatomy and physiology of the sinoatrial node—a contemporary review. Pacing Clin. Electrophysiol. 33:1392–406
    [Google Scholar]
  79. 79. 
    Rezazadeh S, Duff HJ. 2017. Genetic determinants of hereditary bradyarrhythmias: a contemporary review of a diverse group of disorders. Can. J. Cardiol. 33:758–67
    [Google Scholar]
  80. 80. 
    Schott J-J, Alshinawi C, Kyndt F, Probst V, Hoorntje TM et al. 1999. Cardiac conduction defects associate with mutations in SCN5A. Nat. Genet 23:20–21
    [Google Scholar]
  81. 81. 
    Wolf CM, Berul CI. 2006. Inherited conduction system abnormalities—one group of diseases, many genes. J. Cardiovasc. Electrophysiol. 17:446–55
    [Google Scholar]
  82. 82. 
    Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA et al. 2003. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Investig. 112:1019–28
    [Google Scholar]
  83. 83. 
    Ruan Y, Liu N, Priori SG 2009. Sodium channel mutations and arrhythmias. Nat. Rev. Cardiol. 6:337–48
    [Google Scholar]
  84. 84. 
    Rivaud MR, Delmar M, Remme CA 2020. Heritable arrhythmia syndromes associated with abnormal cardiac sodium channel function: ionic and non-ionic mechanisms. Cardiovasc. Res. 116:1557–70
    [Google Scholar]
  85. 85. 
    Zhang Q, Timofeyev V, Qiu H, Lu L, Li N et al. 2011. Expression and roles of Cav1.3 (α1D) L-type Ca2+ channel in atrioventricular node automaticity. J. Mol. Cell. Cardiol. 50:194–202
    [Google Scholar]
  86. 86. 
    Marger L, Mesirca P, Alig J, Torrente A, Dubel S et al. 2011. Functional roles of Cav1.3, Cav3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels 5:251–61
    [Google Scholar]
  87. 87. 
    Zhang Z, He Y, Tuteja D, Xu D, Timofeyev V et al. 2005. Functional roles of Cav1.3(α1D) calcium channels in atria: insights gained from gene-targeted null mutant mice. Circulation 112:1936–44
    [Google Scholar]
  88. 88. 
    Boutjdir M. 2000. Molecular and ionic basis of congenital complete heart block. Trends Cardiovasc. Med. 10:114–22
    [Google Scholar]
  89. 89. 
    Qu Y, Xiao G-Q, Chen L, Boutjdir M 2001. Autoantibodies from mothers of children with congenital heart block downregulate cardiac L-type Ca channels. J. Mol. Cell. Cardiol. 33:1153–63
    [Google Scholar]
  90. 90. 
    Qu Y, Baroudi G, Yue Y, Boutjdir M 2005. Novel molecular mechanism involving α1D (Cav1.3) L-type calcium channel in autoimmune-associated sinus bradycardia. Circulation 111:3034–41
    [Google Scholar]
  91. 91. 
    Strandberg LS, Cui X, Rath A, Liu J, Silverman ED et al. 2013. Congenital heart block maternal sera autoantibodies target an extracellular epitope on the α1G T-type calcium channel in human fetal hearts. PLOS ONE 8:e72668
    [Google Scholar]
  92. 92. 
    Liu H, El Zein L, Kruse M, Guinamard R, Beckmann A et al. 2010. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ. Cardiovasc. Genet. 3:374–85
    [Google Scholar]
  93. 93. 
    den Hoed M, Eijgelsheim M, Esko T, Brundel BJ, Peal DS et al. 2013. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45:621–31
    [Google Scholar]
  94. 94. 
    Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE et al. 2006. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114:2104–12
    [Google Scholar]
  95. 95. 
    Yamada N, Asano Y, Fujita M, Yamazaki S, Inanobe A et al. 2019. Mutant KCNJ3 and KCNJ5 potassium channels as novel molecular targets in bradyarrhythmias and atrial fibrillation. Circulation 139:2157–69
    [Google Scholar]
  96. 96. 
    Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC et al. 2007. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation 116:1569–76
    [Google Scholar]
  97. 97. 
    Postma AV, Denjoy I, Hoorntje TM, Lupoglazoff J-M, Da Costa A et al. 2002. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91:e21–26
    [Google Scholar]
  98. 98. 
    Postma AV, Denjoy I, Kamblock J, Alders M, Lupoglazoff JM et al. 2005. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J. Med. Genet. 42:863–70
    [Google Scholar]
  99. 99. 
    Bezzina CR, Lahrouchi N, Priori SG 2015. Genetics of sudden cardiac death. Circ. Res. 116:1919–36
    [Google Scholar]
  100. 100. 
    Neco P, Torrente AG, Mesirca P, Zorio E, Liu N et al. 2012. Paradoxical effect of increased diastolic Ca2+ release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation 126:392–401
    [Google Scholar]
  101. 101. 
    Wang YY, Mesirca P, Marqués-Sulé E, Zahradnikova A Jr., Villejoubert O et al. 2017. RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism. JCI Insight 2:e91872
    [Google Scholar]
  102. 102. 
    Holm H, Gudbjartsson DF, Sulem P, Masson G, Helgadottir HT et al. 2011. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat. Genet. 43:316–20
    [Google Scholar]
  103. 103. 
    van Berlo JH, de Voogt WG, van der Kooi AJ, van Tintelen JP, Bonne G et al. 2005. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: Do lamin A/C mutations portend a high risk of sudden death. ? J. Mol. Med. 83:79–83
    [Google Scholar]
  104. 104. 
    Hoffmann S, Paone C, Sumer SA, Diebold S, Weiss B et al. 2019. Functional characterization of rare variants in the SHOX2 gene identified in sinus node dysfunction and atrial fibrillation. Front. Genet. 10:648
    [Google Scholar]
  105. 105. 
    Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S et al. 2000. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97
    [Google Scholar]
  106. 106. 
    Zhang Z, Xu Y, Song H, Rodriguez J, Tuteja D et al. 2002. Functional roles of Cav1.3 (α1D) calcium channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ. Res. 90:981–87
    [Google Scholar]
  107. 107. 
    Stieber J, Herrmann S, Feil S, Löster J, Feil R et al. 2003. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. PNAS 100:15235–40
    [Google Scholar]
  108. 108. 
    Herrmann S, Stieber J, Stockl G, Hofmann F, Ludwig A 2007. HCN4 provides a ‘depolarization reserve’ and is not required for heart rate acceleration in mice. EMBO J 26:4423–32
    [Google Scholar]
  109. 109. 
    Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G et al. 2011. Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. . PNAS 108:1705–10
    [Google Scholar]
  110. 110. 
    Fenske S, Krause SC, Hassan SI, Becirovic E, Auer F et al. 2013. Sick sinus syndrome in HCN1-deficient mice. Circulation 128:2585–94
    [Google Scholar]
  111. 111. 
    Torrente AG, Zhang R, Zaini A, Giani JF, Kang J et al. 2015. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. PNAS 112:9769–74
    [Google Scholar]
  112. 112. 
    Glukhov AV, Kalyanasundaram A, Lou Q, Hage LT, Hansen BJ et al. 2015. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex. Eur. Heart J. 36:686–97
    [Google Scholar]
  113. 113. 
    Unudurthi SD, Wu X, Qian L, Amari F, Onal B et al. 2016. Two-pore K+ channel TREK-1 regulates sinoatrial node membrane excitability. J. Am. Heart Assoc. 5:e002865
    [Google Scholar]
  114. 114. 
    Hund TJ, Snyder JS, Wu X, Glynn P, Koval OM et al. 2014. βIv-Spectrin regulates TREK-1 membrane targeting in the heart. Cardiovasc. Res. 102:166–75
    [Google Scholar]
  115. 115. 
    Froese A, Breher SS, Waldeyer C, Schindler RF, Nikolaev VO et al. 2012. Popeye domain containing proteins are essential for stress-mediated modulation of cardiac pacemaking in mice. J. Clin. Investig. 122:1119–30
    [Google Scholar]
  116. 116. 
    Hof T, Simard C, Rouet R, Sallé L, Guinamard R 2013. Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm 10:1683–89
    [Google Scholar]
  117. 117. 
    Demion M, Thireau J, Gueffier M, Finan A, Khoueiry Z et al. 2014. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLOS ONE 9:e115256
    [Google Scholar]
  118. 118. 
    Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML et al. 2012. Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. PNAS 109:E154–63
    [Google Scholar]
  119. 119. 
    Nakashima Y, Yanez DA, Touma M, Nakano H, Jaroszewicz A et al. 2014. Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system. Circ. Res. 114:1103–13
    [Google Scholar]
  120. 120. 
    Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G et al. 2017. Transient Notch activation induces long-term gene expression changes leading to sick sinus syndrome in mice. Circ. Res. 121:549–63
    [Google Scholar]
  121. 121. 
    Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV et al. 2011. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J. Clin. Investig. 121:3277–88
    [Google Scholar]
  122. 122. 
    Desai JM, Scheinman MM, Strauss HC, Massie B, O'Young J 1981. Electrophysiologic effects on combined autonomic blockade in patients with sinus node disease. Circulation 63:953–60
    [Google Scholar]
  123. 123. 
    Stein R, Medeiros CM, Rosito GA, Zimerman LI, Ribeiro JP 2002. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J. Am. Coll. Cardiol. 39:1033–38
    [Google Scholar]
  124. 124. 
    Andersen K, Farahmand B, Ahlbom A, Held C, Ljunghall S et al. 2013. Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur. Heart J. 34:3624–31
    [Google Scholar]
  125. 125. 
    Northcote RJ, Canning GP, Ballantyne D 1989. Electrocardiographic findings in male veteran endurance athletes. Br. Heart J. 61:155–60
    [Google Scholar]
  126. 126. 
    D'Souza A, Pearman CM, Wang Y, Nakao S, Logantha S et al. 2017. Targeting miR-423-5p reverses exercise training-induced HCN4 channel remodeling and sinus bradycardia. Circ. Res. 121:1058–68
    [Google Scholar]
  127. 127. 
    D'Souza A, Bucchi A, Johnsen AB, Logantha SJ, Monfredi O et al. 2014. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat. Commun. 5:3775
    [Google Scholar]
  128. 128. 
    Yeh YH, Burstein B, Qi XY, Sakabe M, Chartier D et al. 2009. Funny current downregulation and sinus node dysfunction associated with atrial tachyarrhythmia: a molecular basis for tachycardia-bradycardia syndrome. Circulation 119:1576–85
    [Google Scholar]
  129. 129. 
    Alboni P, Baggioni GF, Scarfo S, Cappato R, Percoco GF et al. 1991. Role of sinoatrial node artery disease in sick sinus syndrome in inferior wall acute myocardial infarction. Am. J. Cardiol. 67:1180–84
    [Google Scholar]
  130. 130. 
    Rokseth R, Hatle L. 1971. Sinus arrest in acute myocardial infarction. Br. Heart J. 33:639–42
    [Google Scholar]
  131. 131. 
    Verkerk AO, Wilders R, Coronel R, Ravesloot JH, Verheijck EE 2003. Ionic remodeling of sinoatrial node cells by heart failure. Circulation 108:760–66
    [Google Scholar]
  132. 132. 
    Zicha S, Fernandez-Velasco M, Lonardo G, L'Heureux N, Nattel S 2005. Sinus node dysfunction and hyperpolarization-activated (HCN) channel subunit remodeling in a canine heart failure model. Cardiovasc. Res. 66:472–81
    [Google Scholar]
  133. 133. 
    Mackasey M, Egom EE, Jansen HJ, Hua R, Moghtadaei M et al. 2018. Natriuretic peptide receptor-C protects against angiotensin II-mediated sinoatrial node disease in mice. JACC Basic Transl. Sci. 3:824–43
    [Google Scholar]
  134. 134. 
    Luo M, Guan X, Luczak ED, Lang D, Kutschke W et al. 2013. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J. Clin. Investig. 123:1262–74
    [Google Scholar]
  135. 135. 
    Peters CH, Sharpe EJ, Proenza C 2020. Cardiac pacemaker activity and aging. Annu. Rev. Physiol. 82:21–43
    [Google Scholar]
  136. 136. 
    Csepe TA, Kalyanasundaram A, Hansen BJ, Zhao J, Fedorov VV 2015. Fibrosis: a structural modulator of sinoatrial node physiology and dysfunction. Front. Physiol. 6:37
    [Google Scholar]
  137. 137. 
    Thery C, Gosselin B, Lekieffre J, Warembourg H 1977. Pathology of sinoatrial node. Correlations with electrocardiographic findings in 111 patients. Am. Heart J. 93:735–40
    [Google Scholar]
  138. 138. 
    Larson ED, St. Clair JR, Sumner WA, Bannister RA, Proenza C 2013. Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. PNAS 110:18011–16
    [Google Scholar]
  139. 139. 
    Cossu SF, Rothman SA, Chmielewski IL, Hsia HH, Vogel RL et al. 1997. The effects of isoproterenol on the cardiac conduction system: site-specific dose dependence. J. Cardiovasc. Electrophysiol. 8:847–53
    [Google Scholar]
  140. 140. 
    Tisdale JE, Patel RV, Webb CR, Borzak S, Zarowitz BJ 1995. Proarrhythmic effects of intravenous vasopressors. Ann. Pharmacother. 29:269–81
    [Google Scholar]
  141. 141. 
    Scheinman MM, Thorburn D, Abbott JA 1975. Use of atropine in patients with acute myocardial infarction and sinus bradycardia. Circulation 52:627–33
    [Google Scholar]
  142. 142. 
    Warren JV, Lewis RP. 1976. Beneficial effects of atropine in the pre-hospital phase of coronary care. Am. J. Cardiol. 37:68–72
    [Google Scholar]
  143. 143. 
    Strauss HC, Bigger JT, Saroff AL, Giardina EG 1976. Electrophysiologic evaluation of sinus node function in patients with sinus node dysfunction. Circulation 53:763–76
    [Google Scholar]
  144. 144. 
    Swart G, Brady WJ Jr., DeBehnke DJ, Ma OJ, Aufderheide TP 1999. Acute myocardial infarction complicated by hemodynamically unstable bradyarrhythmia: prehospital and ED treatment with atropine. Am. J. Emerg. Med 17:647–52
    [Google Scholar]
  145. 145. 
    Lou Q, Glukhov AV, Hansen B, Hage L, Vargas-Pinto P et al. 2013. Tachy-brady arrhythmias: the critical role of adenosine-induced sinoatrial conduction block in post-tachycardia pauses. Heart Rhythm 10:110–18
    [Google Scholar]
  146. 146. 
    Bertolet BD, Eagle DA, Conti JB, Mills RM, Belardinelli L 1996. Bradycardia after heart transplantation: reversal with theophylline. J. Am. Coll. Cardiol. 28:396–99
    [Google Scholar]
  147. 147. 
    Rothman SA, Jeevanandam V, Seeber CP, Piña IL, Hsia HH et al. 1995. Electrophysiologic effects of intravenous aminophylline in heart transplant recipients with sinus node dysfunction. J. Heart Lung Transplant. 14:429–35
    [Google Scholar]
  148. 148. 
    Schulz-Stübner S. 2005. The use of small-dose theophylline for the treatment of bradycardia in patients with spinal cord injury. Anesth. Analg. 101:1809–11
    [Google Scholar]
  149. 149. 
    Pasnoori VR, Leesar MA. 2004. Use of aminophylline in the treatment of severe symptomatic bradycardia resistant to atropine. Cardiol. Rev. 12:65–68
    [Google Scholar]
  150. 150. 
    Kambayashi J, Liu Y, Sun B, Shakur Y, Yoshitake M, Czerwiec F 2003. Cilostazol as a unique antithrombotic agent. Curr. Pharm. Des. 9:2289–302
    [Google Scholar]
  151. 151. 
    Atarashi H, Endoh Y, Saitoh H, Kishida H, Hayakawa H 1998. Chronotropic effects of cilostazol, a new antithrombotic agent, in patients with bradyarrhythmias. J. Cardiovasc. Pharmacol. 31:534–39
    [Google Scholar]
  152. 152. 
    Toyonaga S, Nakatsu T, Murakami T, Kusachi S, Mashima K et al. 2000. Effects of cilostazol on heart rate and its variation in patients with atrial fibrillation associated with bradycardia. J. Cardiovasc. Pharmacol. Ther. 5:183–91
    [Google Scholar]
  153. 153. 
    Sonoura T, Kodera S, Shakya S, Kanda J 2019. Efficacy of cilostazol for sick sinus syndrome to avoid permanent pacemaker implantation: a retrospective case-control study. J. Cardiol. 74:328–32
    [Google Scholar]
  154. 154. 
    St-Onge M, Dubé P-A, Gosselin S, Guimont C, Godwin J et al. 2014. Treatment for calcium channel blocker poisoning: a systematic review. Clin. Toxicol. 52:926–44
    [Google Scholar]
  155. 155. 
    Graudins A, Lee HM, Druda D 2016. Calcium channel antagonist and beta-blocker overdose: antidotes and adjunct therapies. Br. J. Clin. Pharmacol. 81:453–61
    [Google Scholar]
  156. 156. 
    Ma G, Brady WJ, Pollack M, Chan TC 2001. Electrocardiographic manifestations: digitalis toxicity. J. Emerg. Med. 20:145–52
    [Google Scholar]
  157. 157. 
    Smith TW, Butler VP Jr., Haber E, Fozzard H, Marcus FI et al. 1982. Treatment of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments: experience in 26 cases. N. Engl. J. Med. 307:1357–62
    [Google Scholar]
  158. 158. 
    Lapostolle F, Borron SW, Verdier C, Taboulet P, Guerrier G et al. 2008. Digoxin-specific Fab fragments as single first-line therapy in digitalis poisoning. Crit. Care Med. 36:3014–18
    [Google Scholar]
  159. 159. 
    Bidaud I, Chong ACY, Carcouet A, Waard S, Charpentier F et al. 2020. Inhibition of G protein-gated K+ channels by tertiapin-Q rescues sinus node dysfunction and atrioventricular conduction in mouse models of primary bradycardia. Sci. Rep. 10:9835
    [Google Scholar]
  160. 160. 
    Gauldie J, Hanson JM, Rumjanek FD, Shipolini RA, Vernon CA 1976. The peptide components of bee venom. Eur. J. Biochem. 61:369–76
    [Google Scholar]
  161. 161. 
    Jin W, Lu Z. 1999. Synthesis of a stable form of tertiapin: a high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 38:14286–93
    [Google Scholar]
  162. 162. 
    Jin W, Lu Z. 1998. A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochemistry 37:13291–99
    [Google Scholar]
  163. 163. 
    Kitamura H, Yokoyama M, Akita H, Matsushita K, Kurachi Y, Yamada M 2000. Tertiapin potently and selectively blocks muscarinic K+ channels in rabbit cardiac myocytes. J. Pharmacol. Exp. Ther. 293:196–205
    [Google Scholar]
  164. 164. 
    Drici M-D, Diochot S, Terrenoire C, Romey G, Lazdunski M 2000. The bee venom peptide tertiapin underlines the role of IKACh in acetylcholine-induced atrioventricular blocks. Br. J. Pharmacol. 131:569–77
    [Google Scholar]
  165. 165. 
    Mesirca P, Bidaud I, Mangoni ME 2016. Rescuing cardiac automaticity in L-type Cav1.3 channelopathies and beyond. J. Physiol. 594:5869–79
    [Google Scholar]
  166. 166. 
    Li N, Timofeyev V, Tuteja D, Xu D, Lu L et al. 2009. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J. Physiol. 587:1087–100
    [Google Scholar]
  167. 167. 
    Engel J, Schultens HA, Schild D 1999. Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Biophys. J. 76:1310–19
    [Google Scholar]
  168. 168. 
    Boineau JP, Canavan TE, Schuessler RB, Cain ME, Corr PB, Cox JL 1988. Demonstration of a widely distributed atrial pacemaker complex in the human heart. Circulation 77:1221–37
    [Google Scholar]
  169. 169. 
    Fedorov VV, Glukhov AV, Chang R 2012. Conduction barriers and pathways of the sinoatrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 302:H1773–83
    [Google Scholar]
  170. 170. 
    Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H et al. 2009. Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation 119:1562–75
    [Google Scholar]
  171. 171. 
    Verkerk AO, Wilders R, van Borren MM, Peters RJ, Broekhuis E et al. 2007. Pacemaker current (If) in the human sinoatrial node. Eur. Heart J. 28:2472–78
    [Google Scholar]
  172. 172. 
    Gomes JA, Winters SL. 1987. The origins of the sinus node pacemaker complex in man: demonstration of dominant and subsidiary foci. J. Am. Coll. Cardiol. 9:45–52
    [Google Scholar]
  173. 173. 
    Csepe TA, Zhao J, Sul LV, Wang Y, Hansen BJ et al. 2017. Novel application of 3D contrast-enhanced CMR to define fibrotic structure of the human sinoatrial node in vivo. Eur. Heart J. Cardiovasc. Imaging 18:862–69
    [Google Scholar]
  174. 174. 
    Li N, Csepe TA, Hansen BJ, Sul LV, Kalyanasundaram A et al. 2016. Adenosine-induced atrial fibrillation: localized reentrant drivers in lateral right atria due to heterogeneous expression of adenosine A1 receptors and GIRK4 subunits in the human heart. Circulation 134:486–98
    [Google Scholar]
  175. 175. 
    Funaya H, Kitakaze M, Node K, Minamino T, Komamura K, Hori M 1997. Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95:1363–65
    [Google Scholar]
  176. 176. 
    Maille B, Marlinge M, Vairo D, Mottola G, Koutbi L et al. 2019. Adenosine plasma level in patients with paroxysmal or persistent atrial fibrillation and normal heart during ablation procedure and/or cardioversion. Purinergic Signal 15:45–52
    [Google Scholar]
  177. 177. 
    Kharche S, Yu J, Lei M, Zhang H 2011. A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases. Am. J. Physiol. Heart Circ. Physiol. 301:H945–63
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031120-115815
Loading
/content/journals/10.1146/annurev-pharmtox-031120-115815
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error