1932

Abstract

Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry–based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-013205
2022-01-06
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-013205.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-013205&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ 2001. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. PNAS 98:8554–59
    [Google Scholar]
  2. 2. 
    Schapira M, Calabrese MF, Bullock AN, Crews CM. 2019. Targeted protein degradation: expanding the toolbox. Nat. Rev. Drug Discov. 18:949–63
    [Google Scholar]
  3. 3. 
    Deshaies RJ. 2020. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature 580:329–38
    [Google Scholar]
  4. 4. 
    Mateus A, Gordon LJ, Wayne GJ, Almqvist H, Axelsson H et al. 2017. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. PNAS 114:E6231–39
    [Google Scholar]
  5. 5. 
    Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S et al. 2015. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14:475–86
    [Google Scholar]
  6. 6. 
    FDA (US Food Drug Admin.) 1995. Content and format of investigational new drug applications (INDs) for phase 1 studies of drugs, including well-characterized, therapeutic, biotechnology-derived products Guid. Doc., FDA Silver Spring, MD: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm071597.pdf
    [Google Scholar]
  7. 7. 
    Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B et al. 2017. The target landscape of clinical kinase drugs. Science 358:eaan4368
    [Google Scholar]
  8. 8. 
    Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS et al. 2012. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov. Today 17:419–24
    [Google Scholar]
  9. 9. 
    Aebersold R, Mann M. 2016. Mass-spectrometric exploration of proteome structure and function. Nature 537:347–55
    [Google Scholar]
  10. 10. 
    Bantscheff M, Lemeer S, Savitski MM, Kuster B. 2012. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404:939–65
    [Google Scholar]
  11. 11. 
    Zubarev RA, Makarov A. 2013. Orbitrap mass spectrometry. Anal. Chem. 85:5288–96
    [Google Scholar]
  12. 12. 
    Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M. 2012. High-resolution enabled TMT 8-plexing. Anal. Chem. 84:7188–94
    [Google Scholar]
  13. 13. 
    Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski MM. 2014. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal. Chem. 86:3594–601
    [Google Scholar]
  14. 14. 
    Li J, Van Vranken JG, Pontano Vaites L, Schweppe DK, Huttlin EL et al. 2020. TMTpro reagents: A set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17:399–404
    [Google Scholar]
  15. 15. 
    Liang L, Astruc D. 2011. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 255:2933–45
    [Google Scholar]
  16. 16. 
    Tyler DS, Vappiani J, Caneque T, Lam EYN, Ward A et al. 2017. Click chemistry enables preclinical evaluation of targeted epigenetic therapies. Science 356:1397–401
    [Google Scholar]
  17. 17. 
    Ito T, Ando H, Suzuki T, Ogura T, Hotta K et al. 2010. Identification of a primary target of thalidomide teratogenicity. Science 327:1345–50
    [Google Scholar]
  18. 18. 
    Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M et al. 2007. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110:4055–63
    [Google Scholar]
  19. 19. 
    Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF 2004. Activity-based probes for the proteomic profiling of metalloproteases. PNAS 101:10000–5
    [Google Scholar]
  20. 20. 
    Kuljanin M, Mitchell DC, Schweppe DK, Gikandi AS, Nusinow DP et al. 2021. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-00778-3
    [Crossref] [Google Scholar]
  21. 21. 
    van Esbroeck ACM, Janssen APA, Cognetta AB III, Ogasawara D, Shpak G et al. 2017. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10–2474. Science 356:1084–87
    [Google Scholar]
  22. 22. 
    Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M et al. 2007. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25:1035–44
    [Google Scholar]
  23. 23. 
    Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS et al. 2017. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16:19–34
    [Google Scholar]
  24. 24. 
    Savitski MM, Reinhard FB, Franken H, Werner T, Savitski MF et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:1255784
    [Google Scholar]
  25. 25. 
    Klaeger S, Gohlke B, Perrin J, Gupta V, Heinzlmeir S et al. 2016. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem. Biol. 11:1245–54
    [Google Scholar]
  26. 26. 
    Bai Y, Kim JY, Jayne LA, Gandhi M, Huang KM et al. 2021. Nephrotoxicity of the BRAF-kinase inhibitor Vemurafenib is driven by off-target Ferrochelatase inhibition. bioRxiv 428783. https://doi.org/10.1101/2021.01.29.428783
    [Crossref]
  27. 27. 
    Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P et al. 2011. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29:255–65
    [Google Scholar]
  28. 28. 
    Rutkowska A, Thomson DW, Vappiani J, Werner T, Mueller KM et al. 2016. A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level. ACS Chem. Biol. 11:2541–50
    [Google Scholar]
  29. 29. 
    Frei AP, Jeon OY, Kilcher S, Moest H, Henning LM et al. 2012. Direct identification of ligand-receptor interactions on living cells and tissues. Nat. Biotechnol. 30:997–1001
    [Google Scholar]
  30. 30. 
    Luther A, Urfer M, Zahn M, Muller M, Wang SY et al. 2019. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576:452–58
    [Google Scholar]
  31. 31. 
    West GM, Tucker CL, Xu T, Park SK, Han X et al. 2010. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. PNAS 107:9078–82
    [Google Scholar]
  32. 32. 
    Luchini A, Espina V, Liotta LA. 2014. Protein painting reveals solvent-excluded drug targets hidden within native protein-protein interfaces. Nat. Commun. 5:4413
    [Google Scholar]
  33. 33. 
    Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A et al. 2014. Global analysis of protein structural changes in complex proteomes. Nat. Biotechnol. 32:1036–44
    [Google Scholar]
  34. 34. 
    Lomenick B, Jung G, Wohlschlegel JA, Huang J. 2011. Target identification using drug affinity responsive target stability (DARTS). Curr. Protoc. Chem. Biol. 3:163–80
    [Google Scholar]
  35. 35. 
    Piazza I, Beaton N, Bruderer R, Knobloch T, Barbisan C et al. 2020. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 11:4200
    [Google Scholar]
  36. 36. 
    Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E et al. 2018. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172:358–72.e23
    [Google Scholar]
  37. 37. 
    Cappelletti V, Hauser T, Piazza I, Pepelnjak M, Malinovska L et al. 2021. Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 184:545–59.e22
    [Google Scholar]
  38. 38. 
    Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA et al. 2013. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87
    [Google Scholar]
  39. 39. 
    Franken H, Mathieson T, Childs D, Sweetman GM, Werner T et al. 2015. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10:1567–93
    [Google Scholar]
  40. 40. 
    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T et al. 2014. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9:2100–22
    [Google Scholar]
  41. 41. 
    Mateus A, Kurzawa N, Becher I, Sridharan S, Helm D et al. 2020. Thermal proteome profiling for interrogating protein interactions. Mol. Syst. Biol. 16:e9232
    [Google Scholar]
  42. 42. 
    Mateus A, Maatta TA, Savitski MM. 2016. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Proteome Sci 15:13
    [Google Scholar]
  43. 43. 
    Sridharan S, Günthner I, Becher I, Savitski M, Bantscheff M 2019. Target discovery using thermal proteome profiling. Mass Spectrometry-Based Chemical Proteomics WA Tao, Y Zhang 267–91 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  44. 44. 
    Perrin J, Werner T, Kurzawa N, Rutkowska A, Childs DD et al. 2020. Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nat. Biotechnol. 38:303–8
    [Google Scholar]
  45. 45. 
    Reinhard FB, Eberhard D, Werner T, Franken H, Childs D et al. 2015. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods 12:1129–31
    [Google Scholar]
  46. 46. 
    Huber KV, Olek KM, Muller AC, Tan CS, Bennett KL et al. 2015. Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat. Methods 12:1055–57
    [Google Scholar]
  47. 47. 
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P et al. 2015. Proteomics tissue-based map of the human proteome. Science 347:1260419
    [Google Scholar]
  48. 48. 
    Becher I, Werner T, Doce C, Zaal EA, Togel I et al. 2016. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat. Chem. Biol. 12:908–10
    [Google Scholar]
  49. 49. 
    Becher I, Andres-Pons A, Romanov N, Stein F, Schramm M et al. 2018. Pervasive protein thermal stability variation during the cell cycle. Cell 173:1495–507.e18
    [Google Scholar]
  50. 50. 
    Dai L, Zhao T, Bisteau X, Sun W, Prabhu N et al. 2018. Modulation of protein-interaction states through the cell cycle. Cell 173:1481–94.e13
    [Google Scholar]
  51. 51. 
    Sridharan S, Kurzawa N, Werner T, Gunthner I, Helm D et al. 2019. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nat. Commun. 10:1155
    [Google Scholar]
  52. 52. 
    Mateus A, Hevler J, Bobonis J, Kurzawa N, Shah M et al. 2020. The functional proteome landscape of Escherichia coli. Nature 588:473–78
    [Google Scholar]
  53. 53. 
    Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S et al. 2018. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell 173:260–74.e25
    [Google Scholar]
  54. 54. 
    Chernobrovkin AL, Cazares-Korner C, Friman T, Caballero IM, Amadio D, Martinez Molina D 2021. A tale of two tails: efficient profiling of protein degraders by specific functional and target engagement readouts. SLAS Discov 26:4534–46
    [Google Scholar]
  55. 55. 
    Selkrig J, Stanifer M, Mateus A, Mitosch K, Barrio-Hernandez I et al. 2021. SARS-CoV-2 infection remodels the host protein thermal stability landscape. Mol. Syst. Biol. 17:e10188
    [Google Scholar]
  56. 56. 
    Friman T, Chernobrovkin A, Martinez Molina D, Arnold L 2021. CETSA MS profiling for a comparative assessment of FDA-approved antivirals repurposed for COVID-19 therapy identifies TRIP13 as a remdesivir off-target. SLAS Discov 26:336–44
    [Google Scholar]
  57. 57. 
    Tan CSH, Go KD, Bisteau X, Dai L, Yong CH et al. 2018. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 359:1170–77
    [Google Scholar]
  58. 58. 
    Kurzawa N, Mateus A, Savitski MM. 2020. Rtpca: an R package for differential thermal proximity coaggregation analysis. Bioinformatics 37:3431–33
    [Google Scholar]
  59. 59. 
    Mateus A, Bobonis J, Kurzawa N, Stein F, Helm D et al. 2018. Thermal proteome profiling in bacteria: probing protein state in vivo. Mol. Syst. Biol. 14:e8242
    [Google Scholar]
  60. 60. 
    Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J. 2014. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10:757
    [Google Scholar]
  61. 61. 
    Hughes CS, Moggridge S, Muller T, Sorensen PH, Morin GB, Krijgsveld J. 2019. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14:68–85
    [Google Scholar]
  62. 62. 
    Smits AH, Ziebell F, Joberty G, Zinn N, Mueller WF et al. 2019. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16:1087–93
    [Google Scholar]
  63. 63. 
    Kalxdorf M, Gunthner I, Becher I, Kurzawa N, Knecht S et al. 2021. Cell surface thermal proteome profiling tracks perturbations and drug targets on the plasma membrane. Nat. Methods 18:84–91
    [Google Scholar]
  64. 64. 
    Gaetani M, Sabatier P, Saei AA, Beusch CM, Yang Z et al. 2019. Proteome integral solubility alteration: a high-throughput proteomics assay for target deconvolution. J. Proteome Res. 18:4027–37
    [Google Scholar]
  65. 65. 
    Li J, Van Vranken JG, Paulo JA, Huttlin EL, Gygi SP. 2020. Selection of heating temperatures improves the sensitivity of the proteome integral solubility alteration assay. J. Proteome Res. 19:2159–66
    [Google Scholar]
  66. 66. 
    Azimi A, Caramuta S, Seashore-Ludlow B, Bostrom J, Robinson JL et al. 2018. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Mol. Syst. Biol. 14:e7858
    [Google Scholar]
  67. 67. 
    Potel CM, Kurzawa N, Becher I, Typas A, Mateus A, Savitski MM. 2021. Impact of phosphorylation on thermal stability of proteins. Nat. Methods 18:757–59
    [Google Scholar]
  68. 68. 
    Smith IR, Hess KN, Bakhtina AA, Valente AS, Rodríguez-Mias RA, Villén J. 2021. Identification of phosphosites that alter protein thermal stability. Nat. Methods 18:760–62
    [Google Scholar]
  69. 69. 
    Huang JX, Lee G, Cavanaugh KE, Chang JW, Gardel ML, Moellering RE. 2019. High throughput discovery of functional protein modifications by Hotspot Thermal Profiling. Nat. Methods 16:894–901
    [Google Scholar]
  70. 70. 
    Saei AA, Beusch CM, Sabatier P, Wells JA, Gharibi H et al. 2021. System-wide identification and prioritization of enzyme substrates by thermal analysis. Nat. Commun. 12:1296
    [Google Scholar]
  71. 71. 
    Peng H, Guo H, Pogoutse O, Wan C, Hu LZ et al. 2016. An unbiased chemical proteomics method identifies FabI as the primary target of 6-OH-BDE-47. Environ. Sci. Technol. 50:11329–36
    [Google Scholar]
  72. 72. 
    Jarzab A, Kurzawa N, Hopf T, Moerch M, Zecha J et al. 2020. Meltome atlas—thermal proteome stability across the tree of life. Nat. Methods 17:495–503
    [Google Scholar]
  73. 73. 
    Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R et al. 2019. A new antibiotic selectively kills Gram-negative pathogens. Nature 576:459–64
    [Google Scholar]
  74. 74. 
    Martin JK II, Sheehan JP, Bratton BP, Moore GM, Mateus A et al. 2020. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell 181:1518–32.e14
    [Google Scholar]
  75. 75. 
    Turkowsky D, Lohmann P, Muhlenbrink M, Schubert T, Adrian L et al. 2019. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. J. Proteom. 192:10–17
    [Google Scholar]
  76. 76. 
    Oztug M, Kilinc E, Akgoz M, Karaguler NG. 2020. Thermal proteome profiling and meltome analysis of a thermophilic bacterial strain, Geobacillus thermoleovorans ARTRW1: toward industrial applications. OMICS 24:756–65
    [Google Scholar]
  77. 77. 
    Viéitez C, Busby BP, Ochoa D, Mateus A, Galardini M et al. 2019. Towards a systematic map of the functional role of protein phosphorylation. bioRxiv 872770. https://doi.org/10.1101/872770
    [Crossref]
  78. 78. 
    Peck Justice SA, Barron MP, Qi GD, Wijeratne HRS, Victorino JF et al. 2020. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. J. Biol. Chem. 295:16219–38
    [Google Scholar]
  79. 79. 
    Ochoa D, Jarnuczak AF, Vieitez C, Gehre M, Soucheray M et al. 2020. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38:365–73
    [Google Scholar]
  80. 80. 
    Volkening JD, Stecker KE, Sussman MR. 2019. Proteome-wide analysis of protein thermal stability in the model higher plant Arabidopsis thaliana. Mol. Cell Proteom. 18:308–19
    [Google Scholar]
  81. 81. 
    Dziekan JM, Yu H, Chen D, Dai L, Wirjanata G et al. 2019. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci. Transl. Med. 11:eaau3174
    [Google Scholar]
  82. 82. 
    Dziekan JM, Wirjanata G, Dai L, Go KD, Yu H et al. 2020. Cellular thermal shift assay for the identification of drug-target interactions in the Plasmodium falciparum proteome. Nat. Protoc. 15:1881–921
    [Google Scholar]
  83. 83. 
    Herneisen AL, Sidik SM, Markus BM, Drewry DH, Zuercher WJ, Lourido S. 2020. Identifying the target of an antiparasitic compound in toxoplasma using thermal proteome profiling. ACS Chem. Biol. 15:1801–7
    [Google Scholar]
  84. 84. 
    Hashimoto Y, Sheng X, Murray-Nerger LA, Cristea IM. 2020. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat. Commun. 11:806
    [Google Scholar]
  85. 85. 
    Leijten NM, Bakker P, Spaink HP, den Hertog J, Lemeer S. 2021. Thermal proteome profiling in zebrafish reveals effects of napabucasin on retinoic acid metabolism. Mol. Cell Proteom 20:100033
    [Google Scholar]
  86. 86. 
    Dehghan E, Goodarzi M, Saremi B, Lin R, Mirzaei H. 2019. Hydralazine targets cAMP-dependent protein kinase leading to sirtuin1/5 activation and lifespan extension in C. elegans. Nat. Commun. 10:4905
    [Google Scholar]
  87. 87. 
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M et al. 2014. Mass-spectrometry-based draft of the human proteome. Nature 509:582–87
    [Google Scholar]
  88. 88. 
    Childs D, Bach K, Franken H, Anders S, Kurzawa N et al. 2019. Nonparametric analysis of thermal proteome profiles reveals novel drug-binding proteins. Mol. Cell Proteom. 18:2506–15
    [Google Scholar]
  89. 89. 
    Kurzawa N, Becher I, Sridharan S, Franken H, Mateus A et al. 2020. A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles. Nat. Commun. 11:5783
    [Google Scholar]
  90. 90. 
    Zinn N, Werner T, Doce C, Mathieson T, Boecker C et al. 2021. Improved proteomics-based drug mechanism-of-action studies using 16-plex isobaric mass tags. J. Proteome Res. 20:1792–801
    [Google Scholar]
  91. 91. 
    Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–40
    [Google Scholar]
  92. 92. 
    Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J et al. 2011. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteom. 10:M111.013284
    [Google Scholar]
  93. 93. 
    Maatta TA, Rettel M, Sridharan S, Helm D, Kurzawa N et al. 2020. Aggregation and disaggregation features of the human proteome. Mol. Syst. Biol. 16:e9500
    [Google Scholar]
  94. 94. 
    Selkrig J, Li N, Hausmann A, Mangan MSJ, Zietek M et al. 2020. Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. Nat. Microbiol. 5:1119–33
    [Google Scholar]
  95. 95. 
    Kambe T, Correia BE, Niphakis MJ, Cravatt BF. 2014. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells. J. Am. Chem. Soc. 136:10777–82
    [Google Scholar]
  96. 96. 
    Zampieri M, Szappanos B, Buchieri MV, Trauner A, Piazza I et al. 2018. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci. Transl. Med. 10:eaal3973
    [Google Scholar]
  97. 97. 
    Carrasco Del Amor A, Freitas S, Urbatzka R, Fresnedo O, Cristobal S 2019. Application of bioactive thermal proteome profiling to decipher the mechanism of action of the lipid lowering 132-hydroxy-pheophytin isolated from a marine cyanobacteria. Mar. Drugs 17:371
    [Google Scholar]
  98. 98. 
    Kitagawa M, Liao PJ, Lee KH, Wong J, Shang SC et al. 2017. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. Nat. Commun. 8:2200
    [Google Scholar]
  99. 99. 
    Xi X, Liu N, Wang Q, Chu Y, Yin Z et al. 2019. ACT001, a novel PAI-1 inhibitor, exerts synergistic effects in combination with cisplatin by inhibiting PI3K/AKT pathway in glioma. Cell Death Dis 10:757
    [Google Scholar]
  100. 100. 
    Peuget S, Zhu J, Sanz G, Singh M, Gaetani M et al. 2020. Thermal proteome profiling identifies oxidative-dependent inhibition of the transcription of major oncogenes as a new therapeutic mechanism for select anticancer compounds. Cancer Res 80:1538–50
    [Google Scholar]
  101. 101. 
    Tong KC, Lok CN, Wan PK, Hu D, Fung YME et al. 2020. An anticancer gold(III)-activated porphyrin scaffold that covalently modifies protein cysteine thiols. PNAS 117:1321–29
    [Google Scholar]
  102. 102. 
    Saei AA, Gullberg H, Sabatier P, Beusch CM, Johansson K et al. 2020. Comprehensive chemical proteomics for target deconvolution of the redox active drug auranofin. Redox Biol. 32:101491
    [Google Scholar]
  103. 103. 
    Hu D, Yang C, Lok CN, Xing F, Lee PY et al. 2019. An antitumor Bis(N-heterocyclic carbene)platinum(II) complex that engages asparagine synthetase as an anticancer target. Angew. Chem. Int. Ed. Engl. 58:10914–18
    [Google Scholar]
  104. 104. 
    Martin-Gago P, Fansa EK, Klein CH, Murarka S, Janning P et al. 2017. A PDE6δ-KRas inhibitor chemotype with up to seven H-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2. Angew. Chem. Int. Ed. Engl. 56:2423–28
    [Google Scholar]
  105. 105. 
    Wilke J, Kawamura T, Xu H, Brause A, Friese A et al. 2021. Discovery of a σ1 receptor antagonist by combination of unbiased cell painting and thermal proteome profiling. Cell Chem. Biol. 28:P848–54.E5
    [Google Scholar]
  106. 106. 
    Nagasawa I, Muroi M, Kawatani M, Ohishi T, Ohba SI et al. 2020. Identification of a small compound targeting PKM2-regulated signaling using 2D gel electrophoresis-based proteome-wide CETSA. Cell Chem. Biol. 27:186–96.e4
    [Google Scholar]
  107. 107. 
    Zhang X, Ruan C, Zhu H, Li K, Zhang W et al. 2020. A simplified thermal proteome profiling approach to screen protein targets of a ligand. Proteomics 20:e1900372
    [Google Scholar]
  108. 108. 
    Carnero Corrales MA, Zinken S, Konstantinidis G, Rafehi M, Abdelrahman A et al. 2021. Thermal proteome profiling identifies the membrane-bound purinergic receptor P2X4 as a target of the autophagy inhibitor indophagolin. Cell Chem. Biol. In press
    [Google Scholar]
  109. 109. 
    Xu T, Chen L, Lim YT, Zhao H, Chen H et al. 2021. System biology-guided chemical proteomics to discover protein targets of monoethylhexyl phthalate in regulating cell cycle. Environ. Sci. Technol. 55:1842–51
    [Google Scholar]
  110. 110. 
    Miettinen TP, Peltier J, Hartlova A, Gierlinski M, Jansen VM et al. 2018. Thermal proteome profiling of breast cancer cells reveals proteasomal activation by CDK4/6 inhibitor palbociclib. EMBO J 37:e98359
    [Google Scholar]
  111. 111. 
    Warpman Berglund U, Sanjiv K, Gad H, Kalderen C, Koolmeister T et al. 2016. Validation and development of MTH1 inhibitors for treatment of cancer. Ann. Oncol. 27:2275–83
    [Google Scholar]
  112. 112. 
    Subramaniam A, Zemaitis K, Talkhoncheh MS, Yudovich D, Backstrom A et al. 2020. Lysine-specific demethylase 1A restricts ex vivo propagation of human HSCs and is a target of UM171. Blood 136:2151–61
    [Google Scholar]
  113. 113. 
    Nimgaonkar I, Archer NF, Becher I, Shahrad M, LeDesma RA et al. 2021. Isocotoin suppresses hepatitis E virus replication through inhibition of heat shock protein 90. Antiv. Res. 185:104997
    [Google Scholar]
  114. 114. 
    Tampere M, Pettke A, Salata C, Wallner O, Koolmeister T et al. 2020. Novel broad-spectrum antiviral inhibitors targeting host factors essential for replication of pathogenic RNA viruses. Viruses 12:1423
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-013205
Loading
/content/journals/10.1146/annurev-pharmtox-052120-013205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error