1932

Abstract

Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides. While the 11 PDE subfamilies share common features, key differences confer signaling specificity. The differences include substrate selectivity, enzymatic activity regulation, tissue expression, and subcellular localization. Selective inhibitors of each subfamily have elucidated the protean role of PDEs in normal cell function. PDEs are also linked to diseases, some of which affect the immune, cardiac, and vascular systems. Selective PDE inhibitors are clinically used to treat these specific disorders. Ongoing preclinical studies and clinical trials are likely to lead to the approval of additional PDE-targeting drugs for therapy in human disease. In this review, we discuss the structure and function of PDEs and examine current and evolving therapeutic uses of PDE inhibitors, highlighting their mechanisms and innovative applications that could further leverage this crucial family of enzymes in clinical settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031524-025239
2025-01-23
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-031524-025239.html?itemId=/content/journals/10.1146/annurev-pharmtox-031524-025239&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bender AT, Beavo JA. 2006.. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. . Pharmacol. Rev. 58::488520
    [Crossref] [Google Scholar]
  2. 2.
    Sutherland EW, Rall TW. 1958.. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. . J. Biol. Chem. 232::107791
    [Crossref] [Google Scholar]
  3. 3.
    Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, et al. 2022.. Recent developments of phosphodiesterase inhibitors: clinical trials, emerging indications and novel molecules. . Front. Pharmacol. 13::1057083
    [Crossref] [Google Scholar]
  4. 4.
    Wang J, Gareri C, Rockman HA. 2018.. G-protein-coupled receptors in heart disease. . Circ. Res. 123::71635
    [Crossref] [Google Scholar]
  5. 5.
    Liu Y, Chen J, Fontes SK, Bautista EN, Cheng Z. 2022.. Physiological and pathological roles of protein kinase A in the heart. . Cardiovasc. Res. 118::38698
    [Crossref] [Google Scholar]
  6. 6.
    Kim GE, Kass DA. 2017.. Cardiac phosphodiesterases and their modulation for treating heart disease. . In Heart Failure, ed. J Bauersachs, J Butler, P Sandner , pp. 24969. Cham, Switz:.: Springer
    [Google Scholar]
  7. 7.
    Hammond J, Balligand JL. 2012.. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. . J. Mol. Cell. Cardiol. 52::33040
    [Crossref] [Google Scholar]
  8. 8.
    Kokkonen K, Kass DA. 2017.. Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. . Annu. Rev. Pharmacol. Toxicol. 57::45579
    [Crossref] [Google Scholar]
  9. 9.
    Kamel R, Leroy J, Vandecasteele G, Fischmeister R. 2023.. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. . Nat. Rev. Cardiol. 20::90108
    [Crossref] [Google Scholar]
  10. 10.
    Bork N, Subramanian H, Kurelic R, Nikolaev V, Rybalkin S. 2023.. Role of phosphodiesterase 1 in the regulation of real-time cGMP levels and contractility in adult mouse cardiomyocytes. . Cells 12::2759
    [Crossref] [Google Scholar]
  11. 11.
    Fu Q, Wang Y, Yan C, Xiang YK. 2024.. Phosphodiesterase in heart and vessels: from physiology to diseases. . Physiol. Rev. 104::765834
    [Crossref] [Google Scholar]
  12. 12.
    Vandeput F, Wolda SL, Krall J, Hambleton R, Uher L, et al. 2007.. Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. . J. Biol. Chem. 282::3274957
    [Crossref] [Google Scholar]
  13. 13.
    Muller GK, Song J, Jani V, Wu Y, Liu T, et al. 2021.. PDE1 inhibition modulates Cav1.2 channel to stimulate cardiomyocyte contraction. . Circ. Res. 129::87286
    [Crossref] [Google Scholar]
  14. 14.
    Garnier A, Bork NI, Jacquet E, Zipfel S, Munoz-Guijosa C, et al. 2021.. Mapping genetic changes in the cAMP-signaling cascade in human atria. . J. Mol. Cell. Cardiol. 155::1020
    [Crossref] [Google Scholar]
  15. 15.
    Manfra O, Calamera G, Froese A, Arunthavarajah D, Surdo NC, et al. 2021.. CNP regulates cardiac contractility and increases cGMP near both SERCA and TnI: difference from BNP visualized by targeted cGMP biosensors. . Cardiovasc. Res. 118::150619
    [Crossref] [Google Scholar]
  16. 16.
    Sadhu K, Hensley K, Florio VA, Wolda SL. 1999.. Differential expression of the cyclic GMP-stimulated phosphodiesterase PDE2A in human venous and capillary endothelial cells. . J. Histochem. Cytochem. 47::895906
    [Crossref] [Google Scholar]
  17. 17.
    Hambleton R, Krall J, Tikishvili E, Honeggar M, Ahmad F, et al. 2005.. Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium. . J. Biol. Chem. 280::3916874
    [Crossref] [Google Scholar]
  18. 18.
    Wechsler J, Choi YH, Krall J, Ahmad F, Manganiello VC, Movsesian MA. 2002.. Isoforms of cyclic nucleotide phosphodiesterase PDE3A in cardiac myocytes. . J. Biol. Chem. 277::3807278
    [Crossref] [Google Scholar]
  19. 19.
    Subramaniam G, Schleicher K, Kovanich D, Zerio A, Folkmanaite M, et al. 2023.. Integrated proteomics unveils nuclear PDE3A2 as a regulator of cardiac myocyte hypertrophy. . Circ. Res. 132::82848
    [Crossref] [Google Scholar]
  20. 20.
    Ahmad F, Shen W, Vandeput F, Szabo-Fresnais N, Krall J, et al. 2015.. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. . J. Biol. Chem. 290::676376
    [Crossref] [Google Scholar]
  21. 21.
    Puertas-Umbert L, Alonso J, Hove-Madsen L, Martinez-Gonzalez J, Rodriguez C. 2023.. PDE4 phosphodiesterases in cardiovascular diseases: key pathophysiological players and potential therapeutic targets. . Int. J. Mol. Sci. 24::17017
    [Crossref] [Google Scholar]
  22. 22.
    Goksel E, Ugurel E, Nader E, Boisson C, Muniansi I, et al. 2023.. A preliminary study of phosphodiesterases and adenylyl cyclase signaling pathway on red blood cell deformability of sickle cell patients. . Front. Physiol. 14::1215835
    [Crossref] [Google Scholar]
  23. 23.
    Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, et al. 2005.. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. . Cell 123::2535
    [Crossref] [Google Scholar]
  24. 24.
    Bao Z, Feng Y, Wang H, Zhang C, Sun L, et al. 2014.. Integrated analysis using methylation and gene expression microarrays reveals PDE4C as a prognostic biomarker in human glioma. . Oncol. Rep. 32::25060
    [Crossref] [Google Scholar]
  25. 25.
    Houslay MD, Adams DR. 2003.. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. . Biochem. J. 370::118
    [Crossref] [Google Scholar]
  26. 26.
    Paes D, Lardenoije R, Carollo RM, Roubroeks JAY, Schepers M, et al. 2021.. Increased isoform-specific phosphodiesterase 4D expression is associated with pathology and cognitive impairment in Alzheimer's disease. . Neurobiol. Aging 97::5664
    [Crossref] [Google Scholar]
  27. 27.
    Hansen JN, Kaiser F, Leyendecker P, Stuven B, Krause JH, et al. 2022.. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. . EMBO Rep. 23::e54315
    [Crossref] [Google Scholar]
  28. 28.
    Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N, et al. 2015.. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. . Nature 519::47276
    [Crossref] [Google Scholar]
  29. 29.
    Ranek MJ, Oeing C, Sanchez-Hodge R, Kokkonen-Simon KM, Dillard D, et al. 2020.. CHIP phosphorylation by protein kinase G enhances protein quality control and attenuates cardiac ischemic injury. . Nat. Commun. 11::5237
    [Crossref] [Google Scholar]
  30. 30.
    Ranek MJ, Kokkonen-Simon KM, Chen A, Dunkerly-Eyring BL, Vera MP, et al. 2019.. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. . Nature 566::26469
    [Crossref] [Google Scholar]
  31. 31.
    Cote RH, Gupta R, Irwin MJ, Wang X. 2022.. Photoreceptor phosphodiesterase (PDE6): structure, regulatory mechanisms, and implications for treatment of retinal diseases. . Adv. Exp. Med. Biol. 1371::3359
    [Crossref] [Google Scholar]
  32. 32.
    Zorn A, Baillie G. 2023.. Phosphodiesterase 7 as a therapeutic target—Where are we now?. Cell. Signal. 108::110689
    [Crossref] [Google Scholar]
  33. 33.
    Han P, Zhu X, Michaeli T. 1997.. Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. . J. Biol. Chem. 272::1615257
    [Crossref] [Google Scholar]
  34. 34.
    Sasaki T, Kotera J, Yuasa K, Omori K. 2000.. Identification of human PDE7B, a cAMP-specific phosphodiesterase. . Biochem. Biophys. Res. Commun. 271::57583
    [Crossref] [Google Scholar]
  35. 35.
    Wang P, Wu P, Egan RW, Billah MM. 2001.. Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution. . Gene 280::18394
    [Crossref] [Google Scholar]
  36. 36.
    Grammatika Pavlidou N, Dobrev S, Beneke K, Reinhardt F, Pecha S, et al. 2023.. Phosphodiesterase 8 governs cAMP/PKA-dependent reduction of L-type calcium current in human atrial fibrillation: a novel arrhythmogenic mechanism. . Eur. Heart J. 44::248394
    [Crossref] [Google Scholar]
  37. 37.
    Mishra S, Sadagopan N, Dunkerly-Eyring B, Rodriguez S, Sarver DC, et al. 2021.. Inhibition of phosphodiesterase type 9 reduces obesity and cardiometabolic syndrome in mice. . J. Clin. Investig. 131::e148798
    [Crossref] [Google Scholar]
  38. 38.
    Patel NS, Klett J, Pilarzyk K, Lee DI, Kass D, et al. 2018.. Identification of new PDE9A isoforms and how their expression and subcellular compartmentalization in the brain change across the life span. . Neurobiol. Aging 65::21734
    [Crossref] [Google Scholar]
  39. 39.
    Chen S, Zhang Y, Lighthouse JK, Mickelsen DM, Wu J, et al. 2020.. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. . Circulation 141::21733
    [Crossref] [Google Scholar]
  40. 40.
    Saravani R, Karami-Tehrani F, Hashemi M, Aghaei M, Edalat R. 2012.. Inhibition of phosphodiestrase 9 induces cGMP accumulation and apoptosis in human breast cancer cell lines, MCF-7 and MDA-MB-468. . Cell Prolif. 45::199206
    [Crossref] [Google Scholar]
  41. 41.
    Pilarzyk K, Porcher L, Capell WR, Burbano SD, Davis J, et al. 2022.. Conserved age-related increases in hippocampal PDE11A4 cause unexpected proteinopathies and cognitive decline of social associative memories. . Aging Cell 21::e13687
    [Crossref] [Google Scholar]
  42. 42.
    Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, et al. 2004.. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. . Mol. Cell 15::27986
    [Crossref] [Google Scholar]
  43. 43.
    Zoraghi R, Corbin JD, Francis SH. 2006.. Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: Its orientation impacts cGMP but not cAMP affinity. . J. Biol. Chem. 281::555358
    [Crossref] [Google Scholar]
  44. 44.
    Wang H, Robinson H, Ke H. 2007.. The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10. . J. Mol. Biol. 371::3027
    [Crossref] [Google Scholar]
  45. 45.
    Heikaus CC, Pandit J, Klevit RE. 2009.. Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. . Structure 17::155157
    [Crossref] [Google Scholar]
  46. 46.
    Movsesian M, Ahmad F, Hirsch E. 2018.. Functions of PDE3 isoforms in cardiac muscle. . J. Cardiovasc. Dev. Dis. 5::10
    [Google Scholar]
  47. 47.
    Millar JK, Mackie S, Clapcote SJ, Murdoch H, Pickard BS, et al. 2007.. Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness. . J. Physiol. 584::4015
    [Crossref] [Google Scholar]
  48. 48.
    Wu P, Wang P. 2004.. Per-Arnt-Sim domain-dependent association of cAMP-phosphodiesterase 8A1 with IκB proteins. . PNAS 101::1763439
    [Crossref] [Google Scholar]
  49. 49.
    Wang P, Wu P, Egan RW, Billah MM. 2003.. Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5): differential tissue distribution and subcellular localization of PDE9A variants. . Gene 314::1527
    [Crossref] [Google Scholar]
  50. 50.
    Zaccolo M, Zerio A, Lobo MJ. 2021.. Subcellular organization of the cAMP signaling pathway. . Pharmacol. Rev. 73::278309
    [Crossref] [Google Scholar]
  51. 51.
    Calamera G, Moltzau LR, Levy FO, Andressen KW. 2022.. Phosphodiesterases and compartmentation of cAMP and cGMP signaling in regulation of cardiac contractility in normal and failing hearts. . Int. J. Mol. Sci. 23::2145
    [Crossref] [Google Scholar]
  52. 52.
    Ercu M, Klussmann E. 2018.. Roles of A-kinase anchoring proteins and phosphodiesterases in the cardiovascular system. . J. Cardiovasc. Dev. Dis. 5::14
    [Google Scholar]
  53. 53.
    Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, et al. 2007.. AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. . EMBO Rep. 8::106167
    [Crossref] [Google Scholar]
  54. 54.
    Carlson CR, Aronsen JM, Bergan-Dahl A, Moutty MC, Lunde M, et al. 2022.. AKAP18δ anchors and regulates CaMKII activity at phospholamban-SERCA2 and RYR. . Circ. Res. 130::2744
    [Crossref] [Google Scholar]
  55. 55.
    Anton SE, Kayser C, Maiellaro I, Nemec K, Moller J, et al. 2022.. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. . Cell 185::113042.e11
    [Crossref] [Google Scholar]
  56. 56.
    Medvedev RY, Turner DGP, DeGuire FC, Leonov V, Lang D, et al. 2023.. Caveolae-associated cAMP/Ca2+-mediated mechano-chemical signal transduction in mouse atrial myocytes. . J. Mol. Cell. Cardiol. 184::7587
    [Crossref] [Google Scholar]
  57. 57.
    Surdo NC, Berrera M, Koschinski A, Brescia M, Machado MR, et al. 2017.. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. . Nat. Commun. 8::15031
    [Crossref] [Google Scholar]
  58. 58.
    Schobesberger S, Wright PT, Poulet C, Sanchez Alonso Mardones JL, Mansfield C, et al. 2020.. β3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes. . eLife 9::e52221
    [Crossref] [Google Scholar]
  59. 59.
    Lin TY, Mai QN, Zhang H, Wilson E, Chien HC, et al. 2024.. Cardiac contraction and relaxation are regulated by distinct subcellular cAMP pools. . Nat. Chem. Biol. 20::6273
    [Crossref] [Google Scholar]
  60. 60.
    Wang Y, Shi Q, Li M, Zhao M, Reddy Gopireddy R, et al. 2021.. Intracellular β1-adrenergic receptors and organic cation transporter 3 mediate phospholamban phosphorylation to enhance cardiac contractility. . Circ. Res. 128::24661
    [Crossref] [Google Scholar]
  61. 61.
    Fraser ID, Tavalin SJ, Lester LB, Langeberg LK, Westphal AM, et al. 1998.. A novel lipid-anchored A-kinase anchoring protein facilitates cAMP-responsive membrane events. . EMBO J. 17::226172
    [Crossref] [Google Scholar]
  62. 62.
    Trotter KW, Fraser ID, Scott GK, Stutts MJ, Scott JD, Milgram SL. 1999.. Alternative splicing regulates the subcellular localization of A-kinase anchoring protein 18 isoforms. . J. Cell Biol. 147::148192
    [Crossref] [Google Scholar]
  63. 63.
    Dell'Acqua ML, Faux MC, Thorburn J, Thorburn A, Scott JD. 1998.. Membrane-targeting sequences on AKAP79 bind phosphatidylinositol-4, 5-bisphosphate. . EMBO J. 17::224660
    [Crossref] [Google Scholar]
  64. 64.
    Tasken KA, Collas P, Kemmner WA, Witczak O, Conti M, Tasken K. 2001.. Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. . J. Biol. Chem. 276::219992002
    [Crossref] [Google Scholar]
  65. 65.
    Terrenoire C, Houslay MD, Baillie GS, Kass RS. 2009.. The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. . J. Biol. Chem. 284::914046
    [Crossref] [Google Scholar]
  66. 66.
    Terrin A, Monterisi S, Stangherlin A, Zoccarato A, Koschinski A, et al. 2012.. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome. . J. Cell Biol. 198::60721
    [Crossref] [Google Scholar]
  67. 67.
    Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM. 2006.. An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. . EMBO J. 25::205161
    [Crossref] [Google Scholar]
  68. 68.
    Tasken K, Aandahl EM. 2004.. Localized effects of cAMP mediated by distinct routes of protein kinase A. . Physiol. Rev. 84::13767
    [Crossref] [Google Scholar]
  69. 69.
    Kovanich D, van der Heyden MA, Aye TT, van Veen TA, Heck AJ, Scholten A. 2010.. Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for type I cAMP-dependent protein kinase. . Chembiochemistry 11::96371
    [Crossref] [Google Scholar]
  70. 70.
    Hundsrucker C, Skroblin P, Christian F, Zenn HM, Popara V, et al. 2010.. Glycogen synthase kinase 3β interaction protein functions as an A-kinase anchoring protein. . J. Biol. Chem. 285::550721
    [Crossref] [Google Scholar]
  71. 71.
    Deak VA, Skroblin P, Dittmayer C, Knobeloch KP, Bachmann S, Klussmann E. 2016.. The A-kinase anchoring protein GSKIP regulates GSK3β activity and controls palatal shelf fusion in mice. . J. Biol. Chem. 291::68190
    [Crossref] [Google Scholar]
  72. 72.
    Dema A, Schroter MF, Perets E, Skroblin P, Moutty MC, et al. 2016.. The A-kinase anchoring protein (AKAP) glycogen synthase kinase 3β interaction protein (GSKIP) regulates β-catenin through its interactions with both protein kinase A (PKA) and GSK3β. . J. Biol. Chem. 291::1961830
    [Crossref] [Google Scholar]
  73. 73.
    Scholten A, Poh MK, van Veen TA, van Breukelen B, Vos MA, Heck AJ. 2006.. Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP. . J. Proteome Res. 5::143547
    [Crossref] [Google Scholar]
  74. 74.
    Huang LJ, Wang L, Ma Y, Durick K, Perkins G, et al. 1999.. NH2-terminal targeting motifs direct dual specificity A-kinase-anchoring protein 1 (D-AKAP1) to either mitochondria or endoplasmic reticulum. . J. Cell Biol. 145::95159
    [Crossref] [Google Scholar]
  75. 75.
    Clister T, Greenwald EC, Baillie GS, Zhang J. 2019.. AKAP95 organizes a nuclear microdomain to control local cAMP for regulating nuclear PKA. . Cell Chem. Biol. 26::88591.e4
    [Crossref] [Google Scholar]
  76. 76.
    Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, et al. 2005.. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. . Nature 437::57478
    [Crossref] [Google Scholar]
  77. 77.
    Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, et al. 2001.. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. . EMBO J. 20::192130
    [Crossref] [Google Scholar]
  78. 78.
    Diviani D, Langeberg LK, Doxsey SJ, Scott JD. 2000.. Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain. . Curr. Biol. 10::41720
    [Crossref] [Google Scholar]
  79. 79.
    Gillingham AK, Munro S. 2000.. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. . EMBO Rep. 1::52429
    [Crossref] [Google Scholar]
  80. 80.
    Zhang M, Takimoto E, Lee DI, Santos CX, Nakamura T, et al. 2012.. Pathological cardiac hypertrophy alters intracellular targeting of phosphodiesterase type 5 from nitric oxide synthase-3 to natriuretic peptide signaling. . Circulation 126::94251
    [Crossref] [Google Scholar]
  81. 81.
    Dunkerly-Eyring B, Kass DA. 2020.. Myocardial phosphodiesterases and their role in cGMP regulation. . J. Cardiovasc. Pharmacol. 75::48393
    [Crossref] [Google Scholar]
  82. 82.
    Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ. 1999.. Activation of distinct cAMP-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. . Circ. Res. 84::102031
    [Crossref] [Google Scholar]
  83. 83.
    Meier S, Andressen KW, Aronsen JM, Sjaastad I, Hougen K, et al. 2017.. PDE3 inhibition by C-type natriuretic peptide-induced cGMP enhances cAMP-mediated signaling in both non-failing and failing hearts. . Eur. J. Pharmacol. 812::17483
    [Crossref] [Google Scholar]
  84. 84.
    Szaroszyk M, Kattih B, Martin-Garrido A, Trogisch FA, Dittrich GM, et al. 2022.. Skeletal muscle derived Musclin protects the heart during pathological overload. . Nat. Commun. 13::149
    [Crossref] [Google Scholar]
  85. 85.
    Muller-Strahl G, Kottenberg K, Zimmer HG, Noack E, Kojda G. 2000.. Inhibition of nitric oxide synthase augments the positive inotropic effect of nitric oxide donors in the rat heart. . J. Physiol. 522:(Pt. 2):31120
    [Crossref] [Google Scholar]
  86. 86.
    Russwurm M, Koesling D. 2018.. Measurement of cGMP-generating and -degrading activities and cGMP levels in cells and tissues: focus on FRET-based cGMP indicators. . Nitric Oxide 77::4452
    [Crossref] [Google Scholar]
  87. 87.
    Menges L, Giesen J, Yilmaz K, Mergia E, Fuchtbauer A, et al. 2023.. It takes two to tango: cardiac fibroblast-derived NO-induced cGMP enters cardiac myocytes and increases cAMP by inhibiting PDE3. . Commun. Biol. 6::504
    [Crossref] [Google Scholar]
  88. 88.
    Atkins M, Wurmser M, Darmon M, Roche F, Nicol X, Metin C. 2023.. CXCL12 targets the primary cilium cAMP/cGMP ratio to regulate cell polarity during migration. . Nat. Commun. 14::8003
    [Crossref] [Google Scholar]
  89. 89.
    Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, et al. 1999.. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. . Nat. Med. 5::101017
    [Crossref] [Google Scholar]
  90. 90.
    Eltzschig HK, Bonney SK, Eckle T. 2013.. Attenuating myocardial ischemia by targeting A2B adenosine receptors. . Trends Mol. Med. 19::34554
    [Crossref] [Google Scholar]
  91. 91.
    Zhang Y, Chen S, Luo L, Greenly S, Shi H, et al. 2023.. Role of cAMP in cardiomyocyte viability: beneficial or detrimental?. Circ. Res. 133::90223
    [Crossref] [Google Scholar]
  92. 92.
    Xin M, Feng J, Hao Y, You J, Wang X, et al. 2020.. Cyclic adenosine monophosphate in acute ischemic stroke: some to update, more to explore. . J. Neurol. Sci. 413::116775
    [Crossref] [Google Scholar]
  93. 93.
    Zhang Y, Knight W, Chen S, Mohan A, Yan C. 2018.. A multi-protein complex with TRPC, PDE1C, and A2R plays a critical role in regulating cardiomyocyte cAMP and survival. . Circulation 138::19882002
    [Crossref] [Google Scholar]
  94. 94.
    Bastug-Özel Z, Wright PT, Kraft AE, Pavlovic D, Howie J, et al. 2019.. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain. . Cardiovasc. Res. 115::54655
    [Crossref] [Google Scholar]
  95. 95.
    Nikolaev V, Moshkov A, Lyon A, Miragoli M, Novak P, et al. 2010.. β2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. . Science 327::165357
    [Crossref] [Google Scholar]
  96. 96.
    Glynos C, Dupont LL, Vassilakopoulos T, Papapetropoulos A, Brouckaert P, et al. 2013.. The role of soluble guanylyl cyclase in chronic obstructive pulmonary disease. . Am. J. Respir. Crit. Care Med. 188::78999
    [Crossref] [Google Scholar]
  97. 97.
    Wang L, Feng Y, Yan D, Qin L, Grati M, et al. 2018.. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. . Hum. Genet. 137::43746
    [Crossref] [Google Scholar]
  98. 98.
    Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, et al. 2006.. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. . PNAS 103::1512429
    [Crossref] [Google Scholar]
  99. 99.
    Raker VK, Becker C, Steinbrink K. 2016.. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. . Front. Immunol. 7::123
    [Crossref] [Google Scholar]
  100. 100.
    Chen Y, Li Z, Li H, Su W, Xie Y, et al. 2020.. Apremilast regulates the Teff/Treg balance to ameliorate uveitis via PI3K/AKT/FoxO1 signaling pathway. . Front. Immunol. 11::581673
    [Crossref] [Google Scholar]
  101. 101.
    Agusti A, Celli BR, Criner GJ, Halpin D, Anzueto A, et al. 2023.. Global Initiative for Chronic Obstructive Lung Disease 2023 report: GOLD executive summary. . Arch. Bronconeumol. 59::23248
    [Crossref] [Google Scholar]
  102. 102.
    Bieber T. 2022.. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. . Nat. Rev. Drug Discov. 21::2140
    [Crossref] [Google Scholar]
  103. 103.
    Kitzen JM, Pergolizzi JV Jr., Taylor R Jr., Raffa RB. 2018.. Crisaborole and apremilast: PDE4 inhibitors with similar mechanism of action, different indications for management of inflammatory skin conditions. . Pharmacol. Pharmacy 9::35781
    [Crossref] [Google Scholar]
  104. 104.
    Woodby B, Sticozzi C, Pambianchi E, Villetti G, Civelli M, et al. 2020.. The PDE4 inhibitor CHF6001 affects keratinocyte proliferation via cellular redox pathways. . Arch. Biochem. Biophys. 685::108355
    [Crossref] [Google Scholar]
  105. 105.
    Arp J, Kirchhof MG, Baroja ML, Nazarian SH, Chau TA, et al. 2003.. Regulation of T-cell activation by phosphodiesterase 4B2 requires its dynamic redistribution during immunological synapse formation. . Mol. Cell. Biol. 23::804257
    [Crossref] [Google Scholar]
  106. 106.
    Patel BS, Prabhala P, Oliver BG, Ammit AJ. 2015.. Inhibitors of phosphodiesterase 4, but not phosphodiesterase 3, increase β2-agonist-induced expression of antiinflammatory mitogen-activated protein kinase phosphatase 1 in airway smooth muscle cells. . Am. J. Respir. Cell Mol. Biol. 52::63440
    [Crossref] [Google Scholar]
  107. 107.
    Goonathilake MR, Waqar S, George S, Jean-Baptiste W, Yusuf Ali A, et al. 2022.. Can phosphodiesterase 4 inhibitor therapy be used in respiratory diseases other than chronic obstructive pulmonary disease?. Cureus 14::e27132
    [Google Scholar]
  108. 108.
    Dong C, Virtucio C, Zemska O, Baltazar G, Zhou Y, et al. 2016.. Treatment of skin inflammation with benzoxaborole phosphodiesterase inhibitors: selectivity, cellular activity, and effect on cytokines associated with skin inflammation and skin architecture changes. . J. Pharmacol. Exp. Ther. 358::41322
    [Crossref] [Google Scholar]
  109. 109.
    Jin SL, Conti M. 2002.. Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-α responses. . PNAS 99::762833
    [Crossref] [Google Scholar]
  110. 110.
    Jin SL, Lan L, Zoudilova M, Conti M. 2005.. Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. . J. Immunol. 175::152331
    [Crossref] [Google Scholar]
  111. 111.
    Robichaud A, Stamatiou PB, Jin SL, Lachance N, MacDonald D, et al. 2002.. Deletion of phosphodiesterase 4D in mice shortens α2-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. . J. Clin. Investig. 110::104552
    [Crossref] [Google Scholar]
  112. 112.
    Hanifin JM, Ellis CN, Frieden IJ, Folster-Holst R, Stein Gold LF, et al. 2016.. OPA-15406, a novel, topical, nonsteroidal, selective phosphodiesterase-4 (PDE4) inhibitor, in the treatment of adult and adolescent patients with mild to moderate atopic dermatitis (AD): a phase-II randomized, double-blind, placebo-controlled study. . J. Am. Acad. Dermatol. 75::297305
    [Crossref] [Google Scholar]
  113. 113.
    Hiyama H, Arichika N, Okada M, Koyama N, Tahara T, Haruta J. 2023.. Pharmacological profile of difamilast, a novel selective phosphodiesterase 4 inhibitor, for topical treatment of atopic dermatitis. . J. Pharmacol. Exp. Ther. 386::4555
    [Crossref] [Google Scholar]
  114. 114.
    Kubota-Ishida N, Kaji C, Matsumoto S, Wakabayashi T, Matsuhira T, et al. 2024.. ME3183, a novel phosphodiesterase-4 inhibitor, exhibits potent anti-inflammatory effects and is well tolerated in a non-clinical study. . Eur. J. Pharmacol. 962::176202
    [Crossref] [Google Scholar]
  115. 115.
    Li L, Yee C, Beavo JA. 1999.. CD3- and CD28-dependent induction of PDE7 required for T cell activation. . Science 283::84851
    [Crossref] [Google Scholar]
  116. 116.
    Szczypka M. 2020.. Role of phosphodiesterase 7 (PDE7) in T cell activity. Effects of selective PDE7 inhibitors and dual PDE4/7 inhibitors on T cell functions. . Int. J. Mol. Sci. 21::6118
    [Crossref] [Google Scholar]
  117. 117.
    Yamamoto S, Sugahara S, Naito R, Ichikawa A, Ikeda K, et al. 2006.. The effects of a novel phosphodiesterase 7A and -4 dual inhibitor, YM-393059, on T-cell-related cytokine production in vitro and in vivo. . Eur. J. Pharmacol. 541::10614
    [Crossref] [Google Scholar]
  118. 118.
    Epstein PM, Basole C, Brocke S. 2021.. The role of PDE8 in T cell recruitment and function in inflammation. . Front. Cell Dev. Biol. 9::636778
    [Crossref] [Google Scholar]
  119. 119.
    Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. 2022.. An overview of PDE4 inhibitors in clinical trials: 2010 to early 2022. . Molecules 27::4964
    [Crossref] [Google Scholar]
  120. 120.
    Blokland A, Van Duinen MA, Sambeth A, Heckman PRA, Tsai M, et al. 2019.. Acute treatment with the PDE4 inhibitor roflumilast improves verbal word memory in healthy old individuals: a double-blind placebo-controlled study. . Neurobiol. Aging 77::3743
    [Crossref] [Google Scholar]
  121. 121.
    Burgin AB, Magnusson OT, Singh J, Witte P, Staker BL, et al. 2010.. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. . Nat. Biotechnol. 28::6370
    [Crossref] [Google Scholar]
  122. 122.
    Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Ethridge LE, et al. 2021.. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. . Nat. Med. 27::86270
    [Crossref] [Google Scholar]
  123. 123.
    Paes D, Schepers M, Willems E, Rombaut B, Tiane A, et al. 2023.. Ablation of specific long PDE4D isoforms increases neurite elongation and conveys protection against amyloid-β pathology. . Cell Mol. Life Sci. 80::178
    [Crossref] [Google Scholar]
  124. 124.
    Bolger GB. 2022.. The cAMP-signaling cancers: clinically-divergent disorders with a common central pathway. . Front. Endocrinol. 13::1024423
    [Crossref] [Google Scholar]
  125. 125.
    Hsien Lai S, Zervoudakis G, Chou J, Gurney ME, Quesnelle KM. 2020. PDE4 subtypes in cancer. . Oncogene 39::3791802
    [Crossref] [Google Scholar]
  126. 126.
    Jeong MH, Urquhart G, Lewis C, Chi Z, Jewell JL. 2023.. Inhibition of phosphodiesterase 4D suppresses mTORC1 signaling and pancreatic cancer growth. . JCI Insight 8::e158098
    [Crossref] [Google Scholar]
  127. 127.
    Ghofrani HA, Osterloh IH, Grimminger F. 2006.. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. . Nat. Rev. Drug Discov. 5::689702
    [Crossref] [Google Scholar]
  128. 128.
    Goldstein I, Tseng LJ, Creanga D, Stecher V, Kaminetsky JC. 2016.. Efficacy and safety of sildenafil by age in men with erectile dysfunction. . J. Sex. Med. 13::85259
    [Crossref] [Google Scholar]
  129. 129.
    Madeira CR, Tonin FS, Fachi MM, Borba HH, Ferreira VL, et al. 2021.. Efficacy and safety of oral phosphodiesterase 5 inhibitors for erectile dysfunction: a network meta-analysis and multicriteria decision analysis. . World J. Urol. 39::95362
    [Crossref] [Google Scholar]
  130. 130.
    Carson CC 3rd. 2005.. Cardiac safety in clinical trials of phosphodiesterase 5 inhibitors. . Am. J. Cardiol. 96::3741
    [Crossref] [Google Scholar]
  131. 131.
    Mandras SA, Mehta HS, Vaidya A. 2020.. Pulmonary hypertension: a brief guide for clinicians. . Mayo Clin. Proc. 95::197888
    [Crossref] [Google Scholar]
  132. 132.
    Samidurai A, Xi L, Das A, Kukreja RC. 2023.. Beyond erectile dysfunction: cGMP-specific phosphodiesterase 5 inhibitors for other clinical disorders. . Annu. Rev. Pharmacol. Toxicol. 63::585615
    [Crossref] [Google Scholar]
  133. 133.
    Baliga RS, Zhao L, Madhani M, Lopez-Torondel B, Visintin C, et al. 2008.. Synergy between natriuretic peptides and phosphodiesterase 5 inhibitors ameliorates pulmonary arterial hypertension. . Am. J. Respir. Crit. Care Med. 178::86169
    [Crossref] [Google Scholar]
  134. 134.
    Zhao L, Long L, Morrell NW, Wilkins MR. 1999.. NPR-A-deficient mice show increased susceptibility to hypoxia-induced pulmonary hypertension. . Circulation 99::6057
    [Crossref] [Google Scholar]
  135. 135.
    Nakamura T, Ranek MJ, Lee DI, Shalkey Hahn V, Kim C, et al. 2015.. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart. . J. Clin. Investig. 125::246872
    [Crossref] [Google Scholar]
  136. 136.
    Nakamura T, Zhu G, Ranek MJ, Kokkonen-Simon K, Zhang M, et al. 2018.. Prevention of PKG-1α oxidation suppresses antihypertrophic/antifibrotic effects from PDE5 inhibition but not sGC stimulation. . Circ. Heart Fail. 11::e004740
    [Crossref] [Google Scholar]
  137. 137.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, et al. 2005.. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. . Nat. Med. 11::21422
    [Crossref] [Google Scholar]
  138. 138.
    Zhang M, Takimoto E, Hsu S, Lee DI, Nagayama T, et al. 2010.. Myocardial remodeling is controlled by myocyte-targeted gene regulation of phosphodiesterase type 5. . J. Am. Coll. Cardiol. 56::202130
    [Crossref] [Google Scholar]
  139. 139.
    Oeing CU, Mishra S, Dunkerly-Eyring BL, Ranek MJ. 2020.. Targeting protein kinase G to treat cardiac proteotoxicity. . Front. Physiol. 11::858
    [Crossref] [Google Scholar]
  140. 140.
    Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. 2020.. Phosphorylation modifications regulating cardiac protein quality control mechanisms. . Front. Physiol. 11::593585
    [Crossref] [Google Scholar]
  141. 141.
    Takimoto E, Koitabashi N, Hsu S, Ketner EA, Zhang M, et al. 2009.. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. . J. Clin. Investig. 119::40820
    [Google Scholar]
  142. 142.
    Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M, et al. 2010.. Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation novel mechanism of cardiac stress modulation by PDE5 inhibition. . J. Mol. Cell. Cardiol. 48::71324
    [Crossref] [Google Scholar]
  143. 143.
    Seo K, Rainer PP, Lee DI, Hao S, Bedja D, et al. 2014.. Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. . Circ. Res. 114::82332
    [Crossref] [Google Scholar]
  144. 144.
    Oeing CU, Nakamura T, Pan S, Mishra S, Dunkerly-Eyring BL, et al. 2020.. PKG1α cysteine-42 redox state controls mTORC1 activation in pathological cardiac hypertrophy. . Circ. Res. 127::52233
    [Crossref] [Google Scholar]
  145. 145.
    Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, et al. 2001.. Cardiac phosphodiesterase 5 (cGMP-specific) modulates β-adrenergic signaling in vivo and is down-regulated in heart failure. . FASEB J. 15::171826
    [Crossref] [Google Scholar]
  146. 146.
    Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, et al. 2005.. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. . Circ. Res. 96::1009
    [Crossref] [Google Scholar]
  147. 147.
    Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA. 2005.. Sildenafil inhibits β-adrenergic-stimulated cardiac contractility in humans. . Circulation 112::264249
    [Crossref] [Google Scholar]
  148. 148.
    Lawless M, Caldwell JL, Radcliffe EJ, Smith CER, Madders GWP, et al. 2019.. Phosphodiesterase 5 inhibition improves contractile function and restores transverse tubule loss and catecholamine responsiveness in heart failure. . Sci. Rep. 9::6801
    [Crossref] [Google Scholar]
  149. 149.
    Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, et al. 2013.. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. . JAMA 309::126877
    [Crossref] [Google Scholar]
  150. 150.
    Leung DG, Herzka DA, Thompson WR, He B, Bibat G, et al. 2014.. Sildenafil does not improve cardiomyopathy in Duchenne/Becker muscular dystrophy. . Ann. Neurol. 76::54149
    [Crossref] [Google Scholar]
  151. 151.
    Kibel A, Lukinac AM, Dambic V, Juric I, Selthofer-Relatic K. 2020.. Oxidative stress in ischemic heart disease. . Oxid. Med. Cell Longev. 2020::6627144
    [Crossref] [Google Scholar]
  152. 152.
    Methawasin M, Strom J, Borkowski T, Hourani Z, Runyan R, et al. 2020.. Phosphodiesterase 9a inhibition in mouse models of diastolic dysfunction. . Circ. Heart Fail. 13::e006609
    [Crossref] [Google Scholar]
  153. 153.
    Rademaker MT, Scott NJA, Charles CJ, Richards AM. 2024.. Combined inhibition of phosphodiesterase-5 and -9 in experimental heart failure. . JACC Heart Fail. 12::10013
    [Crossref] [Google Scholar]
  154. 154.
    Scott NJA, Prickett TCR, Charles CJ, Frampton CM, Richards AM, Rademaker MT. 2023.. Augmentation of natriuretic peptide bioactivity via combined inhibition of neprilysin and phosphodiesterase-9 in heart failure. . JACC Heart Fail. 11::22739
    [Crossref] [Google Scholar]
  155. 155.
    Scott NJA, Rademaker MT, Charles CJ, Espiner EA, Richards AM. 2019.. Hemodynamic, hormonal, and renal actions of phosphodiesterase-9 inhibition in experimental heart failure. . J. Am. Coll. Cardiol. 74::889901
    [Crossref] [Google Scholar]
  156. 156.
    Wang PX, Li ZM, Cai SD, Li JY, He P, et al. 2017.. C33(S), a novel PDE9A inhibitor, protects against rat cardiac hypertrophy through upregulating cGMP signaling. . Acta Pharmacol. Sin. 38::125768
    [Crossref] [Google Scholar]
  157. 157.
    Beca S, Ahmad F, Shen W, Liu J, Makary S, et al. 2013.. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. . Circ. Res. 112::28997
    [Crossref] [Google Scholar]
  158. 158.
    Sharpe BP, Hayden A, Manousopoulou A, Cowie A, Walker RC, et al. 2022.. Phosphodiesterase type 5 inhibitors enhance chemotherapy in preclinical models of esophageal adenocarcinoma by targeting cancer-associated fibroblasts. . Cell Rep. Med. 3::100541
    [Crossref] [Google Scholar]
  159. 159.
    Mei XL, Yang Y, Zhang YJ, Li Y, Zhao JM, et al. 2015.. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. . Am. J. Cancer Res. 5::331124
    [Google Scholar]
  160. 160.
    Hou Y, Wren A, Mylarapu N, Browning K, Islam BN, et al. 2022.. Inhibition of colon cancer cell growth by phosphodiesterase inhibitors is independent of cGMP signaling. . J. Pharmacol. Exp. Ther. 381::4253
    [Crossref] [Google Scholar]
  161. 161.
    Cruz-Burgos M, Losada-Garcia A, Cruz-Hernandez CD, Cortes-Ramirez SA, Camacho-Arroyo I, et al. 2021.. New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. . Front. Oncol. 11::627229
    [Crossref] [Google Scholar]
  162. 162.
    Karami-Tehrani F, Moeinifard M, Aghaei M, Atri M. 2012.. Evaluation of PDE5 and PDE9 expression in benign and malignant breast tumors. . Arch. Med. Res. 43::47075
    [Crossref] [Google Scholar]
  163. 163.
    Grabner GF, Xie H, Schweiger M, Zechner R. 2021.. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. . Nat. Metab. 3::144565
    [Crossref] [Google Scholar]
  164. 164.
    Sun B, Li H, Shakur Y, Hensley J, Hockman S, et al. 2007.. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. . Cell. Signal. 19::176571
    [Crossref] [Google Scholar]
  165. 165.
    Lien LM, Lu WJ, Chen TY, Lee TY, Wang HH, et al. 2020.. Phospholipase D1 and D2 synergistically regulate thrombus formation. . Int. J. Mol. Sci. 21::6954
    [Crossref] [Google Scholar]
  166. 166.
    Roberts OL, Dart C. 2014.. cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP). . Biochem. Soc. Trans. 42::8997
    [Crossref] [Google Scholar]
  167. 167.
    Blauvelt A, Langley RG, Gordon KB, Silverberg JI, Eyerich K, et al. 2023.. Next generation PDE4 inhibitors that selectively target PDE4B/D subtypes: a narrative review. . Dermatol. Ther. 13::303142
    [Crossref] [Google Scholar]
  168. 168.
    Omarjee L, Le Pabic E, Custaud MA, Fontaine C, Locher C, et al. 2019.. Effects of sildenafil on maximum walking time in patients with arterial claudication: the ARTERIOFIL study. . Vascul. Pharmacol. 118–19::106563
    [Crossref] [Google Scholar]
  169. 169.
    Kherallah RY, Khawaja M, Olson M, Angiolillo D, Birnbaum Y. 2022.. Cilostazol: a review of basic mechanisms and clinical uses. . Cardiovasc. Drugs Ther. 36::77792
    [Crossref] [Google Scholar]
  170. 170.
    Zhe GL, Yu LH, Lee D-H, Kim MH, Serebruany V. 2023.. Adjunctive cilostazol in patients with high residual platelet reactivity after drug-eluting stent implantation: a randomized, open-label, single-center, prospective (ADJUST-HPR) study. . Am. J. Ther. 31::e22936
    [Google Scholar]
  171. 171.
    Schiera E, Terracina S, Pulcinella MF. 2024.. Cilostazol in patients with high residual platelet reactivity after drug-eluting stent implantation. . Am. J. Ther. 31::e32224
    [Crossref] [Google Scholar]
  172. 172.
    Johnson WB, Katugampola S, Able S, Napier C, Harding SE. 2012.. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig. . Life Sci. 90::32836
    [Crossref] [Google Scholar]
  173. 173.
    Vandeput F, Szabo-Fresnais N, Ahmad F, Kho C, Lee A, et al. 2013.. Selective regulation of cyclic nucleotide phosphodiesterase PDE3A isoforms. . PNAS 110::1977883
    [Crossref] [Google Scholar]
  174. 174.
    Cone J, Wang S, Tandon N, Fong M, Sun B, et al. 1999.. Comparison of the effects of cilostazol and milrinone on intracellular cAMP levels and cellular function in platelets and cardiac cells. . J. Cardiovasc. Pharmacol. 34::497504
    [Crossref] [Google Scholar]
  175. 175.
    Alousi A, Farah A, Lesher G, Opalka C. 1979.. Cardiotonic activity of amrinone–Win 40680 [5-amino-3,4′-bipyridine-6(1H)-one]. . Circ. Res. 45::66677
    [Crossref] [Google Scholar]
  176. 176.
    LeJemtel TH, Keung E, Sonnenblick EH, Ribner HS, Matsumoto M, et al. 1979.. Amrinone: a new non-glycosidic, non-adrenergic cardiotonic agent effective in the treatment of intractable myocardial failure in man. . Circulation 59::1098104
    [Crossref] [Google Scholar]
  177. 177.
    Baim DS, McDowell AV, Cherniles J, Monrad ES, Parker JA, et al. 1983.. Evaluation of a new bipyridine inotropic agent—milrinone—in patients with severe congestive heart failure. . N. Engl. J. Med. 309::74856
    [Crossref] [Google Scholar]
  178. 178.
    Simonton C, Chatterjee K, Cody R, Kubo S, Leonard D, et al. 1985.. Milrinone in congestive heart failure: acute and chronic hemodynamic and clinical evaluation. . J. Am. Coll. Cardiol. 6::45359
    [Crossref] [Google Scholar]
  179. 179.
    Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, et al. 1991.. Effect of oral milrinone on mortality in severe chronic heart failure. . N. Engl. J. Med. 325::146875
    [Crossref] [Google Scholar]
  180. 180.
    Kittleson M, Johnson L, Pion P. 1987.. The acute hemodynamic effects of milrinone in dogs with severe idiopathic myocardial failure. . J. Vet. Intern. Med. 1::12127
    [Crossref] [Google Scholar]
  181. 181.
    Davidenko J, Antzelevitch C. 1985.. The effects of milrinone on action potential characteristics, conduction, automaticity, and reflected reentry in isolated myocardial fibers. . J. Cardiovasc. Pharmacol. 7::34149
    [Crossref] [Google Scholar]
  182. 182.
    Metra M, Eichhorn E, Abraham WT, Linseman J, Bohm M, et al. 2009.. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. . Eur. Heart J. 30::301526
    [Crossref] [Google Scholar]
  183. 183.
    Skogestad J, Albert I, Hougen K, Lothe GB, Lunde M, et al. 2023.. Disruption of phosphodiesterase 3A binding to SERCA2 increases SERCA2 activity and reduces mortality in mice with chronic heart failure. . Circulation 147::122136
    [Crossref] [Google Scholar]
  184. 184.
    Blair CM, Baillie GS. 2019.. Reshaping cAMP nanodomains through targeted disruption of compartmentalised phosphodiesterase signalosomes. . Biochem. Soc. Trans. 47::140514
    [Crossref] [Google Scholar]
  185. 185.
    Snyder GL, Prickaerts J, Wadenberg ML, Zhang L, Zheng H, et al. 2016.. Preclinical profile of ITI-214, an inhibitor of phosphodiesterase 1, for enhancement of memory performance in rats. . Psychopharmacology 233::311324
    [Crossref] [Google Scholar]
  186. 186.
    Hashimoto T, Kim GE, Tunin RS, Adesiyun T, Hsu S, et al. 2018.. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition. . Circulation 138::197487
    [Crossref] [Google Scholar]
  187. 187.
    Gilotra NA, Devore A, Hays A, Hahn V, Agunbiade TA, et al. 2021.. Cardiac and hemodynamic effects of acute phosphodiesterase-1 inhibition in human heart failure. . Circ. Heart Fail. 26::94150
    [Google Scholar]
  188. 188.
    Ding B, Abe J, Wei H, Huang Q, Walsh R, et al. 2005.. Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. . Circulation 111::246976
    [Crossref] [Google Scholar]
  189. 189.
    Miller CL, Oikawa M, Cai Y, Wojtovich AP, Nagel DJ, et al. 2009.. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. . Circ. Res. 105::95664
    [Crossref] [Google Scholar]
  190. 190.
    Knight WE, Chen S, Zhang Y, Oikawa M, Wu M, et al. 2016.. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. . PNAS 113::E711625
    [Crossref] [Google Scholar]
  191. 191.
    Miller CL, Cai Y, Oikawa M, Thomas T, Dostmann WR, et al. 2011.. Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. . Basic Res. Cardiol. 106::102339
    [Crossref] [Google Scholar]
  192. 192.
    Chen S, Chen J, Du W, Mickelsen DM, Shi H, et al. 2023.. PDE10A inactivation prevents doxorubicin-induced cardiotoxicity and tumor growth. . Circ. Res. 133::13857
    [Crossref] [Google Scholar]
  193. 193.
    Menniti FS, Chappie TA, Schmidt CJ. 2020.. PDE10A inhibitors—clinical failure or window into antipsychotic drug action?. Front. Neurosci. 14::600178
    [Crossref] [Google Scholar]
  194. 194.
    Kesby JP, Eyles DW, McGrath JJ, Scott JG. 2018.. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. . Transl. Psychiatry 8::30
    [Crossref] [Google Scholar]
  195. 195.
    Pekcec A, Schulert N, Stierstorfer B, Deiana S, Dorner-Ciossek C, Rosenbrock H. 2018.. Targeting the dopamine D1 receptor or its downstream signalling by inhibiting phosphodiesterase-1 improves cognitive performance. . Br. J. Pharmacol. 175::302133
    [Crossref] [Google Scholar]
  196. 196.
    Nakamura K, Zheng Y, Mahajan KR, Cohen JA, Fox RJ, Ontaneda D. 2023.. Effect of ibudilast on thalamic magnetization transfer ratio and volume in progressive multiple sclerosis. . Mult. Scler. 29::125765
    [Crossref] [Google Scholar]
  197. 197.
    Babu S, Hightower BG, Chan J, Zurcher NR, Kivisakk P, et al. 2021.. Ibudilast (MN-166) in amyotrophic lateral sclerosis—an open label, safety and pharmacodynamic trial. . Neuroimage Clin. 30::102672
    [Crossref] [Google Scholar]
  198. 198.
    Matsuda K, Iwaki Y, Makhay M, Dojillo J, Yasui S. 2019.. Interaction (nonuniformity) of ALS progression and the efficacy of MN-166 (ibudilast). . Amyotroph. Lateral Scler. Frontotemporal Degener. 20::26288
    [Crossref] [Google Scholar]
  199. 199.
    Oskarsson B, Maragakis N, Bedlack RS, Goyal N, Meyer JA, et al. 2021.. MN-166 (ibudilast) in amyotrophic lateral sclerosis in a Phase IIb/III study: COMBAT-ALS study design. . Neurodegener. Dis. Manag. 11::43143
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031524-025239
Loading
/content/journals/10.1146/annurev-pharmtox-031524-025239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error