1932

Abstract

Obesity and type 2 diabetes mellitus (T2DM) impact more than 2.5 billion adults worldwide, necessitating innovative therapeutic approaches. Unimolecular polypharmacology, which involves designing single molecules to target multiple receptors or pathways simultaneously, has revolutionized treatment strategies. Blockbuster drugs such as tirzepatide and retatrutide have shown unprecedented success in managing obesity and T2DM, demonstrating superior efficacy compared to conventional single agonists. Tirzepatide, in particular, has garnered tremendous attention for its remarkable effectiveness in promoting weight loss and improving glycemic control, while offering additional cardiovascular and renal benefits. Despite their promises, such therapeutic agents also face challenges that include gastrointestinal side effects, patient compliance issues, and body weight rebound after cessation of the treatment. Nonetheless, the development of these therapies marks a significant leap forward, underscoring the transformative potential of unimolecular polypharmacology in addressing metabolic diseases and paving the way for future innovations in personalized medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061324-011832
2025-01-23
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061324-011832.html?itemId=/content/journals/10.1146/annurev-pharmtox-061324-011832&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    WHO (World Health Organ.). 2024.. Obesity and overweight. Fact Sheet, WHO, Geneva:. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
    [Google Scholar]
  2. 2.
    Anandhakrishnan A, Korbonits M. 2016.. Glucagon-like peptide-1 in the pathophysiology and pharmacotherapy of clinical obesity. . World J. Diabetes 7::57298
    [Crossref] [Google Scholar]
  3. 3.
    Couzin-Frankel J. 2023.. Obesity meets its match. . Science 382::122627
    [Crossref] [Google Scholar]
  4. 4.
    Donnelly D. 2012.. The structure and function of the glucagon-like peptide-1 receptor and its ligands. . Br. J. Pharmacol. 166::2741
    [Crossref] [Google Scholar]
  5. 5.
    Graaf C, Donnelly D, Wootten D, Lau J, Sexton PM, et al. 2016.. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. . Pharmacol. Rev. 68::9541013
    [Crossref] [Google Scholar]
  6. 6.
    Sandoval DA, D'Alessio DA. 2015.. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. . Physiol. Rev. 95::51348
    [Crossref] [Google Scholar]
  7. 7.
    Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, et al. 2021.. Once-weekly semaglutide in adults with overweight or obesity. . N. Engl. J. Med. 384::9891002
    [Crossref] [Google Scholar]
  8. 8.
    Yao H, Zhang A, Li D, Wu Y, Wang CZ, et al. 2024.. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. . BMJ 384::e076410
    [Crossref] [Google Scholar]
  9. 9.
    Lu J, Liu H, Zhou Q, Wang MW, Li Z. 2023.. A potentially serious adverse effect of GLP-1 receptor agonists. . Acta Pharm. Sin. B 13::229193
    [Crossref] [Google Scholar]
  10. 10.
    Coskun T, Urva S, Roell WC, Qu H, Loghin C, et al. 2022.. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: from discovery to clinical proof of concept. . Cell Metab. 34::123447
    [Crossref] [Google Scholar]
  11. 11.
    Jastreboff AM, Kaplan LM, Frias JP, Wu Q, Du Y, et al. 2023.. Triple-hormone-receptor agonist retatrutide for obesity—a phase 2 trial. . N. Engl. J. Med. 389::51426
    [Crossref] [Google Scholar]
  12. 12.
    Rosenstock J, Frias J, Jastreboff AM, Du Y, Lou J, et al. 2023.. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. . Lancet 402::52944
    [Crossref] [Google Scholar]
  13. 13.
    Urva S, Coskun T, Loh MT, Du Y, Thomas MK, et al. 2022.. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. . Lancet 400::186981
    [Crossref] [Google Scholar]
  14. 14.
    Doggrell SA. 2023.. Retatrutide showing promise in obesity (and type 2 diabetes). . Expert Opin. Investig. Drugs 32::9971001
    [Crossref] [Google Scholar]
  15. 15.
    Zhao F, Zhou Q, Cong Z, Hang K, Zou X, et al. 2022.. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. . Nat. Commun. 13::1057
    [Crossref] [Google Scholar]
  16. 16.
    Li Y, Zhou Q, Dai A, Zhao F, Chang R, et al. 2023.. Structural analysis of the dual agonism at GLP-1R and GCGR. . PNAS 120::e2303696120
    [Crossref] [Google Scholar]
  17. 17.
    Li WZ, Zhou QT, Cong ZT, Yuan QN, Li WX, et al. 2024.. Structural insights into the triple agonism at GLP-1R, GIPR and GCGR manifested by retatrutide. . Cell Discov. 10::77
    [Crossref] [Google Scholar]
  18. 18.
    Sun B, Willard FS, Feng D, Alsina-Fernandez J, Chen Q, et al. 2022.. Structural determinants of dual incretin receptor agonism by tirzepatide. . PNAS 119::e2116506119
    [Crossref] [Google Scholar]
  19. 19.
    Kimball CP, Murlin JR. 1923.. Aqueous extracts of pancreas. III. Some precipitation reactions of insulin. . J. Biol. Chem. 58::33746
    [Crossref] [Google Scholar]
  20. 20.
    Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF. 1986.. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. . J. Biol. Chem. 261::1188089
    [Crossref] [Google Scholar]
  21. 21.
    Thorens B. 1992.. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide-1. . PNAS 89::864145
    [Crossref] [Google Scholar]
  22. 22.
    Dupre J, Ross SA, Watson D, Brown JC. 1973.. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. . J. Clin. Endocrinol. Metab. 37::82628
    [Crossref] [Google Scholar]
  23. 23.
    Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, et al. 2018.. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. . Mol. Metab. 18::314
    [Crossref] [Google Scholar]
  24. 24.
    Finan B, Yang B, Ottaway N, Smiley DL, Ma T, et al. 2015.. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. . Nat. Med. 21::2736
    [Crossref] [Google Scholar]
  25. 25.
    Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, et al. 2009.. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. . Nat. Chem. Biol. 5::74957
    [Crossref] [Google Scholar]
  26. 26.
    Pocai A. 2012.. Unraveling oxyntomodulin, GLP-1’s enigmatic brother. . J. Endocrinol. 215::33546
    [Crossref] [Google Scholar]
  27. 27.
    Scott R, Minnion J, Tan T, Bloom SR. 2018.. Oxyntomodulin analogue increases energy expenditure via the glucagon receptor. . Peptides 104::7077
    [Crossref] [Google Scholar]
  28. 28.
    Brandt SJ, Gotz A, Tschop MH, Muller TD. 2018.. Gut hormone polyagonists for the treatment of type 2 diabetes. . Peptides 100::190201
    [Crossref] [Google Scholar]
  29. 29.
    Schiavon M, Visentin R, Gobel B, Riz M, Cobelli C, et al. 2021.. Improved postprandial glucose metabolism in type 2 diabetes by the dual glucagon-like peptide-1/glucagon receptor agonist SAR425899 in comparison with liraglutide. . Diabetes Obes. Metab. 23::1795805
    [Crossref] [Google Scholar]
  30. 30.
    Tillner J, Posch MG, Wagner F, Teichert L, Hijazi Y, et al. 2019.. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. . Diabetes Obes. Metab. 21::12028
    [Crossref] [Google Scholar]
  31. 31.
    Ali MM, Hafez A, Abdelgalil MS, Hasan MT, El-Ghannam MM, et al. 2022.. Impact of cotadutide drug on patients with type 2 diabetes mellitus: a systematic review and meta-analysis. . BMC Endocr. Disord. 22::113
    [Crossref] [Google Scholar]
  32. 32.
    Thomas L, Martel E, Rist W, Uphues I, Hamprecht D, et al. 2024.. The dual GCGR/GLP-1R agonist survodutide: biomarkers and pharmacological profiling for clinical candidate selection. . Diabetes Obes. Metab. 26::236878
    [Crossref] [Google Scholar]
  33. 33.
    Eriksson O, Haack T, Hijazi Y, Teichert L, Tavernier V, et al. 2020.. Receptor occupancy of dual glucagon-like peptide-1/glucagon receptor agonist SAR425899 in individuals with type 2 diabetes. . Sci. Rep. 10::16758
    [Crossref] [Google Scholar]
  34. 34.
    Nauck MA, D'Alessio DA. 2022.. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. . Cardiovasc. Diabetol. 21::169
    [Crossref] [Google Scholar]
  35. 35.
    Frias JP, Davies MJ, Rosenstock J, Perez Manghi FC, Fernandez Lando L, et al. 2021.. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. . N. Engl. J. Med. 385::50315
    [Crossref] [Google Scholar]
  36. 36.
    Borner T, Geisler CE, Fortin SM, Cosgrove R, Alsina-Fernandez J, et al. 2021.. GIP receptor agonism attenuates GLP-1 receptor agonist-induced nausea and emesis in preclinical models. . Diabetes 70::254553
    [Crossref] [Google Scholar]
  37. 37.
    Borner T, De Jonghe BC, Hayes MR. 2024.. The antiemetic actions of GIP receptor agonism. . Am. J. Physiol. Endocrinol. Metab. 326::E52836
    [Crossref] [Google Scholar]
  38. 38.
    Novikoff A, Muller TD. 2023.. The molecular pharmacology of glucagon agonists in diabetes and obesity. . Peptides 165::171003
    [Crossref] [Google Scholar]
  39. 39.
    Knerr PJ, Mowery SA, Douros JD, Premdjee B, Hjollund KR, et al. 2022.. Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. . Mol. Metab. 63::101533
    [Crossref] [Google Scholar]
  40. 40.
    Davies M, Faerch L, Jeppesen OK, Pakseresht A, Pedersen SD, et al. 2021.. Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. . Lancet 397::97184
    [Crossref] [Google Scholar]
  41. 41.
    Aroda VR, Rosenstock J, Terauchi Y, Altuntas Y, Lalic NM, et al. 2019.. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. . Diabetes Care 42::172432
    [Crossref] [Google Scholar]
  42. 42.
    Sorli C, Harashima SI, Tsoukas GM, Unger J, Karsbol JD, et al. 2017.. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): a double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. . Lancet Diabetes Endocrinol. 5::25160
    [Crossref] [Google Scholar]
  43. 43.
    Rodbard HW, Lingvay I, Reed J, de la Rosa R, Rose L, et al. 2018.. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): a randomized, controlled trial. . J. Clin. Endocrinol. Metab. 103::2291301
    [Crossref] [Google Scholar]
  44. 44.
    Aroda VR, Ahmann A, Cariou B, Chow F, Davies MJ, et al. 2019.. Comparative efficacy, safety, and cardiovascular outcomes with once-weekly subcutaneous semaglutide in the treatment of type 2 diabetes: insights from the SUSTAIN 1–7 trials. . Diabetes Metab. 45::40918
    [Crossref] [Google Scholar]
  45. 45.
    Bluher M, Rosenstock J, Hoefler J, Manuel R, Hennige AM. 2024.. Dose-response effects on HbA1c and bodyweight reduction of survodutide, a dual glucagon/GLP-1 receptor agonist, compared with placebo and open-label semaglutide in people with type 2 diabetes: a randomised clinical trial. . Diabetologia 67::47082
    [Crossref] [Google Scholar]
  46. 46.
    Zhang B, Cheng Z, Chen J, Zhang X, Liu D, et al. 2024.. Efficacy and safety of mazdutide in Chinese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 2 trial. . Diabetes Care 47::16068
    [Crossref] [Google Scholar]
  47. 47.
    Rosenstock J, Wysham C, Frias JP, Kaneko S, Lee CJ, et al. 2021.. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. . Lancet 398::14355
    [Crossref] [Google Scholar]
  48. 48.
    Garvey WT, Batterham RL, Bhatta M, Buscemi S, Christensen LN, et al. 2022.. Two-year effects of semaglutide in adults with overweight or obesity: the STEP 5 trial. . Nat. Med. 28::208391
    [Crossref] [Google Scholar]
  49. 49.
    Pratley R, Amod A, Hoff ST, Kadowaki T, Lingvay I, et al. 2019.. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. . Lancet 394::3950
    [Crossref] [Google Scholar]
  50. 50.
    le Roux CW, Steen O, Lucas KJ, Startseva E, Unseld A, Hennige AM. 2024.. Glucagon and GLP-1 receptor dual agonist survodutide for obesity: a randomised, double-blind, placebo-controlled, dose-finding phase 2 trial. . Lancet Diabetes Endocrinol. 12::16273
    [Crossref] [Google Scholar]
  51. 51.
    Ji L, Jiang H, Cheng Z, Qiu W, Liao L, et al. 2023.. A phase 2 randomised controlled trial of mazdutide in Chinese overweight adults or adults with obesity. . Nat. Commun. 14::8289
    [Crossref] [Google Scholar]
  52. 52.
    Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, et al. 2022.. Tirzepatide once weekly for the treatment of obesity. . N. Engl. J. Med. 387::20516
    [Crossref] [Google Scholar]
  53. 53.
    Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, et al. 2021.. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. . Lancet Diabetes Endocrinol. 9::65362
    [Crossref] [Google Scholar]
  54. 54.
    Nagueh SF. 2021.. Heart failure with preserved ejection fraction: insights into diagnosis and pathophysiology. . Cardiovasc. Res. 117::9991014
    [Crossref] [Google Scholar]
  55. 55.
    Kosiborod MN, Petrie MC, Borlaug BA, Butler J, Davies MJ, et al. 2024.. Semaglutide in patients with obesity-related heart failure and type 2 diabetes. . N. Engl. J. Med. 390::1394407
    [Crossref] [Google Scholar]
  56. 56.
    Kosiborod MN, Abildstrom SZ, Borlaug BA, Butler J, Rasmussen S, et al. 2023.. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. . N. Engl. J. Med. 389::106984
    [Crossref] [Google Scholar]
  57. 57.
    Sattar N, McGuire DK, Pavo I, Weerakkody GJ, Nishiyama H, et al. 2022.. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. . Nat. Med. 28::59198
    [Crossref] [Google Scholar]
  58. 58.
    Hankosky ER, Wang H, Neff LM, Kan H, Wang F, et al. 2024.. Tirzepatide reduces the predicted risk of atherosclerotic cardiovascular disease and improves cardiometabolic risk factors in adults with obesity or overweight: SURMOUNT-1 post hoc analysis. . Diabetes Obes. Metab. 26::31928
    [Crossref] [Google Scholar]
  59. 59.
    Nicholls SJ, Bhatt DL, Buse JB, Prato SD, Kahn SE, et al. 2024.. Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events in participants with type 2 diabetes and atherosclerotic cardiovascular disease: SURPASS-CVOT design and baseline characteristics. . Am. Heart J. 267::111
    [Crossref] [Google Scholar]
  60. 60.
    Lv R, Xu L, Che L, Liu S, Wang Y, Dong B. 2023.. Cardiovascular-renal protective effect and molecular mechanism of finerenone in type 2 diabetic mellitus. . Front. Endocrinol. 14::1125693
    [Crossref] [Google Scholar]
  61. 61.
    Michos ED, Bakris GL, Rodbard HW, Tuttle KR. 2023.. Glucagon-like peptide-1 receptor agonists in diabetic kidney disease: a review of their kidney and heart protection. . Am. J. Prev. Cardiol. 14::100502
    [Crossref] [Google Scholar]
  62. 62.
    Lin Y, Wang TH, Tsai ML, Wu VC, Tseng CJ, et al. 2023.. The cardiovascular and renal effects of glucagon-like peptide-1 receptor agonists in patients with advanced diabetic kidney disease. . Cardiovasc. Diabetol. 22::60
    [Crossref] [Google Scholar]
  63. 63.
    Yu JH, Park SY, Lee DY, Kim NH, Seo JA. 2022.. GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions. . Kidney Res. Clin. Pract. 41::13649
    [Crossref] [Google Scholar]
  64. 64.
    McFarlin BE, Duffin KL, Konkar A. 2024.. Incretin and glucagon receptor polypharmacology in chronic kidney disease. . Am. J. Physiol. Endocrinol. Metab. 326::E74766
    [Crossref] [Google Scholar]
  65. 65.
    Kawanami D, Takashi Y. 2020.. GLP-1 receptor agonists in diabetic kidney disease: from clinical outcomes to mechanisms. . Front. Pharmacol. 11::967
    [Crossref] [Google Scholar]
  66. 66.
    Heerspink HJL, Apperloo E, Davies M, Dicker D, Kandler K, et al. 2023.. Effects of semaglutide on albuminuria and kidney function in people with overweight or obesity with or without type 2 diabetes: exploratory analysis from the STEP 1, 2, and 3 trials. . Diabetes Care 46::80110
    [Crossref] [Google Scholar]
  67. 67.
    Tuttle KR, Bosch-Traberg H, Cherney DZI, Hadjadj S, Lawson J, et al. 2023.. Post hoc analysis of SUSTAIN 6 and PIONEER 6 trials suggests that people with type 2 diabetes at high cardiovascular risk treated with semaglutide experience more stable kidney function compared with placebo. . Kidney Int. 103::77281
    [Crossref] [Google Scholar]
  68. 68.
    Perkovic V, Tuttle KR, Rossing P, Mahaffey KW, Mann JFE, et al. 2024.. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. . N. Engl. J. Med. 391::10921
    [Crossref] [Google Scholar]
  69. 69.
    Heerspink HJL, Sattar N, Pavo I, Haupt A, Duffin KL, et al. 2022.. Effects of tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. . Lancet Diabetes Endocrinol. 10::77485
    [Crossref] [Google Scholar]
  70. 70.
    Atri A, Feldman HH, Hansen CT, Honore JB, Johannsen P, et al. 2022.. Evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating the neuroprotective effects of semaglutide in early Alzheimer's disease. . Alzheimer's Dement. 18::e062415
    [Crossref] [Google Scholar]
  71. 71.
    Hunter K, Holscher C. 2012.. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. . BMC Neurosci. 13::33
    [Crossref] [Google Scholar]
  72. 72.
    Liang Y, Dore V, Rowe CC, Krishnadas N. 2024.. Clinical evidence for GLP-1 receptor agonists in Alzheimer's disease: a systematic review. . J. Alzheimer's Dis. Rep. 8::77789
    [Crossref] [Google Scholar]
  73. 73.
    Kong F, Wu T, Dai J, Zhai Z, Cai J, et al. 2023.. Glucagon-like peptide-1 (GLP-1) receptor agonists in experimental Alzheimer's disease models: a systematic review and meta-analysis of preclinical studies. . Front. Pharmacol. 14::1205207
    [Crossref] [Google Scholar]
  74. 74.
    Holscher C. 2022.. Glucagon-like peptide-1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer's and Parkinson's diseases. . Front. Synapt. Neurosci. 14::955258
    [Crossref] [Google Scholar]
  75. 75.
    Maskery M, Goulding EM, Gengler S, Melchiorsen JU, Rosenkilde MM, Holscher C. 2020.. The dual GLP-1/GIP receptor agonist DA4-JC shows superior protective properties compared to the GLP-1 analogue liraglutide in the APP/PS1 mouse model of Alzheimer's disease. . Am. J. Alzheimer's Dis. Other Demen. 35::1533317520953041
    [Crossref] [Google Scholar]
  76. 76.
    Kalinderi K, Papaliagkas V, Fidani L. 2024.. GLP-1 receptor agonists: a new treatment in Parkinson's disease. . Int. J. Mol. Sci. 25::3812
    [Crossref] [Google Scholar]
  77. 77.
    Reich N, Holscher C. 2022.. The neuroprotective effects of glucagon-like peptide-1 in Alzheimer's and Parkinson's disease: an in-depth review. . Front. Neurosci. 16::970925
    [Crossref] [Google Scholar]
  78. 78.
    Aviles-Olmos I, Dickson J, Kefalopoulou Z, Djamshidian A, Ell P, et al. 2013.. Exenatide and the treatment of patients with Parkinson's disease. . J. Clin. Investig. 123::273036
    [Crossref] [Google Scholar]
  79. 79.
    Meissner WG, Remy P, Giordana C, Maltête D, Derkinderen P, et al. 2024.. Trial of lixisenatide in early Parkinson's disease. . N. Engl. J. Med. 390::117685
    [Crossref] [Google Scholar]
  80. 80.
    Zhang Z, Shi M, Li Z, Ling Y, Zhai L, et al. 2023.. A dual GLP-1/GIP receptor agonist is more effective than liraglutide in the A53T mouse model of Parkinson's disease. . Parkinson's Dis. 2023::7427136
    [Google Scholar]
  81. 81.
    Bendotti G, Montefusco L, Lunati ME, Usuelli V, Pastore I, et al. 2022.. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. . Pharmacol. Res. 182::106320
    [Crossref] [Google Scholar]
  82. 82.
    Verma S, Bhatta M, Davies M, Deanfield JE, Garvey WT, et al. 2023.. Effects of once-weekly semaglutide 2.4 mg on C-reactive protein in adults with overweight or obesity (STEP 1, 2, and 3): exploratory analyses of three randomised, double-blind, placebo-controlled, phase 3 trials. . eClinicalMedicine 55::101737
    [Crossref] [Google Scholar]
  83. 83.
    Lee YS, Jun HS. 2016.. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. . Mediators Inflamm. 2016::3094642
    [Google Scholar]
  84. 84.
    Katsiki N, Ferrannini E. 2020.. Anti-inflammatory properties of antidiabetic drugs: a “promised land” in the COVID-19 era?. J. Diabetes Complicat. 34::107723
    [Crossref] [Google Scholar]
  85. 85.
    Nahra R, Wang T, Gadde KM, Oscarsson J, Stumvoll M, et al. 2021.. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. . Diabetes Care 44::143342
    [Crossref] [Google Scholar]
  86. 86.
    Lee YS, Park MS, Choung JS, Kim SS, Oh HH, et al. 2012.. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. . Diabetologia 55::245668
    [Crossref] [Google Scholar]
  87. 87.
    Liu L, Yan H, Xia M, Zhao L, Lv M, et al. 2020.. Efficacy of exenatide and insulin glargine on nonalcoholic fatty liver disease in patients with type 2 diabetes. . Diabetes Metab. Res. Rev. 36::e3292
    [Crossref] [Google Scholar]
  88. 88.
    Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, et al. 2021.. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. . N. Engl. J. Med. 384::111324
    [Crossref] [Google Scholar]
  89. 89.
    Mantovani A, Petracca G, Beatrice G, Csermely A, Lonardo A, Targher G. 2021.. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. . Metabolites 11::73
    [Crossref] [Google Scholar]
  90. 90.
    Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, et al. 2016.. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. . Lancet 387::67990
    [Crossref] [Google Scholar]
  91. 91.
    Boland ML, Laker RC, Mather K, Nawrocki A, Oldham S, et al. 2020.. Resolution of NASH and hepatic fibrosis by the GLP-1R/GCGR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis. . Nat. Metab. 2::41331
    [Crossref] [Google Scholar]
  92. 92.
    Loomba R, Hartman ML, Lawitz EJ, Vuppalanchi R, Boursier J, et al. 2024.. Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. . N. Engl. J. Med. 391::299310
    [Crossref] [Google Scholar]
  93. 93.
    Sanyal AJ, Bedossa P, Fraessdorf M, Neff GW, Lawitz E, et al. 2024.. A phase 2 randomized trial of survodutide in MASH and fibrosis. . N. Engl. J. Med. 391::31119
    [Crossref] [Google Scholar]
  94. 94.
    Sanyal AJ, Kaplan LM, Frias JP, Brouwers B, Wu Q, et al. 2024.. Triple hormone receptor agonist retatrutide for metabolic dysfunction-associated steatotic liver disease: a randomized phase 2a trial. . Nat. Med. 30::203748
    [Crossref] [Google Scholar]
  95. 95.
    Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. 2024.. Association of semaglutide with reduced incidence and relapse of cannabis use disorder in real-world populations: a retrospective cohort study. . Mol. Psychiatry. 29::258798
    [Crossref] [Google Scholar]
  96. 96.
    Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. 2024.. Association of semaglutide with tobacco use disorder in patients with type 2 diabetes: target trial emulation using real-world data. . Ann. Intern. Med. 177:(8):101627
    [Crossref] [Google Scholar]
  97. 97.
    Bliddal H, Bays H, Czernichow S, Hemmingsson JU, Hjelmesæth J, et al. 2024.. Semaglutide 2.4 mg efficacy and safety in people with obesity and knee osteoarthritis: results from the STEP 9 randomised clinical trial. . Osteoarthr. Cartil. 32::74546
    [Crossref] [Google Scholar]
  98. 98.
    Malhotra A, Grunstein RR, Fietze I, Weaver TE, Redline S, et al. 2024.. Tirzepatide for the treatment of obstructive sleep apnea and obesity. . N. Engl. J. Med. In press. https://doi.org/10.1056/NEJMoa2404881
    [Google Scholar]
  99. 99.
    Gorgojo-Martínez JJ, Mezquita-Raya P, Carretero-Gómez J, Castro A, Cebrián-Cuenca A, et al. 2023.. Clinical recommendations to manage gastrointestinal adverse events in patients treated with GLP-1 receptor agonists: a multidisciplinary expert consensus. . J. Clin. Med. 12::145
    [Crossref] [Google Scholar]
  100. 100.
    Amori RE, Lau J, Pittas AG. 2007.. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. . JAMA 298::194206
    [Crossref] [Google Scholar]
  101. 101.
    Garber AJ. 2011.. Long-acting glucagon-like peptide-1 receptor agonists: a review of their efficacy and tolerability. . Diabetes Care 34:(Suppl. 2):S27984
    [Crossref] [Google Scholar]
  102. 102.
    McGovern A, Tippu Z, Hinton W, Munro N, Whyte M, de Lusignan S. 2018.. Comparison of medication adherence and persistence in type 2 diabetes: a systematic review and meta-analysis. . Diabetes Obes. Metab. 20::104043
    [Crossref] [Google Scholar]
  103. 103.
    Prasad-Reddy L, Isaacs D. 2015.. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. . Drugs Context 4::212283
    [Crossref] [Google Scholar]
  104. 104.
    Caruso I, Giorgino F. 2024.. Renal effects of GLP-1 receptor agonists and tirzepatide in individuals with type 2 diabetes: seeds of a promising future. . Endocrine 84::82235
    [Crossref] [Google Scholar]
  105. 105.
    Dong S, Sun C. 2022.. Can glucagon-like peptide-1 receptor agonists cause acute kidney injury? An analytical study based on post-marketing approval pharmacovigilance data. . Front. Endocrinol. 13::1032199
    [Crossref] [Google Scholar]
  106. 106.
    Brady SM, Kane MP, Busch RS. 2016.. GLP-1 agonist use in a patient with an explainable cause of pancreatitis. . AACE Clin. Case Rep. 2::e8285
    [Crossref] [Google Scholar]
  107. 107.
    Singh S, Chang HY, Richards TM, Weiner JP, Clark JM, Segal JB. 2013.. Glucagon-like peptide-1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. . JAMA Intern. Med. 173::53439
    [Crossref] [Google Scholar]
  108. 108.
    Nauck MA, Frossard JL, Barkin JS, Anglin G, Hensley IE, et al. 2017.. Assessment of pancreas safety in the development program of once-weekly GLP-1 receptor agonist dulaglutide. . Diabetes Care 40::64754
    [Crossref] [Google Scholar]
  109. 109.
    Dankner R, Murad H, Agay N, Olmer L, Freedman LS. 2024.. Glucagon-like peptide-1 receptor agonists and pancreatic cancer risk in patients with type 2 diabetes. . JAMA Netw. Open 7::e2350408
    [Crossref] [Google Scholar]
  110. 110.
    Cao C, Yang S, Zhou Z. 2020.. GLP-1 receptor agonists and pancreatic safety concerns in type 2 diabetic patients: data from cardiovascular outcome trials. . Endocrine 68::51825
    [Crossref] [Google Scholar]
  111. 111.
    Bezin J, Gouverneur A, Penichon M, Mathieu C, Garrel R, et al. 2023.. GLP-1 receptor agonists and the risk of thyroid cancer. . Diabetes Care 46::38490
    [Crossref] [Google Scholar]
  112. 112.
    Pasternak B, Wintzell V, Hviid A, Eliasson B, Gudbjornsdottir S, et al. 2024.. Glucagon-like peptide-1 receptor agonist use and risk of thyroid cancer: Scandinavian cohort study. . BMJ 385::e078225
    [Crossref] [Google Scholar]
  113. 113.
    Wang W, Volkow ND, Berger NA, Davis PB, Kaelber DC, Xu R. 2024.. Association of semaglutide with risk of suicidal ideation in a real-world cohort. . Nat. Med. 30::16876
    [Crossref] [Google Scholar]
  114. 114.
    Able C, Liao B, Saffati G, Maremanda A, Applewhite J, et al. 2024.. Prescribing semaglutide for weight loss in non-diabetic, obese patients is associated with an increased risk of erectile dysfunction: a TriNetX database study. . Int. J. Impot. Res. In press. https://doi.org/10.1038/s41443-024-00895-6
    [Google Scholar]
  115. 115.
    Hathaway JT, Shah MP, Hathaway DB, Zekavat SM, Krasniqi D, et al. 2024.. Risk of nonarteritic anterior ischemic optic neuropathy in patients prescribed semaglutide. . JAMA Ophthalmol. 142::73239
    [Crossref] [Google Scholar]
  116. 116.
    Weiss T, Carr RD, Pal S, Yang L, Sawhney B, et al. 2020.. Real-world adherence and discontinuation of glucagon-like peptide-1 receptor agonists therapy in type 2 diabetes mellitus patients in the United States. . Patient Prefer. Adherence 14::233745
    [Crossref] [Google Scholar]
  117. 117.
    Gasoyan H, Pfoh ER, Schulte R, Le P, Rothberg MB. 2024.. Early- and later-stage persistence with antiobesity medications: a retrospective cohort study. . Obesity 32::48693
    [Crossref] [Google Scholar]
  118. 118.
    Qiao Q, Ouwens MJ, Grandy S, Johnsson K, Kostev K. 2016.. Adherence to GLP-1 receptor agonist therapy administered by once-daily or once-weekly injection in patients with type 2 diabetes in Germany. . Diabetes Metab. Syndr. Obes. 9::2015
    [Crossref] [Google Scholar]
  119. 119.
    Palanca A, Ampudia-Blasco FJ, Calderon JM, Sauri I, Martinez-Hervas S, et al. 2023.. Real-world evaluation of GLP-1 receptor agonist therapy persistence, adherence and therapeutic inertia among obese adults with type 2 diabetes. . Diabetes Ther. 14::72336
    [Crossref] [Google Scholar]
  120. 120.
    Yang CT, Yao WY, Ou HT, Kuo S. 2023.. Value of GLP-1 receptor agonists versus long-acting insulins for type 2 diabetes patients with and without established cardiovascular or chronic kidney diseases: a model-based cost-effectiveness analysis using real-world data. . Diabetes Res. Clin. Pract. 198::110625
    [Crossref] [Google Scholar]
  121. 121.
    Li P, Guan D, Ali MK, Venkat Narayan KM, Fonseca V, et al. 2023.. Distributional cost-effectiveness analysis of glucagon-like peptide-1 receptor agonists (GLP-1RA) and tirzepatide compared with sulfonylureas (SU) in people with inadequately controlled type 2 diabetes (T2D). . Diabetes 72:(Suppl. 1):1006
    [Crossref] [Google Scholar]
  122. 122.
    Essien UR, Singh B, Swabe G, Johnson AE, Eberly LA, et al. 2023.. Association of prescription co-payment with adherence to glucagon-like peptide-1 receptor agonist and sodium-glucose cotransporter-2 inhibitor therapies in patients with heart failure and diabetes. . JAMA Netw. Open. 6::e2316290
    [Crossref] [Google Scholar]
  123. 123.
    Wilding JPH, Batterham RL, Davies M, Van Gaal LF, Kandler K, et al. 2022.. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. . Diabetes Obes. Metab. 24::155364
    [Crossref] [Google Scholar]
  124. 124.
    Aronne LJ, Sattar N, Horn DB, Bays HE, Wharton S, et al. 2024.. Continued treatment with tirzepatide for maintenance of weight reduction in adults with obesity: the SURMOUNT-4 randomized clinical trial. . JAMA 331::3848
    [Crossref] [Google Scholar]
  125. 125.
    Jensen SBK, Blond MB, Sandsdal RM, Olsen LM, Juhl CR, et al. 2024.. Healthy weight loss maintenance with exercise, GLP-1 receptor agonist, or both combined followed by one year without treatment: a post-treatment analysis of a randomised placebo-controlled trial. . eClinicalMedicine 69::102475
    [Crossref] [Google Scholar]
  126. 126.
    Jensen AB, Renstrom F, Aczel S, Folie P, Biraima-Steinemann M, et al. 2023.. Efficacy of the glucagon-like peptide-1 receptor agonists liraglutide and semaglutide for the treatment of weight regain after bariatric surgery: a retrospective observational study. . Obes. Surg. 33::101725
    [Crossref] [Google Scholar]
  127. 127.
    Calik Basaran N, Dotan I, Dicker D. 2024.. Post metabolic bariatric surgery weight regain: the importance of GLP-1 levels. . Int. J. Obes. In press. https://doi.org/10.1038/s41366-024-01461-2
    [Google Scholar]
  128. 128.
    Griffith DA, Edmonds DJ, Fortin JP, Kalgutkar AS, Kuzmiski JB, et al. 2022.. A small-molecule oral agonist of the human glucagon-like peptide-1 receptor. . J. Med. Chem. 65::820826
    [Crossref] [Google Scholar]
  129. 129.
    Saxena AR, Frias JP, Brown LS, Gorman DN, Vasas S, et al. 2023.. Efficacy and safety of oral small molecule glucagon-like peptide-1 receptor agonist danuglipron for glycemic control among patients with type 2 diabetes: a randomized clinical trial. . JAMA Netw. Open 6::e2314493
    [Crossref] [Google Scholar]
  130. 130.
    Buckeridge C, Tsamandouras N, Carvajal-Gonzalez S, Brown LS, Hernandez-Illas M, Saxena AR. 2024.. Once-daily oral small-molecule glucagon-like peptide-1 receptor agonist lotiglipron (PF-07081532) for type 2 diabetes and obesity: two randomized, placebo-controlled, multiple-ascending-dose phase 1 studies. . Diabetes Obes. Metab. 26::315566
    [Crossref] [Google Scholar]
  131. 131.
    Wharton S, Blevins T, Connery L, Rosenstock J, Raha S, et al. 2023.. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. . N. Engl. J. Med. 389::87788
    [Crossref] [Google Scholar]
  132. 132.
    Frias JP, Hsia S, Eyde S, Liu R, Ma X, et al. 2023.. Efficacy and safety of oral orforglipron in patients with type 2 diabetes: a multicentre, randomised, dose-response, phase 2 study. . Lancet 402::47283
    [Crossref] [Google Scholar]
  133. 133.
    Gogineni P, Melson E, Papamargaritis D, Davies M. 2024.. Oral glucagon-like peptide-1 receptor agonists and combinations of entero-pancreatic hormones as treatments for adults with type 2 diabetes: Where are we now?. Expert Opin. Pharmacother. 25::80118
    [Crossref] [Google Scholar]
  134. 134.
    Goldenberg RM, Gilbert JD, Manjoo P, Pedersen SD, Woo VC, Lovshin JA. 2024.. Management of type 2 diabetes, obesity, or nonalcoholic steatohepatitis with high-dose GLP-1 receptor agonists and GLP-1 receptor-based co-agonists. . Obes. Rev. 25::e13663
    [Crossref] [Google Scholar]
  135. 135.
    Gonzalez-Garcia I, Milbank E, Dieguez C, Lopez M, Contreras C. 2019.. Glucagon, GLP-1 and thermogenesis. . Int. J. Mol. Sci. 20::3445
    [Crossref] [Google Scholar]
  136. 136.
    Lutz TA. 2022.. Creating the amylin story. . Appetite 172::105965
    [Crossref] [Google Scholar]
  137. 137.
    Wong G, Garner EM, Srivastava G. 2023.. Combined GLP-1 receptor agonist and amylin analogue pharmacotherapy to treat obesity comorbid with type 1 diabetes. . JCEM Case Rep. 1::luad040
    [Crossref] [Google Scholar]
  138. 138.
    Roth JD, Erickson MR, Chen S, Parkes DG. 2012.. GLP-1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. . Br. J. Pharmacol. 166::12136
    [Crossref] [Google Scholar]
  139. 139.
    Frias JP, Deenadayalan S, Erichsen L, Knop FK, Lingvay I, et al. 2023.. Efficacy and safety of co-administered once-weekly cagrilintide 2.4 mg with once-weekly semaglutide 2.4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. . Lancet 402::72030
    [Crossref] [Google Scholar]
  140. 140.
    Melson E, Ashraf U, Papamargaritis D, Davies MJ. 2024.. What is the pipeline for future medications for obesity?. Int. J. Obes. In press. https://doi.org/10.1038/s41366-024-01473-y
    [Google Scholar]
  141. 141.
    Rondinone CM, Ghosh S, Danho W. 2024.. Compositions including multi-agonist peptides and methods of manufacture and use. US Patent US20240059753A1
    [Google Scholar]
  142. 142.
    Chau MD, Gao J, Yang Q, Wu Z, Gromada J. 2010.. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. . PNAS 107::1255358
    [Crossref] [Google Scholar]
  143. 143.
    Tillman EJ, Rolph T. 2020.. FGF21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. . Front. Endocrinol. 11::601290
    [Crossref] [Google Scholar]
  144. 144.
    Pan Q, Lin S, Li Y, Liu L, Li X, et al. 2021.. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. . eBioMedicine 63::103202
    [Crossref] [Google Scholar]
  145. 145.
    Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. 2023.. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine. . Int. J. Biol. Sci. 19::6688
    [Crossref] [Google Scholar]
  146. 146.
    Ye X, Chen Y, Qi J, Zhu S, Wu Y, et al. 2023.. Design and pharmaceutical evaluation of bifunctional fusion protein of FGF21 and GLP-1 in the treatment of nonalcoholic steatohepatitis. . Eur. J. Pharmacol. 952::175811
    [Crossref] [Google Scholar]
  147. 147.
    Amatya R, Lee D, Min KA, Shin MC. 2023.. Pharmaceutical strategies to improve druggability of potential drug candidates in nonalcoholic fatty liver disease therapy. . Pharmaceutics 15::1963
    [Crossref] [Google Scholar]
  148. 148.
    Harrison SA, Frias JP, Lucas KJ, Reiss G, Neff G, et al. 2024.. Safety and efficacy of efruxifermin in combination with a GLP-1 receptor agonist in patients with NASH/MASH and type 2 diabetes in a randomized phase 2 study. . Clin. Gastroenterol. Hepatol. In press. https://doi.org/10.1016/j.cgh.2024.02.022
    [Google Scholar]
  149. 149.
    Petersen J, Ludwig MQ, Juozaityte V, Ranea-Robles P, Svendsen C, et al. 2024.. GLP-1-directed NMDA receptor antagonism for obesity treatment. . Nature 629::113341
    [Crossref] [Google Scholar]
  150. 150.
    Veniant MM, Lu SC, Atangan L, Komorowski R, Stanislaus S, et al. 2024.. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. . Nat. Metab. 6::290303
    [Crossref] [Google Scholar]
  151. 151.
    Drucker DJ. 2024.. Efficacy and safety of GLP-1 medicines for type 2 diabetes and obesity. . Diabetes Care. 47:(11):187388
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061324-011832
Loading
/content/journals/10.1146/annurev-pharmtox-061324-011832
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error