1932

Abstract

Genetically driven clinical trial enrichment has been proposed to accelerate and reduce the cost of developing new therapeutics. Usage of this approach has not been comprehensively reviewed. We searched Ovid MEDLINE, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov, and WHO ICTRP for articles published between 2010 and 2023. Excluding absorption, distribution, metabolism, and elimination pharmacogenetic studies and anti-infectives, we found 95 completed, 4 terminated, and 22 ongoing prospective genetically enriched trials on 110 drugs for 48 nononcology, nonrare syndromic indications. Trial sizes ranged from 4 to 6,147 participants (median 72) and covered numerous disease areas, particularly neurology (30), metabolism (22), and psychiatry (17). Fifty-six completed studies (60%) met their primary end point. Overall, this scoping review demonstrates that genetically enriched trials are feasible and scalable across disease areas and provide critical information for further development, or attrition, of investigational drugs. Large, appropriately designed disease-, hospital-, or population-based biobanks will undoubtedly facilitate this type of precision drug development approach.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031524-021631
2025-01-23
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-031524-021631.html?itemId=/content/journals/10.1146/annurev-pharmtox-031524-021631&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Moore TJ, Zhang H, Anderson G, Alexander GC. 2018.. Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration, 2015–2016. . JAMA Intern. Med. 178::145157
    [Crossref] [Google Scholar]
  2. 2.
    Wouters OJ, McKee M, Luyten J. 2020.. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. . JAMA 323::84453
    [Crossref] [Google Scholar]
  3. 3.
    IQVIA. 2023.. Global trends in R&D 2023: activity, productivity, and enablers. Rep. , IQVIA Inst. Hum. Data Sci., Durham, NC:. https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/global-trends-in-r-and-d-2023
    [Google Scholar]
  4. 4.
    Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. 2023.. From target discovery to clinical drug development with human genetics. . Nature 620::73745
    [Crossref] [Google Scholar]
  5. 5.
    Ledford H. 2023.. CRISPR 2.0: A new wave of gene editors heads for clinical trials. . Nature 624::23435
    [Crossref] [Google Scholar]
  6. 6.
    Lauer MS, Gordon D, Wei G, Pearson G. 2017.. Efficient design of clinical trials and epidemiological research: Is it possible?. Nat. Rev. Cardiol. 14::493501
    [Crossref] [Google Scholar]
  7. 7.
    Marquis-Gravel G, Roe MT, Turakhia MP, Boden W, Temple R, et al. 2019.. Technology-enabled clinical trials: transforming medical evidence generation. . Circulation 140::142636
    [Crossref] [Google Scholar]
  8. 8.
    FDA (US Food Drug Admin.). 2019.. Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products: guidance for industry. Guid. Doc., US Dep. Health Hum. Serv., FDA, Cent. Drug Eval. Res., Cent. Biol. Eval. Res., Silver Spring, MD:
    [Google Scholar]
  9. 9.
    Mabuchi H, Haba T, Tatami R, Miyamoto S, Sakai Y, et al. 1981.. Effects of an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase on serum lipoproteins and ubiquinone-10-levels in patients with familial hypercholesterolemia. . N. Engl. J. Med. 305::47882
    [Crossref] [Google Scholar]
  10. 10.
    Scand. Simvastatin Surviv. Study Group. 1994.. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). . Lancet 344::138389
    [Google Scholar]
  11. 11.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. 2011.. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. . N. Engl. J. Med. 364::250716
    [Crossref] [Google Scholar]
  12. 12.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, et al. 2004.. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. . N. Engl. J. Med. 350::212939
    [Crossref] [Google Scholar]
  13. 13.
    Zimmermann M, Bernier C, Kaiser B, Fournier S, Li L, et al. 2022.. Guiding ATR and PARP inhibitor combinations with chemogenomic screens. . Cell Rep. 40::111081
    [Crossref] [Google Scholar]
  14. 14.
    Corbin LJ, Tan VY, Hughes DA, Wade KH, Paul DS, et al. 2018.. Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. . Nat. Commun. 9::711
    [Crossref] [Google Scholar]
  15. 15.
    Schork NJ, Topol EJ. 2010.. Genotype-based risk and pharmacogenetic sampling in clinical trials. . J. Biopharm. Stat. 20::31533
    [Crossref] [Google Scholar]
  16. 16.
    Hu Y, Li L, Ehm MG, Bing N, Song K, et al. 2013.. The benefits of using genetic information to design prevention trials. . Am. J. Hum. Genet. 92::54757
    [Crossref] [Google Scholar]
  17. 17.
    Atabaki-Pasdar N, Ohlsson M, Shungin D, Kurbasic A, Ingelsson E, et al. 2016.. Statistical power considerations in genotype-based recall randomized controlled trials. . Sci. Rep. 6::37307
    [Crossref] [Google Scholar]
  18. 18.
    Franks PW, Timpson NJ. 2018.. Genotype-based recall studies in complex cardiometabolic traits. . Circ. Genom. Precis. Med. 11::e001947
    [Crossref] [Google Scholar]
  19. 19.
    Ahamadi M, Conrado DJ, Macha S, Sinha V, Stone J, et al. 2020.. Development of a disease progression model for leucine-rich repeat kinase 2 in Parkinson's disease to inform clinical trial designs. . Clin. Pharmacol. Ther. 107::55362
    [Crossref] [Google Scholar]
  20. 20.
    Leonard H, Blauwendraat C, Krohn L, Faghri F, Iwaki H, et al. 2020.. Genetic variability and potential effects on clinical trial outcomes: perspectives in Parkinson's disease. . J. Med. Genet. 57::33138
    [Crossref] [Google Scholar]
  21. 21.
    Fahed AC, Philippakis AA, Khera AV. 2022.. The potential of polygenic scores to improve cost and efficiency of clinical trials. . Nat. Commun. 13::2922
    [Crossref] [Google Scholar]
  22. 22.
    Minion JT, Butcher F, Timpson N, Murtagh MJ. 2018.. The ethics conundrum in Recall by Genotype (RbG) research: perspectives from birth cohort participants. . PLOS ONE 13::e0202502
    [Crossref] [Google Scholar]
  23. 23.
    Mascalzoni D, Biasiotto R, Borsche M, Brüggemann N, De Grandi A, et al. 2021.. Balancing scientific interests and the rights of participants in designing a recall by genotype study. . Eur. J. Hum. Genet. 29::114657
    [Crossref] [Google Scholar]
  24. 24.
    Biasiotto R, Kosters M, Tschigg K, Pramstaller PP, Bruggemann N, et al. 2023.. Participant perspective on the recall-by-genotype research approach: a mixed-method embedded study with participants of the CHRIS study. . Eur. J. Hum. Genet. 31::121827
    [Crossref] [Google Scholar]
  25. 25.
    Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, et al. 1989.. Identification of the cystic fibrosis gene: chromosome walking and jumping. . Science 245::105965
    [Crossref] [Google Scholar]
  26. 26.
    Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, et al. 2011.. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. . N. Engl. J. Med. 365::166372
    [Crossref] [Google Scholar]
  27. 27.
    Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, et al. 2017.. Tezacaftor–ivacaftor in residual-function heterozygotes with cystic fibrosis. . N. Engl. J. Med. 377::202435
    [Crossref] [Google Scholar]
  28. 28.
    Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, et al. 2017.. Tezacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del. . N. Engl. J. Med. 377::201323
    [Crossref] [Google Scholar]
  29. 29.
    Davies JC, Moskowitz SM, Brown C, Horsley A, Mall MA, et al. 2018.. VX-659–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. . N. Engl. J. Med. 379::1599611
    [Crossref] [Google Scholar]
  30. 30.
    Keating D, Marigowda G, Burr L, Daines C, Mall MA, et al. 2018.. VX-445–tezacaftor–ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. . N. Engl. J. Med. 379::161220
    [Crossref] [Google Scholar]
  31. 31.
    Peterschmitt MJ, Saiki H, Hatano T, Gasser T, Isaacson SH, et al. 2022.. Safety, pharmacokinetics, and pharmacodynamics of oral venglustat in patients with Parkinson's disease and a GBA mutation: results from part 1 of the randomized, double-blinded, placebo-controlled MOVES-PD trial. . J. Parkinson's Dis. 12::55770
    [Crossref] [Google Scholar]
  32. 32.
    Lopez Lopez C, Tariot PN, Caputo A, Langbaum JB, Liu F, et al. 2019.. The Alzheimer's Prevention Initiative Generation Program: study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer's disease. . Alzheimer's Dement. 5::21627
    [Crossref] [Google Scholar]
  33. 33.
    Burns DK, Chiang C, Welsh-Bohmer KA, Brannan SK, Culp M, et al. 2019.. The TOMMORROW study: design of an Alzheimer's disease delay-of-onset clinical trial. . Alzheimer's Dement. 5::66170
    [Crossref] [Google Scholar]
  34. 34.
    Rios-Romenets S, Lopera F, Sink KM, Hu N, Lian Q, et al. 2020.. Baseline demographic, clinical, and cognitive characteristics of the Alzheimer's Prevention Initiative (API) Autosomal-Dominant Alzheimer's Disease Colombia Trial. . Alzheimer's Dement. 16::102330
    [Crossref] [Google Scholar]
  35. 35.
    Tariot PN, Lopera F, Langbaum JB, Thomas RG, Hendrix S, et al. 2018.. The Alzheimer's Prevention Initiative Autosomal-Dominant Alzheimer's Disease trial: a study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer's disease, including a placebo-treated noncarrier cohort. . Alzheimer's Dement. 4::15060
    [Crossref] [Google Scholar]
  36. 36.
    Salloway S, Farlow M, McDade E, Clifford DB, Wang G, et al. 2021.. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease. . Nat. Med. 27::118796
    [Crossref] [Google Scholar]
  37. 37.
    Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, et al. 2022.. Trial of antisense oligonucleotide tofersen for SOD1 ALS. . N. Engl. J. Med. 387::1099110
    [Crossref] [Google Scholar]
  38. 38.
    Willemse SW, Roes KCB, Van Damme P, Hardiman O, Ingre C, et al. 2022.. Lithium carbonate in amyotrophic lateral sclerosis patients homozygous for the C-allele at SNP rs12608932 in UNC13A: protocol for a confirmatory, randomized, group-sequential, event-driven, double-blind, placebo-controlled trial. . Trials 23::978
    [Crossref] [Google Scholar]
  39. 39.
    Gurbel PA, Bliden KP, Hiatt BL, O'Connor CM. 2003.. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. . Circulation 107::290813
    [Crossref] [Google Scholar]
  40. 40.
    Sofi F, Marcucci R, Gori AM, Giusti B, Abbate R, Gensini GF. 2010.. Clopidogrel non-responsiveness and risk of cardiovascular morbidity. An updated meta-analysis. . Thromb. Haemost. 103::84148
    [Google Scholar]
  41. 41.
    Pereira NL, Rihal C, Lennon R, Marcus G, Shrivastava S, et al. 2021.. Effect of CYP2C19 genotype on ischemic outcomes during oral P2Y12 inhibitor therapy: a meta-analysis. . JACC Cardiovasc. Interv. 14::73950
    [Crossref] [Google Scholar]
  42. 42.
    Galli M, Benenati S, Capodanno D, Franchi F, Rollini F, et al. 2021.. Guided versus standard antiplatelet therapy in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. . Lancet 397::147083
    [Crossref] [Google Scholar]
  43. 43.
    Lipworth BJ, Basu K, Donald HP, Tavendale R, Macgregor DF, et al. 2013.. Tailored second-line therapy in asthmatic children with the Arg16 genotype. . Clin. Sci. 124::52128
    [Crossref] [Google Scholar]
  44. 44.
    Ruffles T, Jones CJ, Palmer C, Turner S, Grigg J, et al. 2021.. Asthma prescribing according to Arg16Gly beta-2 genotype: a randomised trial in adolescents. . Eur. Respir. J. 58::2004107
    [Crossref] [Google Scholar]
  45. 45.
    Damask A, Steg PG, Schwartz GG, Szarek M, Hagstrom E, et al. 2020.. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. . Circulation 141::62436
    [Crossref] [Google Scholar]
  46. 46.
    Marston NA, Kamanu FK, Nordio F, Gurmu Y, Roselli C, et al. 2020.. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score: results from the FOURIER trial. . Circulation 141::61623
    [Crossref] [Google Scholar]
  47. 47.
    Minikel EV, Karczewski KJ, Martin HC, Cummings BB, Whiffin N, et al. 2020.. Evaluating drug targets through human loss-of-function genetic variation. . Nature 581::45964
    [Crossref] [Google Scholar]
  48. 48.
    Arksey H, O'Malley L. 2005.. Scoping studies: towards a methodological framework. . Int. J. Soc. Res. Methodol. 8::1932
    [Crossref] [Google Scholar]
  49. 49.
    Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, et al. 2018.. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. . Ann. Intern. Med. 169::46773
    [Crossref] [Google Scholar]
  50. 50.
    Higgins J, Thomas J, Chandler J, Cumpston M, Li T, et al., eds. 2023.. Cochrane Handbook for Systematic Reviews of Interventions, Version 6.4 . London:: Cochrane. https://training.cochrane.org/handbook/current
    [Google Scholar]
  51. 51.
    Bramer WM, Giustini D, de Jonge GB, Holland L, Bekhuis T. 2016.. De-duplication of database search results for systematic reviews in EndNote. . J. Med. Libr. Assoc. 104::24043
    [Crossref] [Google Scholar]
  52. 52.
    Innovation VH. Covidence. Systematic Review Software. http://www.covidence.org
    [Google Scholar]
  53. 53.
    Zhou W, Kanai M, Wu KH, Rasheed H, Tsuo K, et al. 2022.. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. . Cell Genom. 2::100192
    [Crossref] [Google Scholar]
  54. 54.
    Goldberg YP, Price N, Namdari R, Cohen CJ, Lamers MH, et al. 2012.. Treatment of Nav1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. . Pain 153::8085
    [Crossref] [Google Scholar]
  55. 55.
    Tardif JC, Pfeffer MA, Kouz S, Koenig W, Maggioni AP, et al. 2022.. Pharmacogenetics-guided dalcetrapib therapy after an acute coronary syndrome: the dal-GenE trial. . Eur. Heart J. 43::394756
    [Crossref] [Google Scholar]
  56. 56.
    Ziegler AG, Achenbach P, Berner R, Casteels K, Danne T, et al. 2019.. Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. . BMJ Open 9::e028578
    [Crossref] [Google Scholar]
  57. 57.
    Mackintosh JA, Pietsch M, Lutzky V, Enever D, Bancroft S, et al. 2021.. TELO-SCOPE study: a randomised, double-blind, placebo-controlled, phase 2 trial of danazol for short telomere related pulmonary fibrosis. . BMJ Open Respiratory Res. 8::e001127
    [Crossref] [Google Scholar]
  58. 58.
    Wharton W, Stein JH, Korcarz C, Sachs J, Olson SR, et al. 2012.. The effects of ramipril in individuals at risk for Alzheimer's disease: results of a pilot clinical trial. . J. Alzheimer's Dis. 32::14756
    [Crossref] [Google Scholar]
  59. 59.
    Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, et al. 2014.. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. New Engl. . J. Med. 370::32233
    [Google Scholar]
  60. 60.
    Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, et al. 2016.. Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials. . Alzheimer's Res. Ther. 8::18
    [Crossref] [Google Scholar]
  61. 61.
    Alexander R, Burns DK, Welsh-Bohmer KA, Burke JR, Chiang C, et al. 2019.. TOMMORROW: results from a Phase 3 trial to delay the onset of MCI due to AD and qualify a genetic biomarker algorithm. . Alzheimer's Dement. 15::P148889
    [Google Scholar]
  62. 62.
    Salloway S, Farlow M, McDade E, Clifford DB, Wang G, et al. 2021.. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease. . Nat. Med. 27::118796
    [Crossref] [Google Scholar]
  63. 63.
    Walsh T, Duff L, Riviere ME, Tariot PN, Doak K, et al. 2023.. Outreach, screening, and randomization of APOE ε4 carriers into an Alzheimer's prevention trial: a global perspective from the API Generation Program. . J. Prev. Alzheimer's Dis. 10::45363
    [Crossref] [Google Scholar]
  64. 64.
    Stolk J, Stockley RA, Stoel BC, Cooper BG, Piitulainen E, et al. 2012.. Randomised controlled trial for emphysema with a selective agonist of the γ-type retinoic acid receptor. . Eur. Respir. J. 40::30612
    [Crossref] [Google Scholar]
  65. 65.
    Ross J, Thompson PM, Doody RS, Tariot PN, Reiman EM, et al. 2012.. Long-term longitudinal biomarker trials in subjects at genetic risk of developing Alzheimer's disease: the GEPARD-AD studies. . J. Nutr. Health Aging 16:(9):5 (Abstr.)
    [Google Scholar]
  66. 66.
    Tardif JC, Pfeffer MA, Kouz S, Koenig W, Maggioni AP, et al. 2022.. Pharmacogenetics-guided dalcetrapib therapy after an acute coronary syndrome: the dal-GenE trial. . Eur. Heart J. 43::394756
    [Crossref] [Google Scholar]
  67. 67.
    Morrow AJ, Ford TJ, Mangion K, Kotecha T, Rakhit R, et al. 2020.. Rationale and design of the Medical Research Council's Precision Medicine with Zibotentan in Microvascular Angina (PRIZE) trial. . Am. Heart J. 229::7080
    [Crossref] [Google Scholar]
  68. 68.
    Nelson JB, Fizazi K, Miller K, Higano C, Moul JW, et al. 2012.. Phase 3, randomized, placebo-controlled study of zibotentan (ZD4054) in patients with castration-resistant prostate cancer metastatic to bone. . Cancer 118::570918
    [Crossref] [Google Scholar]
  69. 69.
    Pergola PE, Devalaraja M, Fishbane S, Chonchol M, Mathur VS, et al. 2021.. Ziltivekimab for treatment of anemia of inflammation in patients on hemodialysis: results from a phase 1/2 multicenter, randomized, double-blind, placebo-controlled trial. . J. Am. Soc. Nephrol. 32::21122
    [Crossref] [Google Scholar]
  70. 70.
    Ridker PM, Devalaraja M, Baeres FMM, Engelmann MDM, Hovingh GK, et al. 2021.. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. . Lancet 397::206069
    [Crossref] [Google Scholar]
  71. 71.
    Tardif JC, Rhéaume E, Lemieux Perreault L-P, Grégoire JC, Feroz Zada Y, et al. 2015.. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. . Circ. Cardiovasc. Genet. 8::37282
    [Crossref] [Google Scholar]
  72. 72.
    Fiziev PP, McRae J, Ulirsch JC, Dron JS, Hamp T, et al. 2023.. Rare penetrant mutations confer severe risk of common diseases. . Science 380::eabo1131
    [Crossref] [Google Scholar]
  73. 73.
    Lennon NJ, Kottyan LC, Kachulis C, Abul-Husn NS, Arias J, et al. 2024.. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. . Nat. Med. 30::48087
    [Crossref] [Google Scholar]
  74. 74.
    Tschigg K, Consoli L, Biasiotto R, Mascalzoni D. 2022.. Ethical, legal and social/societal implications (ELSI) of recall-by-genotype (RbG) and genotype-driven-research (GDR) approaches: a scoping review. . Eur. J. Hum. Genet. 30::100010
    [Crossref] [Google Scholar]
  75. 75.
    Langlois CM, Bradbury A, Wood EM, Roberts JS, Kim SYH, et al. 2019.. Alzheimer's Prevention Initiative Generation Program: development of an APOE genetic counseling and disclosure process in the context of clinical trials. . Alzheimer's Dement. 5::70516
    [Crossref] [Google Scholar]
  76. 76.
    Wang Y, Tsuo K, Kanai M, Neale BM, Martin AR. 2022.. Challenges and opportunities for developing more generalizable polygenic risk scores. . Annu. Rev. Biomed. Data Sci. 5::293320
    [Crossref] [Google Scholar]
  77. 77.
    Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. 2022.. A roadmap to increase diversity in genomic studies. . Nat. Med. 28::24350
    [Crossref] [Google Scholar]
  78. 78.
    Egbuna O, Zimmerman B, Manos G, Fortier A, Chirieac MC, et al. 2023.. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. . N. Engl. J. Med. 388::96979
    [Crossref] [Google Scholar]
  79. 79.
    Martin L, Hutchens M, Hawkins C, Radnov A. 2017.. How much do clinical trials cost?. Nat. Rev. Drug Discov. 16::38182
    [Crossref] [Google Scholar]
  80. 80.
    Tremblay K, Rousseau S, Zawati MH, Auld D, Chassé M, et al. 2021.. The Biobanque québécoise de la COVID-19 (BQC19)—a cohort to prospectively study the clinical and biological determinants of COVID-19 clinical trajectories. . PLOS ONE 16::e0245031
    [Crossref] [Google Scholar]
  81. 81.
    Reiman EM, Langbaum JB, Fleisher AS, Caselli RJ, Chen K, et al. 2011.. Alzheimer's Prevention Initiative: a plan to accelerate the evaluation of presymptomatic treatments. . J. Alzheimer's Dis. 26:Suppl. 3:32129
    [Crossref] [Google Scholar]
  82. 82.
    Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, et al. 2017.. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. . Am. J. Epidemiol. 186::102634
    [Crossref] [Google Scholar]
  83. 83.
    UK Biobank. 2017.. UK Biobank re-contact procedures for third party researchers (version 2.0) . Proced., UK Biobank, Stockport, UK:. https://www.ukbiobank.ac.uk/media/v53jfpns/ukb-recontactprocs-14-3-2018-item-5b-2.pdf
    [Google Scholar]
  84. 84.
    Our Future Health. 2024.. Let's prevent disease together. . Our Future Health. https://ourfuturehealth.org.uk/
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031524-021631
Loading
/content/journals/10.1146/annurev-pharmtox-031524-021631
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error