1932

Abstract

Whereas protein kinases have been successfully targeted for a variety of diseases, protein phosphatases remain an underutilized therapeutic target, in part because of incomplete characterization of their effects on signaling networks. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) is a relatively new player in the cell signaling field, and new roles in controlling the balance among cell survival, proliferation, and apoptosis are being increasingly identified. Originally characterized for its tumor-suppressive function in deactivating the prosurvival kinase Akt, PHLPP may have an opposing role in promoting survival, as recent evidence suggests. Additionally, identification of the transcription factor STAT1 as a substrate unveils a role for PHLPP as a critical mediator of transcriptional programs in cancer and the inflammatory response. This review summarizes the current knowledge of PHLPP as both a tumor suppressor and an oncogene and highlights emerging functions in regulating gene expression and the immune system. Understanding the context-dependent functions of PHLPP is essential for appropriate therapeutic intervention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031820-122108
2021-01-06
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-031820-122108.html?itemId=/content/journals/10.1146/annurev-pharmtox-031820-122108&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Chen MJ, Dixon JE, Manning G 2017. Genomics and evolution of protein phosphatases. Sci. Signal. 10:474eaag1796
    [Google Scholar]
  2. 2. 
    Gao T, Furnari F, Newton AC 2005. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18:13–24
    [Google Scholar]
  3. 3. 
    Matsumoto K, Uno I, Oshima Y, Ishikawa T 1982. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. PNAS 79:2355–59
    [Google Scholar]
  4. 4. 
    Shima F, Okada T, Kido M, Sen H, Tanaka Y et al. 2000. Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation. Mol. Cell. Biol. 20:26–33
    [Google Scholar]
  5. 5. 
    Shi Y. 2009. Serine/threonine phosphatases: mechanism through structure. Cell 139:468–84
    [Google Scholar]
  6. 6. 
    Cohen Katsenelson K, Stender JD, Kawashima AT, Lordén G, Uchiyama S et al. 2019. PHLPP1 counter-regulates STAT1-mediated inflammatory signaling. eLife 8:e48609
    [Google Scholar]
  7. 7. 
    Park WS, Heo WD, Whalen JH, O'Rourke NA, Bryan HM et al. 2008. Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol. Cell 30:381–92
    [Google Scholar]
  8. 8. 
    Lemmon MA. 2007. Pleckstrin homology (PH) domains and phosphoinositides. Biochem. Soc. Symp. 2007:81–93
    [Google Scholar]
  9. 9. 
    Gao T, Brognard J, Newton AC 2008. The phosphatase PHLPP controls the cellular levels of protein kinase C. J. Biol. Chem. 283:6300–11
    [Google Scholar]
  10. 10. 
    Shimizu K, Okada M, Takano A, Nagai K 1999. SCOP, a novel gene product expressed in a circadian manner in rat suprachiasmatic nucleus. FEBS Lett 458:363–69
    [Google Scholar]
  11. 11. 
    Shimizu K, Okada M, Nagai K, Fukada Y 2003. Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. J. Biol. Chem. 278:14920–25
    [Google Scholar]
  12. 12. 
    Kataoka T, Broek D, Wigler M 1985. DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43:493–505
    [Google Scholar]
  13. 13. 
    Suzuki N, Choe HR, Nishida Y, Yamawaki-Kataoka Y, Ohnishi S et al. 1990. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. PNAS 87:8711–15
    [Google Scholar]
  14. 14. 
    Field J, Xu HP, Michaeli T, Ballester R, Sass P et al. 1990. Mutations of the adenylyl cyclase gene that block RAS function in Saccharomyces cerevisiae. . Science 247:464–67
    [Google Scholar]
  15. 15. 
    Das AK, Helps NR, Cohen PT, Barford D 1996. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 Å resolution. EMBO J 15:6798–809
    [Google Scholar]
  16. 16. 
    Berndsen K, Lis P, Yeshaw WM, Wawro PS, Nirujogi RS et al. 2019. PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. eLife 8:e50416
    [Google Scholar]
  17. 17. 
    Fjeld CC, Denu JM. 1999. Kinetic analysis of human serine/threonine protein phosphatase 2Cα. J. Biol. Chem. 274:20336–43
    [Google Scholar]
  18. 18. 
    Cohen P, Cohen PT. 1989. Protein phosphatases come of age. J. Biol. Chem. 264:21435–38
    [Google Scholar]
  19. 19. 
    Sierecki E, Newton AC. 2014. Biochemical characterization of the phosphatase domain of the tumor suppressor PH domain leucine-rich repeat protein phosphatase. Biochemistry 53:3971–81
    [Google Scholar]
  20. 20. 
    Molina JR, Agarwal NK, Morales FC, Hayashi Y, Aldape KD et al. 2012. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 31:1264–74
    [Google Scholar]
  21. 21. 
    Newton AC. 2003. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370:361–71
    [Google Scholar]
  22. 22. 
    Newton AC. 2001. Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev. 101:2353–64
    [Google Scholar]
  23. 23. 
    Manning BD, Cantley LC. 2007. AKT/PKB signaling: navigating downstream. Cell 129:1261–74
    [Google Scholar]
  24. 24. 
    Huang L-C, Ross KE, Baffi TR, Drabkin H, Kochut KJ et al. 2018. Integrative annotation and knowledge discovery of kinase post-translational modifications and cancer-associated mutations through federated protein ontologies and resources. Sci. Rep. 8:6518
    [Google Scholar]
  25. 25. 
    Bayascas JR, Alessi DR. 2005. Regulation of Akt/PKB Ser473 phosphorylation. Mol. Cell 18:143–45
    [Google Scholar]
  26. 26. 
    Grzechnik AT, Newton AC. 2016. PHLPPing through history: a decade in the life of PHLPP phosphatases. Biochem. Soc. Trans. 44:1675–82
    [Google Scholar]
  27. 27. 
    Brognard J, Sierecki E, Gao T, Newton AC 2007. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell 25:917–31
    [Google Scholar]
  28. 28. 
    Brognard J, Niederst M, Reyes G, Warfel N, Newton AC 2009. Common polymorphism in the phosphatase PHLPP2 results in reduced regulation of Akt and protein kinase C. J. Biol. Chem. 284:15215–23
    [Google Scholar]
  29. 29. 
    Reyes G, Niederst M, Cohen-Katsenelson K, Stender JD, Kunkel MT et al. 2014. Pleckstrin homology domain leucine-rich repeat protein phosphatases set the amplitude of receptor tyrosine kinase output. PNAS 111:E3957–65
    [Google Scholar]
  30. 30. 
    Newton AC. 2018. Protein kinase C: perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 53:208–30
    [Google Scholar]
  31. 31. 
    Baffi TR, Van A-AN, Zhao W, Mills GB, Newton AC 2019. Protein kinase C quality control by phosphatase PHLPP1 unveils loss-of-function mechanism in cancer. Mol. Cell 74:378–92.e5
    [Google Scholar]
  32. 32. 
    Magnuson B, Ekim B, Fingar DC 2012. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 441:1–21
    [Google Scholar]
  33. 33. 
    Liu J, Stevens PD, Li X, Schmidt MD, Gao T 2011. PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth. Mol. Cell. Biol. 31:4917–27
    [Google Scholar]
  34. 34. 
    Qiao M, Wang Y, Xu X, Lu J, Dong Y et al. 2010. Mst1 is an interacting protein that mediates PHLPPs’ induced apoptosis. Mol. Cell 38:512–23
    [Google Scholar]
  35. 35. 
    Zeng Q, Hong W. 2008. The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13:188–92
    [Google Scholar]
  36. 36. 
    Cinar B, Fang PK, Lutchman M, Di Vizio D, Adam RM et al. 2007. The pro-apoptotic kinase Mst1 and its caspase cleavage products are direct inhibitors of Akt1. EMBO J 26:4523–34
    [Google Scholar]
  37. 37. 
    Jang S-W, Yang S-J, Srinivasan S, Ye K 2007. Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J. Biol. Chem. 282:30836–44
    [Google Scholar]
  38. 38. 
    Shimizu K, Phan T, Mansuy IM, Storm DR 2007. Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell 128:1219–29
    [Google Scholar]
  39. 39. 
    Mason JA, Davison-Versagli CA, Leliaert AK, Pape DJ, McCallister C et al. 2016. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ 23:1271–82
    [Google Scholar]
  40. 40. 
    Jackson TC, Verrier JD, Semple-Rowland S, Kumar A, Foster TC 2010. PHLPP1 splice variants differentially regulate AKT and PKCα signaling in hippocampal neurons: characterization of PHLPP proteins in the adult hippocampus. J. Neurochem. 115:941–55
    [Google Scholar]
  41. 41. 
    Li X, Stevens PD, Liu J, Yang H, Wang W et al. 2014. PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice. Gastroenterology 146:1301–12.e1-10
    [Google Scholar]
  42. 42. 
    Zhu J, Zhang J, Huang H, Li J, Yu Y et al. 2014. Crucial role of c-Jun phosphorylation at Ser63/73 mediated by PHLPP protein degradation in the cheliensisin A inhibition of cell transformation. Cancer Prev. Res. 7:1270–81
    [Google Scholar]
  43. 43. 
    Jameson NM, Ma J, Benitez J, Izurieta A, Han JY et al. 2019. Intron 1-mediated regulation of EGFR expression in EGFR-dependent malignancies is mediated by AP-1 and BET proteins. Mol. Cancer Res. 17:2208–20
    [Google Scholar]
  44. 44. 
    Whitmarsh AJ, Davis RJ. 2000. Regulation of transcription factor function by phosphorylation. Cell. Mol. Life Sci. 57:1172–83
    [Google Scholar]
  45. 45. 
    Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N et al. 2015. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163:712–23
    [Google Scholar]
  46. 46. 
    Arias E, Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM 2015. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 59:270–84
    [Google Scholar]
  47. 47. 
    Chatterjee A, Chatterjee U, Ghosh MK 2013. Activation of protein kinase CK2 attenuates FOXO3a functioning in a PML-dependent manner: implications in human prostate cancer. Cell Death Dis 4:e543
    [Google Scholar]
  48. 48. 
    Agarwal NK, Zhu X, Gagea M, White CL 3rd, Cote G, Georgescu M-M 2014. PHLPP2 suppresses the NF-κB pathway by inactivating IKKβ kinase. Oncotarget 5:815–23
    [Google Scholar]
  49. 49. 
    Behera S, Kapadia B, Kain V, Alamuru-Yellapragada NP, Murunikkara V et al. 2018. ERK1/2 activated PHLPP1 induces skeletal muscle ER stress through the inhibition of a novel substrate AMPK. Biochim. Biophys. Acta Mol. Basis Dis. 1864:1702–16
    [Google Scholar]
  50. 50. 
    Li L, Fridley B, Kalari K, Jenkins G, Batzler A et al. 2008. Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res 68:7050–58
    [Google Scholar]
  51. 51. 
    Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR et al. 2009. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16:259–66
    [Google Scholar]
  52. 52. 
    Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y et al. 2011. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19:575–86
    [Google Scholar]
  53. 53. 
    Shang Z, Yu J, Sun L, Tian J, Zhu S et al. 2019. LncRNA PCAT1 activates AKT and NF-κB signaling in castration-resistant prostate cancer by regulating the PHLPP/FKBP51/IKKα complex. Nucleic Acids Res 47:4211–25
    [Google Scholar]
  54. 54. 
    Boonying W, Joselin A, Huang E, Qu D, Safarpour F et al. 2019. Pink1 regulates FKBP5 interaction with AKT/PHLPP and protects neurons from neurotoxin stress induced by MPP+. J. Neurochem. 150:312–29
    [Google Scholar]
  55. 55. 
    Li X, Yang H, Liu J, Schmidt MD, Gao T 2011. Scribble-mediated membrane targeting of PHLPP1 is required for its negative regulation of Akt. EMBO Rep 12:818–24
    [Google Scholar]
  56. 56. 
    Takahashi Y, Morales FC, Kreimann EL, Georgescu M-M 2006. PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J 25:910–20
    [Google Scholar]
  57. 57. 
    Bradley EW, Carpio LR, Westendorf JJ 2013. Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J. Biol. Chem. 288:9572–82
    [Google Scholar]
  58. 58. 
    Huang Y-S, Chang C-C, Lee S-S, Jou Y-S, Shih H-M 2016. Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression. Oncotarget 7:43256–66
    [Google Scholar]
  59. 59. 
    Dong L, Jin L, Tseng HY, Wang CY, Wilmott JS et al. 2014. Oncogenic suppression of PHLPP1 in human melanoma. Oncogene 33:4756–66
    [Google Scholar]
  60. 60. 
    Alamuru-Yellapragada NP, Vundyala S, Behera S, Parsa KVL 2017. LPS depletes PHLPP levels in macrophages through the inhibition of SP1 dependent transcriptional regulation. Biochem. Biophys. Res. Commun. 486:533–38
    [Google Scholar]
  61. 61. 
    Bradley EW, Carpio LR, McGee-Lawrence ME, Castillejo Becerra C, Amanatullah DF et al. 2016. Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis. Osteoarthr. Cartil. 24:1021–28
    [Google Scholar]
  62. 62. 
    O'Hayre M, Niederst M, Fecteau JF, Nguyen VM, Kipps TJ et al. 2012. Mechanisms and consequences of the loss of PHLPP1 phosphatase in chronic lymphocytic leukemia (CLL). Leukemia 26:1689–92
    [Google Scholar]
  63. 63. 
    Qian Y, Yuan J, Hu H, Yang Q, Li J et al. 2015. The CUL4B/AKT/β-catenin axis restricts the accumulation of myeloid-derived suppressor cells to prohibit the establishment of a tumor-permissive microenvironment. Cancer Res 75:5070–83
    [Google Scholar]
  64. 64. 
    Russell M, Bradshaw-Rouse J, Markwardt D, Heideman W 1993. Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol. Biol. Cell 4:757–65
    [Google Scholar]
  65. 65. 
    Liu J, Stevens PD, Gao T 2011. mTOR-dependent regulation of PHLPP expression controls the rapamycin sensitivity in cancer cells. J. Biol. Chem. 286:6510–20
    [Google Scholar]
  66. 66. 
    Li X, Liu J, Gao T 2009. β-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt. Mol. Cell. Biol. 29:6192–205
    [Google Scholar]
  67. 67. 
    Gao G, Kun T, Sheng Y, Qian M, Kong F et al. 2013. SGT1 regulates Akt signaling by promoting β-TrCP-dependent PHLPP1 degradation in gastric cancer cells. Mol. Biol. Rep. 40:2947–53
    [Google Scholar]
  68. 68. 
    Warfel NA, Niederst M, Stevens MW, Brennan PM, Frame MC, Newton AC 2011. Mislocalization of the E3 ligase, beta-transducin repeat-containing protein 1 (β-TrCP1), in glioblastoma uncouples negative feedback between the pleckstrin homology domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and Akt. J. Biol. Chem. 286:19777–88
    [Google Scholar]
  69. 69. 
    Rao E, Jiang C, Ji M, Huang X, Iqbal J et al. 2012. The miRNA-17∼92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 26:1064–72
    [Google Scholar]
  70. 70. 
    Liao W-T, Li T-T, Wang Z-G, Wang S-Y, He M-R et al. 2013. microRNA-224 promotes cell proliferation and tumor growth in human colorectal cancer by repressing PHLPP1 and PHLPP2. Clin. Cancer Res. 19:4662–72
    [Google Scholar]
  71. 71. 
    Hart M, Nolte E, Wach S, Szczyrba J, Taubert H et al. 2014. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol. Cancer Res. 12:250–63
    [Google Scholar]
  72. 72. 
    Calin GA, Croce CM. 2006. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6:857–66
    [Google Scholar]
  73. 73. 
    Yan Y, Hanse EA, Stedman K, Benson JM, Lowman XH et al. 2016. Transcription factor C/EBP-β induces tumor-suppressor phosphatase PHLPP2 through repression of the miR-17–92 cluster in differentiating AML cells. Cell Death Differ 23:1232–42
    [Google Scholar]
  74. 74. 
    Zhiqiang Z, Qinghui Y, Yongqiang Z, Jian Z, Xin Z et al. 2012. USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells. J. Cancer Res. Clin. Oncol. 138:1231–38
    [Google Scholar]
  75. 75. 
    Li X, Stevens PD, Yang H, Gulhati P, Wang W et al. 2013. The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer. Oncogene 32:471–78
    [Google Scholar]
  76. 76. 
    Gangula NR, Maddika S. 2013. WD repeat protein WDR48 in complex with deubiquitinase USP12 suppresses Akt-dependent cell survival signaling by stabilizing PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1). J. Biol. Chem. 288:34545–54
    [Google Scholar]
  77. 77. 
    Zhang X, Lu X, Akhter S, Georgescu M-M, Legerski RJ 2016. FANCI is a negative regulator of Akt activation. Cell Cycle 15:1134–43
    [Google Scholar]
  78. 78. 
    Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E et al. 2012. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–70
    [Google Scholar]
  79. 79. 
    Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS et al. 2011. Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell 20:173–86
    [Google Scholar]
  80. 80. 
    O'Neill AK, Niederst MJ, Newton AC 2013. Suppression of survival signalling pathways by the phosphatase PHLPP. FEBS J 280:572–83
    [Google Scholar]
  81. 81. 
    Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN 2008. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 68:1012–21
    [Google Scholar]
  82. 82. 
    Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T 2009. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 28:994–1004
    [Google Scholar]
  83. 83. 
    Goel A, Arnold CN, Niedzwiecki D, Chang DK, Ricciardiello L et al. 2003. Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res 63:1608–14
    [Google Scholar]
  84. 84. 
    Jen J, Kim H, Piantadosi S, Liu ZF, Levitt RC et al. 1994. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N. Engl. J. Med. 331:213–21
    [Google Scholar]
  85. 85. 
    Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO 2006. Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 45:527–35
    [Google Scholar]
  86. 86. 
    Patael-Karasik Y, Daniely M, Gotlieb WH, Ben-Baruch G, Schiby J et al. 2000. Comparative genomic hybridization in inherited and sporadic ovarian tumors in Israel. Cancer Genet. Cytogenet. 121:26–32
    [Google Scholar]
  87. 87. 
    Tsuda H, Zhang WD, Shimosato Y, Yokota J, Terada M et al. 1990. Allele loss on chromosome 16 associated with progression of human hepatocellular carcinoma. PNAS 87:6791–94
    [Google Scholar]
  88. 88. 
    Safford SD, Goyeau D, Freemerman AJ, Bentley R, Everett ML et al. 2003. Fine mapping of Wilms’ tumors with 16q loss of heterozygosity localizes the putative tumor suppressor gene to a region of 6.7 megabases. Ann. Surg. Oncol. 10:136–43
    [Google Scholar]
  89. 89. 
    Tørring N, Borre M, Sørensen KD, Andersen CL, Wiuf C, Ørntoft TF 2007. Genome-wide analysis of allelic imbalance in prostate cancer using the Affymetrix 50K SNP mapping array. Br. J. Cancer 96:499–506
    [Google Scholar]
  90. 90. 
    Qiao M, Iglehart JD, Pardee AB 2007. Metastatic potential of 21T human breast cancer cells depends on Akt/protein kinase B activation. Cancer Res 67:5293–99
    [Google Scholar]
  91. 91. 
    Suljagic M, Laurenti L, Tarnani M, Alam M, Malek SN, Efremov DG 2010. Reduced expression of the tumor suppressor PHLPP1 enhances the antiapoptotic B-cell receptor signal in chronic lymphocytic leukemia B-cells. Leukemia 24:2063–71
    [Google Scholar]
  92. 92. 
    Stemke-Hale K, Shipman K, Kitsou-Mylona I, de Castro DG, Hird V et al. 2013. Frequency of mutations and polymorphisms in borderline ovarian tumors of known cancer genes. Mod. Pathol. 26:544–52
    [Google Scholar]
  93. 93. 
    Zhang D, Liu J, Mi X, Liang Y, Li J, Huang C 2014. The N-terminal region of p27 inhibits HIF-1α protein translation in ribosomal protein S6-dependent manner by regulating PHLPP-Ras-ERK-p90RSK axis. Cell Death Dis 5:e1535
    [Google Scholar]
  94. 94. 
    Hershko DD, Shapira M. 2006. Prognostic role of p27Kip1 deregulation in colorectal cancer. Cancer 107:668–75
    [Google Scholar]
  95. 95. 
    Crellin NK, Garcia RV, Levings MK 2007. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109:2014–22
    [Google Scholar]
  96. 96. 
    Patterson SJ, Han JM, Garcia R, Assi K, Gao T et al. 2011. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186:5533–37
    [Google Scholar]
  97. 97. 
    Chen HH, Händel N, Ngeow J, Muller J, Hühn M et al. 2016. Immune dysregulation in patients with PTEN hamartoma tumor syndrome: analysis of FOXP3 regulatory T cells. J. Allergy Clin. Immunol. 139:2607–20.e15
    [Google Scholar]
  98. 98. 
    Wen YA, Li X, Goretsky T, Weiss HL, Barrett TA, Gao T 2015. Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis. Biochim. Biophys. Acta Mol. Basis Dis. 1852:2013–23
    [Google Scholar]
  99. 99. 
    Ran T, Zhang Y, Diao N, Geng S, Chen K et al. 2019. Enhanced neutrophil immune homeostasis due to deletion of PHLPP. Front. Immunol. 10:2127
    [Google Scholar]
  100. 100. 
    Nowak DG, Cho H, Herzka T, Watrud K, DeMarco DV et al. 2015. MYC drives Pten/Trp53-deficient proliferation and metastasis due to IL6 secretion and AKT suppression via PHLPP2. Cancer Discov 5:636–51
    [Google Scholar]
  101. 101. 
    Antal CE, Hudson AM, Kang E, Zanca C, Wirth C et al. 2015. Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor. Cell 160:489–502
    [Google Scholar]
  102. 102. 
    Newton AC, Brognard J. 2017. Reversing the paradigm: protein kinase C as a tumor suppressor. Trends Pharmacol. Sci. 38:438–47
    [Google Scholar]
  103. 103. 
    Wang M-T, Holderfield M, Galeas J, Delrosario R, To Minh D et al. 2015. K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling. Cell 163:1237–51
    [Google Scholar]
  104. 104. 
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M 1988. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–54
    [Google Scholar]
  105. 105. 
    Waters AM, Der CJ. 2018. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 8:9a031435
    [Google Scholar]
  106. 106. 
    Nowak DG, Cohen Katsenelson K, Watrud KE, Chen M, Mathew G et al. 2019. The PHLPP2 phosphatase is a druggable driver of prostate cancer progression. J. Cell Biol. 218:1943–57
    [Google Scholar]
  107. 107. 
    Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA et al. 2005. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–11
    [Google Scholar]
  108. 108. 
    Ku SY, Rosario S, Wang Y, Mu P, Seshadri M et al. 2017. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355:78–83
    [Google Scholar]
  109. 109. 
    Lv D, Yang H, Wang W, Xie Y, Hu W et al. 2015. High PHLPP expression is associated with better prognosis in patients with resected lung adenocarcinoma. BMC Cancer 15:687
    [Google Scholar]
  110. 110. 
    Xie Y, Lv D, Wang W, Ye M, Chen X, Yang H 2017. High PHLPP1 expression levels predicts longer time of acquired resistance to EGFR tyrosine kinase inhibitors in patients with lung adenocarcinoma. Oncotarget 8:59000–7
    [Google Scholar]
  111. 111. 
    Wilson WR, Hay MP. 2011. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11:393–410
    [Google Scholar]
  112. 112. 
    Wen YA, Stevens PD, Gasser ML, Andrei R, Gao T 2013. Downregulation of PHLPP expression contributes to hypoxia-induced resistance to chemotherapy in colon cancer cells. Mol. Cell. Biol. 33:4594–605
    [Google Scholar]
  113. 113. 
    Yan R, Chuang H-C, Kapuriya N, Chou C-C, Lai P-T et al. 2015. Exploitation of the ability of γ-tocopherol to facilitate membrane co-localization of Akt and PHLPP1 to develop PHLPP1-targeted Akt inhibitors. J. Med. Chem. 58:2290–98
    [Google Scholar]
  114. 114. 
    Sierecki E, Sinko W, McCammon JA, Newton AC 2010. Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J. Med. Chem. 53:6899–911
    [Google Scholar]
  115. 115. 
    Min A, Deoudes E, Bond ML, Davis ES, Phanstiel DH 2019. CoralP: flexible visualization of the human phosphatome. J. Open Source Softw. 4:441837
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031820-122108
Loading
/content/journals/10.1146/annurev-pharmtox-031820-122108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error