1932

Abstract

During the past few years, crystallography of G protein–coupled receptors (GPCRs) has experienced exponential growth, resulting in the determination of the structures of 16 distinct receptors—9 of them in 2012 alone. Including closely related subtype homology models, this coverage amounts to approximately 12% of the human GPCR superfamily. The adrenergic, rhodopsin, and adenosine receptor systems are also described by agonist-bound active-state structures, including a structure of the receptor–G protein complex for the β-adrenergic receptor. Biochemical and biophysical techniques, such as nuclear magnetic resonance and hydrogen-deuterium exchange coupled with mass spectrometry, are providing complementary insights into ligand-dependent dynamic equilibrium between different functional states. Additional details revealed by high-resolution structures illustrate the receptors as allosteric machines that are controlled not only by ligands but also by ions, lipids, cholesterol, and water. This wealth of data is helping redefine our knowledge of how GPCRs recognize such a diverse array of ligands and how they transmit signals 30 angstroms across the cell membrane; it also is shedding light on a structural basis of GPCR allosteric modulation and biased signaling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-032112-135923
2013-01-06
2025-03-21
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/53/1/annurev-pharmtox-032112-135923.html?itemId=/content/journals/10.1146/annurev-pharmtox-032112-135923&mimeType=html&fmt=ahah

Literature Cited

  1. Lagerstrom MC. , Schioth HB. 1. . 2008.. Structural diversity of G protein-coupled receptors and significance for drug discovery. . Nat. Rev. Drug Discov. 7::33957 [Google Scholar]
  2. Fredriksson R. , Lagerstrom MC. , Lundin LG. , Schioth HB. 2. . 2003.. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. . Mol. Pharmacol. 63::125672 [Google Scholar]
  3. Overington JP. , Al-Lazikani B. , Hopkins AL. 3. . 2006.. How many drug targets are there?. Nat. Rev. Drug Discov. 5::99396 [Google Scholar]
  4. Tyndall JD. , Sandilya R. 4. . 2005.. GPCR agonists and antagonists in the clinic. . Med. Chem. 1::40521 [Google Scholar]
  5. Lappano R. , Maggiolini M. 5. . 2011.. G protein-coupled receptors: novel targets for drug discovery in cancer. . Nat. Rev. Drug Discov. 10::4760 [Google Scholar]
  6. Allen JA. , Roth BL. 6. . 2011.. Strategies to discover unexpected targets for drugs active at G protein–coupled receptors. . Annu. Rev. Pharmacol. Toxicol. 51::11744 [Google Scholar]
  7. Valant C. , Lane JR. , Sexton PM. , Christopoulos A. 7. . 2012.. The best of both worlds? Bitopic ortho-steric/allosteric ligands of G protein–coupled receptors. . Annu. Rev. Pharmacol. Toxicol. 52::15378 [Google Scholar]
  8. Reiter E. , Ahn S. , Shukla AK. , Lefkowitz RJ. 8. . 2012.. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. . Annu. Rev. Pharmacol. Toxicol. 52::17997 [Google Scholar]
  9. Palczewski K. , Kumasaka T. , Hori T. , Behnke CA. , Motoshima H. 9. , et al. 2000.. Crystal structure of rhodopsin: a G protein-coupled receptor. . Science 289::73945 [Google Scholar]
  10. Schwartz TW. , Frimurer TM. , Holst B. , Rosenkilde MM. , Elling CE. 10. . 2006.. Molecular mechanism of 7TM receptor activation—a global toggle switch model. . Annu. Rev. Pharmacol. Toxicol. 46::481519 [Google Scholar]
  11. Kobilka BK. 11. . 2007.. G protein coupled receptor structure and activation. . Biochim. Biophys. Acta 1768::794807 [Google Scholar]
  12. Rosenbaum DM. , Cherezov V. , Hanson MA. , Rasmussen SG. , Thian FS. 12. , et al. 2007.. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. . Science 318::126673 [Google Scholar]
  13. Warne T. , Serrano-Vega MJ. , Baker JG. , Moukhametzianov R. , Edwards PC. 13. , et al. 2008.. Structure of a β1-adrenergic G-protein-coupled receptor. . Nature 454::48691 [Google Scholar]
  14. Cherezov V. , Hanson MA. , Griffith MT. , Hilgart MC. , Sanishvili R. 13a. , et al. 2009.. Rastering strategy for screening and centering of microcrystal samples of human membrane proteins with a sub-10 micron size X-ray synchrotron beam. . J. R. Soc. Interface 6(Suppl. 5)::S58797 [Google Scholar]
  15. Caffrey M. , Cherezov V. 13b. . 2009.. Crystallizing membrane proteins using lipidic mesophases. . Nat. Protoc. 4::70631 [Google Scholar]
  16. Cherezov V. , Abola E. , Stevens RC. 13c. . 2010.. Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. . Methods Mol. Biol. 654::14168 [Google Scholar]
  17. Scheerer P. , Park JH. , Hildebrand PW. , Kim YJ. , Krauss N. 14. , et al. 2008.. Crystal structure of opsin in its G-protein-interacting conformation. . Nature 455::497502 [Google Scholar]
  18. Park JH. , Scheerer P. , Hofmann KP. , Choe HW. , Ernst OP. 15. . 2008.. Crystal structure of the ligand-free G-protein-coupled receptor opsin. . Nature 454::18387 [Google Scholar]
  19. Park PS. , Lodowski DT. , Palczewski K. 16. . 2008.. Activation of G protein–coupled receptors: beyond two-state models and tertiary conformational changes. . Annu. Rev. Pharmacol. Toxicol. 48::10741 [Google Scholar]
  20. Standfuss J. , Edwards PC. , D'Antona A. , Fransen M. , Xie G. 17. , et al. 2011.. The structural basis of agonist-induced activation in constitutively active rhodopsin. . Nature 471::65660 [Google Scholar]
  21. Choe HW. , Park JH. , Kim YJ. , Ernst OP. 18. . 2011.. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures. . Neuropharmacology 60::5257 [Google Scholar]
  22. Deupi X. , Edwards P. , Singhal A. , Nickle B. , Oprian D. 19. , et al. 2012.. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. . Proc. Natl. Acad. Sci. USA 109::11924 [Google Scholar]
  23. Xu F. , Wu H. , Katritch V. , Han GW. , Jacobson KA. 20. , et al. 2011.. Structure of an agonist-bound human A2A adenosine receptor. . Science 332::32227 [Google Scholar]
  24. Lebon G. , Warne T. , Edwards PC. , Bennett K. , Langmead CJ. 21. , et al. 2011.. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. . Nature 474::52125 [Google Scholar]
  25. Rasmussen SG. , DeVree BT. , Zou Y. , Kruse AC. , Chung KY. 22. , et al. 2011.. Crystal structure of the β2 adrenergic receptor–Gs protein complex. . Nature 477::54955 [Google Scholar]
  26. Rasmussen SG. , Choi HJ. , Fung JJ. , Pardon E. , Casarosa P. 23. , et al. 2011.. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. . Nature 469::17580 [Google Scholar]
  27. Reynolds K. , Abagyan R. , Katritch V. 24. . 2010.. Structure and modeling of GPCRs: implications for drug discovery. . In GPCR Molecular Pharmacology and Drug Targeting: Shifting Paradigms and New Directions, ed. A Gilchrist , pp. 385433. Hoboken, NJ:: Wiley [Google Scholar]
  28. Congreve M. , Langmead CJ. , Mason JS. , Marshall FH. 25. . 2011.. Progress in structure based drug design for G protein-coupled receptors. . J. Med. Chem. 54::4283311 [Google Scholar]
  29. Archbold JK. , Flanagan JU. , Watkins HA. , Gingell JJ. , Hay DL. 26. . 2011.. Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. . Trends Pharmacol. Sci. 32::591600 [Google Scholar]
  30. Kniazeff J. , Prezeau L. , Rondard P. , Pin JP. , Goudet C. 27. . 2011.. Dimers and beyond: the functional puzzles of class C GPCRs. . Pharmacol. Ther. 130::925 [Google Scholar]
  31. Cherezov V. , Rosenbaum DM. , Hanson MA. , Rasmussen SG. , Thian FS. 28. , et al. 2007.. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. . Science 318::125865 [Google Scholar]
  32. Shimamura T. , Shiroishi M. , Weyand S. , Tsujimoto H. , Winter G. 29. , et al. 2011.. Structure of the human histamine H1 receptor complex with doxepin. . Nature 475::6570 [Google Scholar]
  33. Chien EY. , Liu W. , Zhao Q. , Katritch V. , Han GW. 30. , et al. 2010.. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. . Science 330::109195 [Google Scholar]
  34. Haga K. , Kruse AC. , Asada H. , Yurugi-Kobayashi T. , Shiroishi M. 31. , et al. 2012.. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. . Nature 482::54751 [Google Scholar]
  35. Kruse AC. , Hu J. , Pan AC. , Arlow DH. , Rosenbaum DM. 32. , et al. 2012.. Structure and dynamics of the M3 muscarinic acetylcholine receptor. . Nature 482::55256 [Google Scholar]
  36. Hanson MA. , Roth CB. , Jo E. , Griffith MT. , Scott FL. 33. , et al. 2012.. Crystal structure of a lipid G protein-coupled receptor. . Science 335::85155 [Google Scholar]
  37. White JF. , Noinaj N. , Shibata Y. , Love J. , Kloss B. 33a. , et al. 2012.. Structure of the agonist-bound neurotensin receptor. . Nature 490::50813 [Google Scholar]
  38. Wu B. , Chien EY. , Mol CD. , Fenalti G. , Liu W. 34. , et al. 2010.. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. . Science 330::106671 [Google Scholar]
  39. Wu H. , Wacker D. , Mileni M. , Katritch V. , Han GW. 35. , et al. 2012.. Structure of the human κ-opioid receptor in complex with JDTic. . Nature 485::32732 [Google Scholar]
  40. Manglik A. , Kruse AC. , Kobilka TS. , Thian FS. , Mathiesen JM. 36. , et al. 2012.. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. . Nature 485::32126 [Google Scholar]
  41. Granier S. , Manglik A. , Kruse AC. , Kobilka TS. , Thian FS. 37. , et al. 2012.. Structure of the δ-opioid receptor bound to naltrindole. . Nature 485::4004 [Google Scholar]
  42. Thompson AA. , Liu W. , Chun E. , Katritch V. , Wu H. 38. , et al. 2012.. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. . Nature 485::39599 [Google Scholar]
  43. Nakamichi H. , Okada T. 39. . 2006.. Local peptide movement in the photoreaction intermediate of rhodopsin. . Proc. Natl. Acad. Sci. USA 103::1272934 [Google Scholar]
  44. Okada T. , Sugihara M. , Bondar AN. , Elstner M. , Entel P. , Buss V. 40. . 2004.. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. . J. Mol. Biol. 342::57183 [Google Scholar]
  45. Hanson MA. , Cherezov V. , Griffith MT. , Roth CB. , Jaakola VP. 41. , et al. 2008.. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. . Structure 16::897905 [Google Scholar]
  46. Wacker D. , Fenalti G. , Brown MA. , Katritch V. , Abagyan R. 42. , et al. 2010.. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. . J. Am. Chem. Soc. 132::1144345 [Google Scholar]
  47. Moukhametzianov R. , Warne T. , Edwards PC. , Serrano-Vega MJ. , Leslie AG. 43. , et al. 2011.. Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor. . Proc. Natl. Acad. Sci. USA 108::822832 [Google Scholar]
  48. Warne T. , Moukhametzianov R. , Baker JG. , Nehme R. , Edwards PC. 44. , et al. 2011.. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. . Nature 469::24144 [Google Scholar]
  49. Warne T. , Edwards PC. , Leslie AG. , Tate CG. 45. . 2012.. Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. . Structure 20::84149 [Google Scholar]
  50. Dore AS. , Robertson N. , Errey JC. , Ng I. , Hollenstein K. 46. , et al. 2011.. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. . Structure 19::128393 [Google Scholar]
  51. Jaakola VP. , Griffith MT. , Hanson MA. , Cherezov V. , Chien EY. 47. , et al. 2008.. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. . Science 322::121117 [Google Scholar]
  52. Kolb P. , Rosenbaum DM. , Irwin JJ. , Fung JJ. , Kobilka BK. , Shoichet BK. 48. . 2009.. Structure-based discovery of β2-adrenergic receptor ligands. . Proc. Natl. Acad. Sci. USA 106::684348 [Google Scholar]
  53. Katritch V. , Jaakola VP. , Lane JR. , Lin J. , Ijzerman AP. 49. , et al. 2010.. Structure-based discovery of novel chemotypes for adenosine A2A receptor antagonists. . J. Med. Chem. 53::1799809 [Google Scholar]
  54. Carlsson J. , Yoo L. , Gao ZG. , Irwin JJ. , Shoichet BK. , Jacobson KA. 50. . 2010.. Structure-based discovery of A2A adenosine receptor ligands. . J. Med. Chem. 53::374855 [Google Scholar]
  55. de Graaf C. , Kooistra AJ. , Vischer HF. , Katritch V. , Kuijer M. 51. , et al. 2011.. Crystal structure-based virtual screening for fragment-like ligands of the human histamine H1 receptor. . J. Med. Chem. 54::8195206 [Google Scholar]
  56. Carlsson J. , Coleman RG. , Setola V. , Irwin JJ. , Fan H. 52. , et al. 2011.. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. . Nat. Chem. Biol. 7::76978 [Google Scholar]
  57. Mysinger MM. , Weiss DR. , Ziarek JJ. , Gravel S. , Doak AK. 53. , et al. 2012.. Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. . Proc. Natl. Acad. Sci. USA 109::551722 [Google Scholar]
  58. Tosh DK. , Phan K. , Gao ZG. , Gakh AA. , Xu F. 54. , et al. 2012.. Optimization of adenosine 5′-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment-based searching. . J. Med. Chem. 55::4297308 [Google Scholar]
  59. Fredriksson R. , Schioth HB. 55. . 2005.. The repertoire of G-protein-coupled receptors in fully sequenced genomes. . Mol. Pharmacol. 67::141425 [Google Scholar]
  60. Katritch V. , Cherezov V. , Stevens RC. 56. . 2012.. Diversity and modularity of G protein-coupled receptor structures. . Trends Pharmacol. Sci. 33::1727 [Google Scholar]
  61. Kufareva I. , Rueda M. , Katritch V. , Stevens RC. , Abagyan R. 57. . 2011.. Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. . Structure 19::110826 [Google Scholar]
  62. Katritch V. , Kufareva I. , Abagyan R. 58. . 2011.. Structure based prediction of subtype-selectivity for adenosine receptor antagonists. . Neuropharmacology 60::10815 [Google Scholar]
  63. Wheatley M. , Wootten D. , Conner M. , Simms J. , Kendrick R. 59. , et al. 2011.. Lifting the lid on G-protein-coupled receptors: the role of extracellular loops. . Br. J. Pharmacol. 165::1688703 [Google Scholar]
  64. Ballesteros JA. , Weinstein H. 60. . 1995.. Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. . Methods Neurosci. 25::366428 [Google Scholar]
  65. Strotmann R. , Schrock K. , Boselt I. , Staubert C. , Russ A. , Schoneberg T. 61. . 2011.. Evolution of GPCR: change and continuity. . Mol. Cell. Endocrinol. 331::17078 [Google Scholar]
  66. Seifert R. , Wenzel-Seifert K. 62. . 2002.. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. . Naunyn-Schmiedeberg's Arch. Pharmacol. 366::381416 [Google Scholar]
  67. Kobilka BK. , Deupi X. 63. . 2007.. Conformational complexity of G-protein-coupled receptors. . Trends Pharmacol. Sci. 28::397406 [Google Scholar]
  68. Nygaard R. , Frimurer TM. , Holst B. , Rosenkilde MM. , Schwartz TW. 64. . 2009.. Ligand binding and micro-switches in 7TM receptor structures. . Trends Pharmacol. Sci. 30::24959 [Google Scholar]
  69. Liu JJ. , Horst R. , Katritch V. , Stevens RC. , Wuthrich K. 65. . 2012.. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. . Science 335::110610 [Google Scholar]
  70. Vogel R. , Mahalingam M. , Ludeke S. , Huber T. , Siebert F. , Sakmar TP. 66. . 2008.. Functional role of the “ionic lock”—an interhelical hydrogen-bond network in family A heptahelical receptors. . J. Mol. Biol. 380::64855 [Google Scholar]
  71. Vanni S. , Neri M. , Tavernelli I. , Rothlisberger U. 67. . 2009.. Observation of “ionic lock” formation in molecular dynamics simulations of wild-type β1 and β2 adrenergic receptors. . Biochemistry 48::478997 [Google Scholar]
  72. Warne T. , Serrano-Vega MJ. , Tate CG. , Schertler GF. 68. . 2009.. Development and crystallization of a minimal thermostabilised G protein-coupled receptor. . Protein Expr. Purif. 65::20413 [Google Scholar]
  73. Li B. , Nowak NM. , Kim SK. , Jacobson KA. , Bagheri A. 69. , et al. 2005.. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor. . J. Biol. Chem. 280::566475 [Google Scholar]
  74. Biebermann H. , Schöneberg T. , Schulz A. , Krause G. , Grüters A. 70. , et al. 1998.. A conserved tyrosine residue (Y601) in transmembrane domain 5 of the human thyrotropin receptor serves as a molecular switch to determine G-protein coupling. . FASEB J 12::146171 [Google Scholar]
  75. Gao ZG. , Jacobson KA. 71. . 2006.. Keynote review: allosterism in membrane receptors. . Drug Discov. Today 11::191202 [Google Scholar]
  76. Kenakin T. , Miller LJ. 72. . 2010.. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. . Pharmacol. Rev. 62::265304 [Google Scholar]
  77. Keov P. , Sexton PM. , Christopoulos A. 73. . 2011.. Allosteric modulation of G protein-coupled receptors: a pharmacological perspective. . Neuropharmacology 60::2435 [Google Scholar]
  78. Whalen EJ. , Rajagopal S. , Lefkowitz RJ. 74. . 2011.. Therapeutic potential of β-arrestin- and G protein-biased agonists. . Trends Mol. Med. 17::12639 [Google Scholar]
  79. Thompson MD. , Cole DE. , Jose PA. 74a. . 2008.. Pharmacogenomics of G protein-coupled receptor signaling: insights from health and disease. . Methods Mol. Biol. 448::77107 [Google Scholar]
  80. Ritter SL. , Hall RA. 74b. . 2009.. Fine-tuning of GPCR activity by receptor-interacting proteins. . Nat. Rev. Mol. Cell Biol. 10::81930 [Google Scholar]
  81. Chini B. , Parenti M. 74c. . 2009.. G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats. . J. Mol. Endocrinol. 42::37179 [Google Scholar]
  82. Shi L. , Liapakis G. , Xu R. , Guarnieri F. , Ballesteros JA. , Javitch JA. 75. . 2002.. β2 adrenergic receptor activation: modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. . J. Biol. Chem. 277::4098996 [Google Scholar]
  83. Katritch V. , Reynolds KA. , Cherezov V. , Hanson MA. , Roth CB. 76. , et al. 2009.. Analysis of full and partial agonists binding to β2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. . J. Mol. Recognit. 22::30718 [Google Scholar]
  84. Vilar S. , Karpiak J. , Berk B. , Costanzi S. 77. . 2011.. In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor. . J. Mol. Graph. Model. 29::80917 [Google Scholar]
  85. Escribá PV. , Wedegaertner PB. , Goñi FM. , Vögler O. 78. . 2007.. Lipid-protein interactions in GPCR-associated signaling. . Biochim. Biophys. Acta 1768::83652 [Google Scholar]
  86. Liu W. , Chun E. , Thompson A. , Chubukov P. , Xu F. 79. , et al. 2012.. Structural basis for allosteric regulation of GPCRs by sodium ions. . Science 337::23236 [Google Scholar]
  87. Pert CB. , Pasternak G. , Snyder SH. 80. . 1973.. Opiate agonists and antagonists discriminated by receptor binding in brain. . Science 182::135961 [Google Scholar]
  88. Jiang Q. , Lee BX. , Glashofer M. , van Rhee AM. , Jacobson KA. 81. . 1997.. Mutagenesis reveals structure-activity parallels between human A2A adenosine receptors and biogenic amine G protein-coupled receptors. . J. Med. Chem. 40::258895 [Google Scholar]
  89. Parker MS. , Wong YY. , Parker SL. 82. . 2008.. An ion-responsive motif in the second transmembrane segment of rhodopsin-like receptors. . Amino Acids 35::115 [Google Scholar]
  90. Selent J. , Sanz F. , Pastor M. , De Fabritiis G. 83. . 2010.. Induced effects of sodium ions on dopaminergic G-protein coupled receptors. . PLoS Comput. Biol. 6:: e1000884 [Google Scholar]
  91. Milligan G. 84. . 2009.. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. . Br. J. Pharmacol. 158::514 [Google Scholar]
  92. Maurice P. , Kamal M. , Jockers R. 85. . 2011.. Asymmetry of GPCR oligomers supports their functional relevance. . Trends Pharmacol. Sci. 32::51420 [Google Scholar]
  93. Kaczor AA. , Selent J. 86. . 2011.. Oligomerization of G protein-coupled receptors: biochemical and biophysical methods. . Curr. Med. Chem. 18::460634 [Google Scholar]
  94. Selent J. , Kaczor AA. 87. . 2011.. Oligomerization of G protein-coupled receptors: computational methods. . Curr. Med. Chem. 18::4588605 [Google Scholar]
  95. Khelashvili G. , Dorff K. , Shan J. , Camacho-Artacho M. , Skrabanek L. 88. , et al. 2010.. GPCR-OKB: the G protein coupled receptor oligomer knowledge base. . Bioinformatics 26::18045 [Google Scholar]
  96. Salom D. , Lodowski DT. , Stenkamp RE. , Le Trong I. , Golczak M. 89. , et al. 2006.. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. . Proc. Natl. Acad. Sci. USA 103::1612328 [Google Scholar]
  97. Taylor MS. , Fung HK. , Rajgaria R. , Filizola M. , Weinstein H. , Floudas CA. 90. . 2008.. Mutations affecting the oligomerization interface of G-protein-coupled receptors revealed by a novel de novo protein design framework. . Biophys. J. 94::247081 [Google Scholar]
  98. Suda K. , Filipek S. , Palczewski K. , Engel A. , Fotiadis D. 91. . 2004.. The supramolecular structure of the GPCR rhodopsin in solution and native disc membranes. . Mol. Membr. Biol. 21::43546 [Google Scholar]
  99. Mancia F. , Assur Z. , Herman AG. , Siegel R. , Hendrickson WA. 92. . 2008.. Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. . EMBO Rep. 9::36369 [Google Scholar]
  100. Guo W. , Urizar E. , Kralikova M. , Mobarec JC. , Shi L. 93. , et al. 2008.. Dopamine D2 receptors form higher order oligomers at physiological expression levels. . EMBO J. 27::2293304 [Google Scholar]
  101. Guo W. , Shi L. , Filizola M. , Weinstein H. , Javitch JA. 94. . 2005.. Crosstalk in G protein-coupled receptors: Changes at the transmembrane homodimer interface determine activation. . Proc. Natl. Acad. Sci. USA 102::17495500 [Google Scholar]
  102. Lopez-Gimenez JF. , Canals M. , Pediani JD. , Milligan G. 95. . 2007.. The α1b-adrenoceptor exists as a higher-order oligomer: Effective oligomerization is required for receptor maturation, surface delivery, and function. . Mol. Pharmacol. 71::101529 [Google Scholar]
  103. Milligan G. , Pediani JD. , Canals M. , Lopez-Gimenez JF. 96. . 2006.. Oligomeric structure of the α1b-adrenoceptor: comparisons with rhodopsin. . Vision Res. 46::443441 [Google Scholar]
  104. Klco JM. , Lassere TB. , Baranski TJ. 97. . 2003.. C5a receptor oligomerization: I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor. . J. Biol. Chem. 278::3534553 [Google Scholar]
  105. Hernanz-Falcon P. , Rodriguez-Frade JM. , Serrano A. , Juan D. , del Sol A. 98. , et al. 2004.. Identification of amino acid residues crucial for chemokine receptor dimerization. . Nat. Immunol. 5::21623 [Google Scholar]
  106. Fotiadis D. , Liang Y. , Filipek S. , Saperstein DA. , Engel A. , Palczewski K. 99. . 2004.. The G protein-coupled receptor rhodopsin in the native membrane. . FEBS Lett. 564::28188 [Google Scholar]
  107. Yao XJ. , Velez Ruiz G. , Whorton MR. , Rasmussen SG. , DeVree BT. 100. , et al. 2009.. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. . Proc. Natl. Acad. Sci. USA 106::95016 [Google Scholar]
  108. Deupi X. , Kobilka BK. 101. . 2010.. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. . Physiology 25::293303 [Google Scholar]
  109. Goblyos A. , Ijzerman AP. 102. . 2011.. Allosteric modulation of adenosine receptors. . Biochim. Biophys. Acta 1808::130918 [Google Scholar]
  110. Gether U. , Lin S. , Kobilka BK. 103. . 1995.. Fluorescent labeling of purified β2 adrenergic receptor: evidence for ligand-specific conformational changes. . J. Biol. Chem. 270::2826875 [Google Scholar]
  111. Ghanouni P. , Gryczynski Z. , Steenhuis JJ. , Lee TW. , Farrens DL. 104. , et al. 2001.. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2 adrenergic receptor. . J. Biol. Chem. 276::2443336 [Google Scholar]
  112. Altenbach C. , Kusnetzow AK. , Ernst OP. , Hofmann KP. , Hubbell WL. 105. . 2008.. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. . Proc. Natl. Acad. Sci. USA 105::743944 [Google Scholar]
  113. Lodowski DT. , Palczewski K. , Miyagi M. 106. . 2010.. Conformational changes in the G protein-coupled receptor rhodopsin revealed by histidine hydrogen-deuterium exchange. . Biochemistry 49::942527 [Google Scholar]
  114. West GM. , Chien EY. , Katritch V. , Gatchalian J. , Chalmers MJ. 107. , et al. 2011.. Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. . Structure 19::142432 [Google Scholar]
  115. Chung KY. , Rasmussen SG. , Liu T. , Li S. , DeVree BT. 108. , et al. 2011.. Conformational changes in the G protein Gs induced by the β2adrenergic receptor. . Nature 477::61115 [Google Scholar]
  116. Bokoch MP. , Zou Y. , Rasmussen SG. , Liu CW. , Nygaard R. 109. , et al. 2010.. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. . Nature 463::10812 [Google Scholar]
  117. Kim TY. , Uji-i H. , Moller M. , Muls B. , Hofkens J. , Alexiev U. 110. . 2009.. Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation. . Biochemistry 48::38013 [Google Scholar]
  118. Bockenhauer S. , Furstenberg A. , Yao XJ. , Kobilka B. , Moerner WE. 111. . 2011.. Conformational dynamics of single G protein-coupled receptors in solution. . J. Phys. Chem. B 115::1332838 [Google Scholar]
  119. Rahmeh R. , Damian M. , Cottet M. , Orcel H. , Mendre C. 112. , et al. 2012.. Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. . Proc. Natl. Acad. Sci. USA 109::673338 [Google Scholar]
  120. Nobles KN. , Xiao K. , Ahn S. , Shukla AK. , Lam CM. 113. , et al. 2011.. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. . Sci. Signal. 4::ra51 [Google Scholar]
  121. Rosenbaum DM. , Zhang C. , Lyons JA. , Holl R. , Aragao D. 114. , et al. 2011.. Structure and function of an irreversible agonist-β2 adrenoceptor complex. . Nature 469::23640 [Google Scholar]
  122. Dror RO. , Pan AC. , Arlow DH. , Borhani DW. , Maragakis P. 115. , et al. 2011.. Pathway and mechanism of drug binding to G-protein-coupled receptors. . Proc. Natl. Acad. Sci. USA 108::1311823 [Google Scholar]
  123. Hino T. , Arakawa T. , Iwanari H. , Yurugi-Kobayashi T. , Ikeda-Suno C. 116. , et al. 2012.. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. . Nature 482::23740 [Google Scholar]
  124. Congreve M. , Andrews SP. , Dore AS. , Hollenstein K. , Hurrell E. 117. , et al. 2012.. Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. . J. Med. Chem. 55::1898903 [Google Scholar]
  125. Rasmussen SG. , Choi HJ. , Rosenbaum DM. , Kobilka TS. , Thian FS. 118. , et al. 2007.. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. . Nature 450::38387 [Google Scholar]
  126. Li J. , Edwards PC. , Burghammer M. , Villa C. , Schertler GF. 119. . 2004.. Structure of bovine rhodopsin in a trigonal crystal form. . J. Mol. Biol. 343::140938 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-032112-135923
Loading
/content/journals/10.1146/annurev-pharmtox-032112-135923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error