1932

Abstract

Inflammation and its timely resolution are critical to ensure effective host defense and appropriate tissue repair after injury and or infection. Chronic, unresolved inflammation typifies many prevalent pathologies. The key mediators that initiate and drive the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. More recently, there is a growing appreciation that specific mediators, including arachidonate-derived lipoxins, are generated in self-limiting inflammatory responses to promote the resolution of inflammation and endogenous repair mechanisms without compromising host defense. We discuss the proresolving biological actions of lipoxins and recent efforts to harness their therapeutic potential through the development of novel, potent lipoxin mimetics generated via efficient, modular stereoselective synthetic pathways. We consider the evidence that lipoxin mimetics may have applications in limiting inflammation and reversing fibrosis and the underlying mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-085407
2023-01-20
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-085407.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-085407&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454:428–35
    [Google Scholar]
  2. 2.
    Schett G, Neurath MF. 2018. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun. 9:3261
    [Google Scholar]
  3. 3.
    Pichler R, Afkarian M, Dieter BP, Tuttle KR. 2017. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 312:4F716–31
    [Google Scholar]
  4. 4.
    Brennan EP, Mohan M, Andrews D, Bose M, Kantharidis P. 2019. Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clin. Sci. 133:212121–41
    [Google Scholar]
  5. 5.
    Kasikara C, Doran AC, Cai B, Tabas I. 2018. The role of non-resolving inflammation in atherosclerosis. J. Clin. Investig. 128:2713–23
    [Google Scholar]
  6. 6.
    Soehnlein O, Libby P. 2021. Targeting inflammation in atherosclerosis—from experimental insights to the clinic. Nat. Rev. Drug Disc. 20:589–610
    [Google Scholar]
  7. 7.
    Perretti M, Cooper D, Dalli J, Norling LV. 2017. Immune resolution mechanisms in inflammatory arthritis. Nat. Rev. Rheumatol. 13:87–99
    [Google Scholar]
  8. 8.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F et al. 2015. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14:388–405
    [Google Scholar]
  9. 9.
    Rohm TV, Meier DT, Olefsky JM, Donath MY. 2022. Inflammation in obesity, diabetes, and related disorders. Immunity 55:131–55
    [Google Scholar]
  10. 10.
    Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell 140:883–99
    [Google Scholar]
  11. 11.
    Fullerton JN, Gilroy DW. 2016. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15:551–67
    [Google Scholar]
  12. 12.
    Serhan CN. 2014. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:750392–101
    [Google Scholar]
  13. 13.
    Ryan A, Godson C. 2010. Lipoxins: regulators of resolution. Curr. Opin. Pharmacol. 10:2166–72
    [Google Scholar]
  14. 14.
    Serhan CN, Hamberg M, Samuelsson B. 1984. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem. Biophys. Res. Commun. 118:943–49
    [Google Scholar]
  15. 15.
    Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. 2000. Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164:1663–67
    [Google Scholar]
  16. 16.
    Mitchell S, Thomas G, Harvey K, Cottell D, Reville K et al. 2002. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J. Am. Soc. Nephrol. 13:2497–507
    [Google Scholar]
  17. 17.
    Basil MC, Levy BD. 2016. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 16:51–67
    [Google Scholar]
  18. 18.
    Serhan CN. 2017. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Asp. Med. 58:1–11
    [Google Scholar]
  19. 19.
    Motwani MP, Colas RA, George MJ, Flint JD, Dalli J et al. 2018. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI Insight 3:6e94463
    [Google Scholar]
  20. 20.
    Sala A, Folco G, Murphy RC. 2010. Transcellular biosynthesis of eicosanoids. Pharmacol. Rep. 62:503–10
    [Google Scholar]
  21. 21.
    Claria J, Serhan CN. 1995. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. PNAS 92:9475–79
    [Google Scholar]
  22. 22.
    Levy BD. 2006. Myocardial 15-epi-lipoxin A4 generation provides a new mechanism for the immunomodulatory effects of statins and thiazolidinediones. Circulation 114:873–75
    [Google Scholar]
  23. 23.
    Jozsef L, Zouki C, Petasis NA, Serhan CN, Filep JG. 2002. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-κB and AP-1 activation, and IL-8 gene expression in human leukocytes. PNAS 99:13266–71
    [Google Scholar]
  24. 24.
    El Kebir D, József L, Pan W, Wang L, Petasis NA et al. 2009. 15-Epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am. J. Respir. Crit Care Med. 180:4311–19
    [Google Scholar]
  25. 25.
    Bannenberg G, Serhan CN. 2010. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1801:121260–73
    [Google Scholar]
  26. 26.
    Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. 2001. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2:7612–19
    [Google Scholar]
  27. 27.
    Serhan CN, Savill J. 2005. Resolution of inflammation: the beginning programs the end. Nat. Immunol. 6:1191–97
    [Google Scholar]
  28. 28.
    Feehan KT, Gilroy DW. 2019. Is resolution the end of inflammation?. Trends Mol. Med. 25:198–214
    [Google Scholar]
  29. 29.
    Ramon S, Bancos S, Serhan CN, Phipps RP. 2014. Lipoxin A4 modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism. Eur. J. Immunol. 44:357–69
    [Google Scholar]
  30. 30.
    Gilroy DW, Bishop-Bailey D. 2019. Lipid mediators in immune regulation and resolution. Br. J. Pharmacol. 176:1009–20
    [Google Scholar]
  31. 31.
    Brennan EP, Nolan KA, Börgeson E, Gough OS, McEvoy CM et al. 2013. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J. Am. Soc. Nephrol. 24:627–37
    [Google Scholar]
  32. 32.
    Fierro IM, Colgan SP, Bernasconi G, Petasis NA, Clish CB et al. 2003. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration: comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. J. Immunol. 170:52688–94
    [Google Scholar]
  33. 33.
    Brennan EP, Mohan M, McClelland A, de Gaetano M, Tikellis C et al. 2018. Lipoxins protect against inflammation in diabetes-associated atherosclerosis. Diabetes 67:2657–67
    [Google Scholar]
  34. 34.
    Börgeson E, Docherty NG, Murphy M, Rodgers K, Ryan A et al. 2011. Lipoxin A4 and benzo-lipoxin A4 attenuate experimental renal fibrosis. FASEB J. 25:2967–79
    [Google Scholar]
  35. 35.
    Mitchell D, O'Meara SJ, Gaffney A, Crean JK, Kinsella BT, Godson C 2007. The Lipoxin A4 receptor is coupled to SHP-2 activation: implications for regulation of receptor tyrosine kinases. J. Biol. Chem. 282:15606–18
    [Google Scholar]
  36. 36.
    Chen XQ, Wu SH, Zhou Y, Tang YR. 2013. Lipoxin A4-induced heme oxygenase-1 protects cardiomyocytes against hypoxia/reoxygenation injury via p38 MAPK activation and Nrf2/ARE complex. PLOS ONE 8:6e67120
    [Google Scholar]
  37. 37.
    Maderna P, Godson C. 2009. Lipoxins: resolutionary road. Br. J. Pharmacol. 158:947–59
    [Google Scholar]
  38. 38.
    Bäck M, Boulay F, Chiang N, Dahlén SE, Dahlgren C et al. 2019. Formylpeptide receptors (version 2019.2) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide Pharmacol. CITE updated Feb. https://doi.org/10.2218/gtopdb/F23/2021.2
    [Crossref] [Google Scholar]
  39. 39.
    Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C et al. 2009. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 61:2119–61
    [Google Scholar]
  40. 40.
    Perretti M, Chiang N, La M, Fierro IM, Marullo S et al. 2002. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat. Med. 8:111296–302
    [Google Scholar]
  41. 41.
    Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB et al. 2010. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J. Immunol. 184:52611–19
    [Google Scholar]
  42. 42.
    Maderna P, Cottell DC, Toivonen T, Dufton N, Dalli J et al. 2010. FPR2/ALX receptor expression and internalization are critical for lipoxin A4 and annexin-derived peptide-stimulated phagocytosis. FASEB J. 24:114240–49
    [Google Scholar]
  43. 43.
    Petri MH, Laguna-Fernandez A, Arnardottir H, Wheelock CE, Perretti M et al. 2017. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E−/− mice. Br. J. Pharmacol. 174:224043–54
    [Google Scholar]
  44. 44.
    Birkl D, O'Leary MN, Quiros M, Azcutia V, Schaller M et al. 2019. Formyl peptide receptor 2 regulates monocyte recruitment to promote intestinal mucosal wound repair. FASEB J. 33:1213632–43
    [Google Scholar]
  45. 45.
    Arriba MDC, Fernández G, Chacón-Solano E, Mataix M, Martínez-Santamaría L et al. 2022. FPR2 DNA aptamers for targeted therapy of wound repair. J. Investig. Dermatol. 142:223848.e8
    [Google Scholar]
  46. 46.
    Cooray SN, Gobbetti T, Montero-Melendez T, McArthur S, Thompson D et al. 2013. Ligand-specific conformational change of the G-protein–coupled receptor ALX/FPR2 determines proresolving functional responses. PNAS 110:4518232–37
    [Google Scholar]
  47. 47.
    Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. 2018. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19:10638–53
    [Google Scholar]
  48. 48.
    Zhuang Y, Wang L, Guo J, Sun D, Wang Y et al. 2022. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nat. Commun. 13:11054
    [Google Scholar]
  49. 49.
    Ohira T, Bannenberg G, Arita M, Takahashi M, Ge Q et al. 2004. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils. J. Immunol. 173:2091–98
    [Google Scholar]
  50. 50.
    Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH et al. 2010. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. PNAS 107:41660–65
    [Google Scholar]
  51. 51.
    McMahon B, Stenson C, McPhillips F, Fanning A, Brady HR, Godson C. 2000. Lipoxin A4 antagonizes the mitogenic effects of leukotriene D4 in human renal mesangial cells. Differential activation of MAP kinases through distinct receptors. J. Biol. Chem. 275:27566–75
    [Google Scholar]
  52. 52.
    McMahon B, Mitchell D, Shattock R, Martin F, Brady HR, Godson C. 2002. Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J. 16:1817–19
    [Google Scholar]
  53. 53.
    Cezar-de-Mello PF, Vieira AM, Nascimento-Silva V, Villela CG, Barja-Fidalgo C, Fierro IM. 2008. ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. Br. J. Pharmacol. 153:5956–65
    [Google Scholar]
  54. 54.
    Baker N, O'Meara SJ, Scannell M, Maderna P, Godson C 2009. Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells. J. Immunol. 182:3819–26
    [Google Scholar]
  55. 55.
    Brennan E, Wang B, McClelland A, Mohan M, Marai M, Beuscart O et al. 2017. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes 66:82266–77
    [Google Scholar]
  56. 56.
    Wu B, Capilato J, Pham MP, Walker J, Spur B et al. 2016. Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing inhibition. FASEB J. 30:62400–10
    [Google Scholar]
  57. 57.
    Kakazu A, He J, Kenchegowda S, Bazan HE. 2012. Lipoxin A₄ inhibits platelet-activating factor inflammatory response and stimulates corneal wound healing of injuries that compromise the stroma. Exp. Eye Res. 103:9–16
    [Google Scholar]
  58. 58.
    Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S et al. 2021. Decoding myofibroblast origins in human kidney fibrosis. Nature 589:281–86
    [Google Scholar]
  59. 59.
    Lazzeri E, Angelotti ML, Peired A, Conte C, Marschner JA et al. 2018. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat. Commun. 9:1344
    [Google Scholar]
  60. 60.
    Anders HJ. 2014. Immune system modulation of kidney regeneration—mechanisms and implications. Nat. Rev. Nephrol. 10:347–58
    [Google Scholar]
  61. 61.
    Lin SL, Li B, Rao S, Yeo EJ, Hudson TE et al. 2010. Macrophage Wnt7b is critical for kidney repair and regeneration. PNAS 107:4194–99
    [Google Scholar]
  62. 62.
    Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA et al. 2016. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7:12859
    [Google Scholar]
  63. 63.
    Norling LV, Headland SE, Dalli J, Arnardottir HH, Haworth O et al. 2016. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis. JCI Insight 1:5e85922
    [Google Scholar]
  64. 64.
    Planagumà A, Kazani S, Marigowda G, Haworth O, Mariani TJ et al. 2008. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am. J. Respir. Crit. Care Med. 178:574–82
    [Google Scholar]
  65. 65.
    Neuhofer A, Zeyda M, Mascher D, Itariu BK, Murano I et al. 2013. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes 62:1945–56
    [Google Scholar]
  66. 66.
    López-Vicario C, Titos E, Walker ME, Alcaraz-Quiles J, Casulleras M et al. 2019. Leukocytes from obese individuals exhibit an impaired SPM signature. FASEB J. 33:7072–83
    [Google Scholar]
  67. 67.
    Bonnans C, Levy BD. 2007. Lipid mediators as agonists for the resolution of acute lung inflammation and injury. Am. J. Respir. Cell Mol. Biol. 36:2201–5
    [Google Scholar]
  68. 68.
    Leonard MO, Hannan K, Burne MJ, Lappin DW, Doran P et al. 2002. 15-Epi-16-(para-fluorophenoxy)-lipoxin A4-methyl ester, a synthetic analogue of 15-epi-lipoxin A4, is protective in experimental ischemic acute renal failure. J. Am. Soc. Nephrol. 13:61657–62
    [Google Scholar]
  69. 69.
    Kim H, Park S-H, Han SY, Lee Y-S, Cho J, Kim J-M. 2020. LXA4-FPR2 signaling regulates radiation-induced pulmonary fibrosis via crosstalk with TGF-β/Smad signaling. Cell Death Dis. 11:653
    [Google Scholar]
  70. 70.
    Börgeson E, Johnson AMF, Lee YS, Till A, Syed GH et al. 2015. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab. 22:125–37
    [Google Scholar]
  71. 71.
    Brennan EP, Mohan M, McClelland A, Tikellis C, Ziemann M et al. 2018. Lipoxins regulate the early growth response–1 network and reverse diabetic kidney disease. J. Am. Soc. Nephrol. 29:1437–48
    [Google Scholar]
  72. 72.
    Rodgers K, McMahon B, Mitchell D, Sadlier D, Godson C. 2005. Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. Am. J. Pathol. 167:683–94
    [Google Scholar]
  73. 73.
    Varga T, Mounier R, Horvath A, Cuvellier S, Dumont F et al. 2016. Highly dynamic transcriptional signature of distinct macrophage subsets during sterile inflammation, resolution, and tissue repair. J. Immunol. 196:4771–82
    [Google Scholar]
  74. 74.
    Tang PM-K, Nikolic-Paterson DJ, Lan H-Y. 2019. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15:144–58
    [Google Scholar]
  75. 75.
    Conway BR, O'Sullivan ED, Cairns C, O'Sullivan J, Simpson DJ et al. 2020. Kidney single-cell atlas reveals myeloid heterogeneity in progression and regression of kidney disease. J. Am. Soc. Nephrol. 31:2833–54
    [Google Scholar]
  76. 76.
    Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL et al. 2012. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. PNAS 109:E3186–95
    [Google Scholar]
  77. 77.
    Moroni F, Dwyer BJ, Graham C, Pass C, Bailey L et al. 2019. Safety profile of autologous macrophage therapy for liver cirrhosis. Nat. Med. 25:1560–65
    [Google Scholar]
  78. 78.
    Subramanian S, Busch CJ, Molawi K, Geirsdottir L, Maurizio J et al. 2022. Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo. Nat. Immunol. 23:3458–68
    [Google Scholar]
  79. 79.
    Gaudin A, Tolar M, Peters OA. 2018. Lipoxin A4 attenuates the inflammatory response in stem cells of the apical papilla via ALX/FPR2. Sci. Rep. 8:8921
    [Google Scholar]
  80. 80.
    Cianci E, Recchiuti A, Trubiani O, Diomede F, Marchisio M et al. 2016. Human periodontal stem cells release specialized proresolving mediators and carry immunomodulatory and prohealing properties regulated by lipoxins. Stem Cells Transl. Med. 5:20–32
    [Google Scholar]
  81. 81.
    Bai Y, Wang J, He Z, Yang M, Li L, Jiang H. 2019. Mesenchymal stem cells reverse diabetic nephropathy disease via lipoxin A4 by targeting transforming growth factor β (TGF-β)/smad pathway and pro-inflammatory cytokines. Med. Sci. Monit. 25:3069–76
    [Google Scholar]
  82. 82.
    Markworth JF, Brown LA, Lim E, Floyd C, Larouche J et al. 2020. Resolvin D1 supports skeletal myofiber regeneration via actions on myeloid and muscle stem cells. JCI Insight 5:e137713
    [Google Scholar]
  83. 83.
    Ringholz FC, Buchanan PJ, Clarke DT, Millar RG, McDermott M et al. 2014. Reduced 15-lipoxygenase 2 and lipoxin A4/leukotriene B4 ratio in children with cystic fibrosis. Eur. Respir. J. 44:2394–404
    [Google Scholar]
  84. 84.
    Zhang H, Lu Y, Sun G, Teng F, Luo N et al. 2017. The common promoter polymorphism rs11666254 downregulates FPR2/ALX expression and increases risk of sepsis in patients with severe trauma. Crit. Care 21:1171
    [Google Scholar]
  85. 85.
    Clish CB, Levy BD, Chiang N, Tai HH, Serhan CN. 2000. Oxidoreductases in lipoxin A4 metabolic inactivation: a novel role for 15-onoprostaglandin 13-reductase/leukotriene B4 12-hydroxydehydrogenase in inflammation. J. Biol. Chem. 275:3325372–80
    [Google Scholar]
  86. 86.
    Fu T, Mohan M, Brennan EP, Woodman OL, Godson C et al. 2020. Therapeutic potential of lipoxin A4 in chronic inflammation: focus on cardiometabolic disease. ACS Pharmacol. Transl. Sci. 3:143–55
    [Google Scholar]
  87. 87.
    Maciuszek M, Cacace A, Brennan E, Godson C, Chapman TM. 2021. Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential. Eur. J. Med. Chem. 213:113167
    [Google Scholar]
  88. 88.
    Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN. 1997. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J. Exp. Med. 185:1693–704
    [Google Scholar]
  89. 89.
    Hachicha M, Pouliot M, Petasis NA, Serhan CN. 1999. Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1α–initiated neutrophil responses and trafficking: regulators of a cytokine–chemokine axis. J. Exp. Med. 189:1923–30
    [Google Scholar]
  90. 90.
    Goh J, Baird AW, O'Keane C, Watson RW, Cottell D et al. 2001. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 antagonize TNF-α-stimulated neutrophil-enterocyte interactions in vitro and attenuate TNF-α-induced chemokine release and colonocyte apoptosis in human intestinal mucosa ex vivo. J. Immunol. 167:52772–80
    [Google Scholar]
  91. 91.
    Kieran NE, Doran PP, Connolly SB, Greenan M-C, Higgins DF et al. 2003. Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int. 64:480–92
    [Google Scholar]
  92. 92.
    Ohse T, Ota T, Kieran N, Godson C, Yamada K et al. 2004. Modulation of interferon-induced genes by lipoxin analogue in anti–glomerular basement membrane nephritis. J. Am. Soc. Nephrol. 15:919–27
    [Google Scholar]
  93. 93.
    Kieran NE, Maderna P, Godson C. 2004. Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney Int. 65:41145–54
    [Google Scholar]
  94. 94.
    Martins V, Valença SS, Farias-Filho FA, Molinaro R, Simões RL et al. 2009. ATLa, an aspirin-triggered lipoxin A4 synthetic analog, prevents the inflammatory and fibrotic effects of bleomycin-induced pulmonary fibrosis. J. Immunol. 182:95374–81
    [Google Scholar]
  95. 95.
    Guilherme RF, Xisto DG, Kunkel SL, Freire-de-Lima CG, Rocco PR et al. 2013. Pulmonary antifibrotic mechanisms aspirin-triggered lipoxin A4 synthetic analog. Am. J. Respir. Cell Mol. Biol. 49:61029–37
    [Google Scholar]
  96. 96.
    Wu SH, Chen XQ, Liu B, Wu HJ, Dong L. 2013. Efficacy and safety of 15(R/S)-methyl-lipoxin A4 in topical treatment of infantile eczema. Br. J. Dermatol. 168:172–78
    [Google Scholar]
  97. 97.
    Kong X, Wu SH, Zhang L, Chen XQ. 2017. Pilot application of lipoxin A4 analog and lipoxin A4 receptor agonist in asthmatic children with acute episodes. Exp. Ther. Med. 14:2284–90
    [Google Scholar]
  98. 98.
    Levy BD, Lukacs NW, Berlin AA, Schmidt B, Guilford WJ et al. 2007. Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism. FASEB J. 21:3877–84
    [Google Scholar]
  99. 99.
    Bannenberg G, Moussignac R-L, Gronert K, Devchand PR, Schmidt BA et al. 2004. Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration. Br. J. Pharmacol. 143:43–52
    [Google Scholar]
  100. 100.
    Guilford WJ, Bauman JG, Skuballa W, Bauer S, Wei GP et al. 2004. Novel 3-oxa lipoxin A4 analogues with enhanced chemical and metabolic stability have anti-inflammatory activity in vivo. J. Med. Chem. 47:2157–65
    [Google Scholar]
  101. 101.
    O'Sullivan TP, Vallin KSA, Ali Shah ST, Fakhry J, Maderna P et al. 2007. Aromatic lipoxin A4 and lipoxin B4 analogues display potent biological activities. J. Med. Chem. 50:5894–902
    [Google Scholar]
  102. 102.
    Petasis NA, Keledjian R, Sun Y-P, Nagulapalli KC, Tjonahen E et al. 2008. Design and synthesis of benzo-lipoxin A4 analogs with enhanced stability and potent anti-inflammatory properties. Bioorg. Med. Chem. Lett. 18:1382–87
    [Google Scholar]
  103. 103.
    Sun Y-P, Tjonahen E, Keledjian R, Zhu M, Yang R et al. 2009. Anti-inflammatory and pro-resolving properties of benzo-lipoxin A4 analogs. Prostaglandins Leukot. Essent. Fatty Acids 81:357–66
    [Google Scholar]
  104. 104.
    Brennan E, Kantharidis P, Cooper ME, Godson C. 2021. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat. Rev. Nephrol. 17:11725–39
    [Google Scholar]
  105. 105.
    Wang Y, Zhang X, Yao H, Chen X, Shang L et al. 2022. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice. J. Biol. Chem. 298:3101660
    [Google Scholar]
  106. 106.
    Jaén RI, Sánchez-García S, Fernández-Velasco M, Boscá L, Prieto P. 2021. Resolution-based therapies: the potential of lipoxins to treat human diseases. Front. Immunol. 12:658840
    [Google Scholar]
  107. 107.
    Wu L, Liu C, Chang DY, Zhan R, Sun J et al. 2021. Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney Int. 100:1107–21
    [Google Scholar]
  108. 108.
    Wu L, Liu C, Chang DY, Zhan R, Zhao M et al. 2021. The attenuation of diabetic nephropathy by annexin A1 via Regulation of lipid metabolism through the AMPK/PPARα/CPT1b pathway. Diabetes 70:102192–203
    [Google Scholar]
  109. 109.
    Hasturk H, Schulte F, Martins M, Sherzai H, Floros C et al. 2021. Safety and preliminary efficacy of a novel host-modulatory therapy for reducing gingival inflammation. Front. Immunol. 12:704163
    [Google Scholar]
  110. 110.
    Duffy CD, Maderna P, McCarthy C, Loscher CE, Godson C, Guiry PJ. 2010. Synthesis and biological evaluation of pyridine-containing lipoxin A4 analogues. ChemMedChem 5:4517–22
    [Google Scholar]
  111. 111.
    de Gaetano M, Butler E, Gahan K, Zanetti A, Marai M et al. 2019. Asymmetric synthesis and biological evaluation of imidazole- and oxazole-containing synthetic lipoxin A4 mimetics (sLXms). Eur. J. Med. Chem. 162:80–108
    [Google Scholar]
  112. 112.
    de Gaetano M, Tighe C, Gahan K, Zanetti A, Chen J et al. 2021. Asymmetric synthesis and biological screening of quinoxaline-containing synthetic lipoxin A4 mimetics (QNX-sLXms). J. Med. Chem. 64:139193–216
    [Google Scholar]
  113. 113.
    Nicolaou KC, Veale CA, Webber SE, Katerinopoulos H. 1985. Stereocontrolled synthesis of lipoxins A. J. Am. Chem. Soc. 107:7515–18
    [Google Scholar]
  114. 114.
    Liu AM, Ho MK, Wong CS, Chan JH, Pau AH, Wong YH. 2003. 16/z chimeras efficiently link a wide range of G protein–coupled receptors to calcium mobilization. J. Biomol. Screen. 8:139–49
    [Google Scholar]
  115. 115.
    Galvão I, Melo EM, de Oliveira VLS, Vago JP, Queiroz-Junior C et al. 2021. Therapeutic potential of the FPR2/ALX agonist AT-01-KG in the resolution of articular inflammation. Pharmacol. Res. 165:105445
    [Google Scholar]
  116. 116.
    Jaén RI, Fernández-Velasco M, Terrón V, Sánchez-García S, Zaragoza C et al. 2020. BML-111 treatment prevents cardiac apoptosis and oxidative stress in a mouse model of autoimmune myocarditis. FASEB J. 34:810531–46
    [Google Scholar]
  117. 117.
    Qin CX, May LT, Li R, Cao N, Rosli S et al. 2017. Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nat. Commun. 8:14232
    [Google Scholar]
  118. 118.
    Stalder AK, Lott D, Strasser DS, Cruz HG, Krause A et al. 2017. Biomarker-guided clinical development of the first-in-class anti-inflammatory FPR2/ALX agonist ACT-389949. Br. J. Clin. Pharmacol. 83:3476–86
    [Google Scholar]
  119. 119.
    Lind S, Sundqvist M, Holmdahl R, Dahlgren C, Forsman H, Olofsson P. 2019. Functional and signaling characterization of the neutrophil FPR2 selective agonist Act-389949. Biochem. Pharmacol. 166:163–73
    [Google Scholar]
  120. 120.
    García RA, Lupisella JA, Ito BR, Hsu MY, Fernando G et al. 2021. Selective FPR2 agonism promotes a proresolution macrophage phenotype and improves cardiac structure-function post myocardial infarction. JACC Basic Transl. Sci. 6:8676–89
    [Google Scholar]
  121. 121.
    Asahina Y, Wurtz NR, Arakawa K, Carson N, Fujii K et al. 2020. Discovery of BMS-986235/LAR-1219: a potent formyl peptide receptor 2 (FPR2) selective agonist for the prevention of heart failure. J. Med. Chem. 63:179003–19
    [Google Scholar]
  122. 122.
    Lupisella JA, Shirude PS, Wurtz NR, Garcia RA. 2022. Formyl peptide receptor 2 and heart disease. Semin. Immunol. 8:101602
    [Google Scholar]
  123. 123.
    Zhang S, Gong H, Ge Y, Ye RD. 2020. Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro- and anti-inflammatory signaling. Pharmacol. Res. 161:105117
    [Google Scholar]
  124. 124.
    Chen T, Xiong M, Zong X, Ge Y, Zhang H et al. 2020. Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nat. Commun. 11:1208
    [Google Scholar]
  125. 125.
    Zhu Y, Lin X, Zong X, Han S, Wang M et al. 2022. Structural basis of FPR2 in recognition of Aβ42 and neuroprotection by humanin. Nat. Commun. 13:11775
    [Google Scholar]
  126. 126.
    Serhan CN, Gupta SK, Perretti M, Godson C, Brennan E et al. 2020. The atlas of inflammation resolution (AIR). Mol. Aspects Med. 74:100894
    [Google Scholar]
  127. 127.
    Perretti M, Godson C. 2020. Formyl peptide receptor type 2 agonists to kick-start resolution pharmacology. Br. J. Pharmacol. 177:204595–600
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-085407
Loading
/content/journals/10.1146/annurev-pharmtox-051921-085407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error