1932

Abstract

New drug modalities offer life-saving benefits for patients through access to previously undruggable targets. Yet these modalities pose a challenge for the pharmaceutical industry, as side effects are complex, unpredictable, and often uniquely human. With animal studies having limited predictive value due to translatability challenges, the pharmaceutical industry seeks out new approach methodologies. Microphysiological systems (MPS) offer important features that enable complex toxicological processes to be modeled in vitro such as () an adjustable complexity of cellular components, including immune components; () a modifiable tissue architecture; () integration and monitoring of dynamic mechanisms; and () a multiorgan connection. Here we review MPS studies in the context of four clinical adverse events triggered by new drug modalities: peripheral neuropathy, thrombocytopenia, immune-mediated hepatotoxicity, and cytokine release syndrome. We conclude that while the use of MPS for testing new drug modality–induced toxicities is still in its infancy, we see strong potential going forward.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080621
2025-01-23
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080621.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080621&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Blanco M-J. 2022.. New therapeutic modalities: transforming drug discovery and development. . In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays, ed. FJ Hock, MR Gralinski, MK Pugsley , pp. 121. Cham, Switz:.: Springer
    [Google Scholar]
  2. 2.
    Choi Y, Vinks AA, van der Graaf PH. 2023.. Novel therapeutic modalities: The future is now. . Clin. Pharmacol. Ther. 114:(3):49396
    [Crossref] [Google Scholar]
  3. 3.
    Harper J, Adams KJ, Bossi G, Wright DE, Stacey AR, et al. 2018.. An approved in vitro approach to preclinical safety and efficacy evaluation of engineered T cell receptor anti-CD3 bispecific (ImmTAC) molecules. . PLOS ONE 13:(10):e0205491
    [Crossref] [Google Scholar]
  4. 4.
    Cipriano M, Schlünder K, Probst C, Linke K, Weiss M, et al. 2022.. Human immunocompetent choroid-on-chip: a novel tool for studying ocular effects of biological drugs. . Commun. Biol. 5:(1):52
    [Crossref] [Google Scholar]
  5. 5.
    Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, et al. 2023.. The evolving role of investigative toxicology in the pharmaceutical industry. . Nat. Rev. Drug Discov. 22:(4):31735
    [Crossref] [Google Scholar]
  6. 6.
    Marx U, Akabane T, Andersson TB, Baker E, Beilmann M, et al. 2020.. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. . ALTEX 37:(3):36594
    [Google Scholar]
  7. 7.
    Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. 2021.. Organs-on-chips: into the next decade. . Nat. Rev. Drug Discov. 20:(5):34561
    [Crossref] [Google Scholar]
  8. 8.
    Pittman ME, Edwards SW, Ives C, Mortensen HM. 2018.. AOP-DB: a database resource for the exploration of Adverse Outcome Pathways through integrated association networks. . Toxicol. Appl. Pharmacol. 343::7183
    [Crossref] [Google Scholar]
  9. 9.
    Xiao X, Huang S, Chen S, Wang Y, Sun Q, et al. 2021.. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. . J. Exp. Clin. Cancer Res. 40:(1):367
    [Crossref] [Google Scholar]
  10. 10.
    Boussommier-Calleja A, Atiyas Y, Haase K, Headley M, Lewis C, Kamm RD. 2019.. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. . Biomaterials 198::18093
    [Crossref] [Google Scholar]
  11. 11.
    Nair AL, Groenendijk L, Overdevest R, Fowke TM, Annida R, et al. 2023.. Human BBB-on-a-chip reveals barrier disruption, endothelial inflammation, and T cell migration under neuroinflammatory conditions. . Front. Mol. Neurosci. 16::1250123
    [Crossref] [Google Scholar]
  12. 12.
    Rogal J, Roosz J, Teufel C, Cipriano M, Xu R, et al. 2022.. Autologous human immunocompetent white adipose tissue-on-chip. . Adv. Sci. 9:(18):e2104451
    [Crossref] [Google Scholar]
  13. 13.
    Jang K-J, Otieno MA, Ronxhi J, Lim H-K, Ewart L, et al. 2019.. Reproducing human and cross-species drug toxicities using a Liver-Chip. . Sci. Transl. Med. 11:(517):eaax5516
    [Crossref] [Google Scholar]
  14. 14.
    Pediaditakis I, Kodella KR, Manatakis DV, Le CY, Barthakur S, et al. 2022.. A microengineered Brain-Chip to model neuroinflammation in humans. . iScience 25:(8):104813
    [Crossref] [Google Scholar]
  15. 15.
    Bi Y, Shirure VS, Liu R, Cunningham C, Ding L, et al. 2020.. Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression. . Integr. Biol. 12:(9):22132
    [Crossref] [Google Scholar]
  16. 16.
    Cui X, Ma C, Vasudevaraja V, Serrano J, Tong J, et al. 2020.. Dissecting the immunosuppressive tumor microenvironments in glioblastoma-on-a-chip for optimized PD-1 immunotherapy. . eLife 9::e52253
    [Crossref] [Google Scholar]
  17. 17.
    Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, et al. 2016.. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. . Nat. Methods 13:(2):15157
    [Crossref] [Google Scholar]
  18. 18.
    Vinnakota JM, Biavasco F, Schwabenland M, Chhatbar C, Adams RC, et al. 2023.. Immune-effector-cell-associated-neurotoxicity-syndrome (ICANS) pathophysiology is mediated by microglia TGF-β-activated kinase-1 signaling. . Blood 142:(Suppl. 1):100
    [Crossref] [Google Scholar]
  19. 19.
    Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, et al. 2018.. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. . Nat. Med. 24:(6):73948
    [Crossref] [Google Scholar]
  20. 20.
    Wevers NR, Nair AL, Fowke TM, Pontier M, Kasi DG, et al. 2021.. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. . Fluids Barriers CNS 18:(1):59
    [Crossref] [Google Scholar]
  21. 21.
    Ahn SI, Sei YJ, Park H-J, Kim J, Ryu Y, et al. 2020.. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. . Nat. Commun. 11:(1):175
    [Crossref] [Google Scholar]
  22. 22.
    Maoz BM, Herland A, FitzGerald EA, Grevesse T, Vidoudez C, et al. 2018.. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. . Nat. Biotechnol. 36:(9):86574
    [Crossref] [Google Scholar]
  23. 23.
    Park T-E, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, et al. 2019.. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. . Nat. Commun. 10:(1):2621
    [Crossref] [Google Scholar]
  24. 24.
    Pediaditakis I, Kodella KR, Manatakis DV, Le CY, Hinojosa CD, et al. 2021.. Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. . Nat. Commun. 12:(1):5907
    [Crossref] [Google Scholar]
  25. 25.
    Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, et al. 2019.. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. . Cell Stem Cell 24:(6):9951005.e6
    [Crossref] [Google Scholar]
  26. 26.
    Brown JA, Codreanu SG, Shi M, Sherrod SD, Markov DA, et al. 2016.. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. . J. Neuroinflamm. 13:(1):306
    [Crossref] [Google Scholar]
  27. 27.
    Stresser DM, Kopec AK, Hewitt P, Hardwick RN, Van Vleet TR, et al. 2024.. Towards in vitro models for reducing or replacing the use of animals in drug testing. . Nat. Biomed. Eng. 8::93035
    [Crossref] [Google Scholar]
  28. 28.
    Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, et al. 2012.. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. . Sci. Transl. Med. 4:(159): 159ra147
    [Crossref] [Google Scholar]
  29. 29.
    Trietsch SJ, Naumovska E, Kurek D, Setyawati MC, Vormann MK, et al. 2017.. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. . Nat. Commun. 8:(1):262
    [Crossref] [Google Scholar]
  30. 30.
    Shaughnessey EM, Kann SH, Azizgolshani H, Black LD, Charest JL, Vedula EM. 2022.. Evaluation of rapid transepithelial electrical resistance (TEER) measurement as a metric of kidney toxicity in a high-throughput microfluidic culture system. . Sci. Rep. 12:(1):13182
    [Crossref] [Google Scholar]
  31. 31.
    Ronaldson-Bouchard K, Teles D, Yeager K, Tavakol DN, Zhao Y, et al. 2022.. A multi-organ chip with matured tissue niches linked by vascular flow. . Nat. Biomed. Eng. 6:(4):35171
    [Crossref] [Google Scholar]
  32. 32.
    Maulana TI, Kromidas E, Wallstabe L, Cipriano M, Alb M, et al. 2021.. Immunocompetent cancer-on-chip models to assess immuno-oncology therapy. . Adv. Drug Deliv. Rev. 173::281305
    [Crossref] [Google Scholar]
  33. 33.
    Ingber DE. 2022.. Human organs-on-chips for disease modelling, drug development and personalized medicine. . Nat. Rev. Genet. 23:(8):46791
    [Crossref] [Google Scholar]
  34. 34.
    Nawroth JC, Roth D, van Schadewijk A, Ravi A, Maulana TI, et al. 2023.. Breathing on chip: Dynamic flow and stretch accelerate mucociliary maturation of airway epithelium in vitro. . Mater. Today Bio 21::100713
    [Crossref] [Google Scholar]
  35. 35.
    Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S. 2020.. Gut-on-chip: recreating human intestine in vitro. . J. Tissue Eng. 11::2041731420965318
    [Crossref] [Google Scholar]
  36. 36.
    Kroll KT, Mata MM, Homan KA, Micallef V, Carpy A, et al. 2023.. Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies. . PNAS 120:(35):e2305322120
    [Crossref] [Google Scholar]
  37. 37.
    Fuchs S, Johansson S, Tjell , Werr G, Mayr T, Tenje M. 2021.. In-line analysis of organ-on-chip systems with sensors: integration, fabrication, challenges, and potential. . ACS Biomater. Sci. Eng. 7:(7):292648
    [Crossref] [Google Scholar]
  38. 38.
    Huang Q, Garrett A, Bose S, Blocker S, Rios AC, et al. 2021.. The frontier of live tissue imaging across space and time. . Cell Stem Cell 28:(4):60322
    [Crossref] [Google Scholar]
  39. 39.
    McAleer CW, Pointon A, Long CJ, Brighton RL, Wilkin BD, et al. 2019.. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. . Sci. Rep. 9:(1):9619
    [Crossref] [Google Scholar]
  40. 40.
    Skardal A, Murphy SV, Devarasetty M, Mead I, Kang H-W, et al. 2017.. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. . Sci. Rep. 7:(1):8837
    [Crossref] [Google Scholar]
  41. 41.
    Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, Cirit M. 2017.. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. . AAPS J. 19:(5):1499512
    [Crossref] [Google Scholar]
  42. 42.
    Chang S-Y, Weber EJ, Sidorenko VS, Chapron A, Yeung CK, et al. 2017.. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. . JCI Insight 2:(22):e95978
    [Crossref] [Google Scholar]
  43. 43.
    Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR, et al. 2017.. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. . Sci. Rep. 7::42296
    [Crossref] [Google Scholar]
  44. 44.
    Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR, et al. 2018.. Interconnected microphysiological systems for quantitative biology and pharmacology studies. . Sci. Rep. 8:(1):4530
    [Crossref] [Google Scholar]
  45. 45.
    Hübner J, Raschke M, Rütschle I, Gräßle S, Hasenberg T, et al. 2018.. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. . Sci. Rep. 8:(1):15010
    [Crossref] [Google Scholar]
  46. 46.
    Novak R, Ingram M, Marquez S, Das D, Delahanty A, et al. 2020.. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. . Nat. Biomed. Eng. 4:(4):40720
    [Crossref] [Google Scholar]
  47. 47.
    Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, et al. 2020.. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. . Nat. Biomed. Eng. 4:(4):42136
    [Crossref] [Google Scholar]
  48. 48.
    Chramiec A, Teles D, Yeager K, Marturano-Kruik A, Pak J, et al. 2020.. Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. . Lab Chip 20:(23):435772
    [Crossref] [Google Scholar]
  49. 49.
    Baert Y, Ruetschle I, Cools W, Oehme A, Lorenz A, et al. 2020.. A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model. . Hum. Reprod. 35:(5):102944
    [Crossref] [Google Scholar]
  50. 50.
    Lee-Montiel FT, Laemmle A, Charwat V, Dumont L, Lee CS, et al. 2021.. Integrated isogenic human induced pluripotent stem cell-based liver and heart microphysiological systems predict unsafe drug-drug interaction. . Front. Pharmacol. 12::667010
    [Crossref] [Google Scholar]
  51. 51.
    Oleaga C, Bernabini C, Smith AST, Srinivasan B, Jackson M, et al. 2016.. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. . Sci. Rep. 6::20030
    [Crossref] [Google Scholar]
  52. 52.
    McAleer CW, Long CJ, Elbrecht D, Sasserath T, Bridges LR, et al. 2019.. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. . Sci. Transl. Med. 11:(497):eaav1386
    [Crossref] [Google Scholar]
  53. 53.
    Morris EC, Neelapu SS, Giavridis T, Sadelain M. 2022.. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. . Nat. Rev. Immunol. 22:(2):8596
    [Crossref] [Google Scholar]
  54. 54.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, et al. 2014.. Chimeric antigen receptor T cells for sustained remissions in leukemia. . N. Engl. J. Med. 371:(16):150717
    [Crossref] [Google Scholar]
  55. 55.
    Maude SL, Barrett D, Teachey DT, Grupp SA. 2014.. Managing cytokine release syndrome associated with novel T cell-engaging therapies. . Cancer J. 20:(2):11922
    [Crossref] [Google Scholar]
  56. 56.
    Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. 2010.. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. . Mol. Ther. 18:(4):66668
    [Crossref] [Google Scholar]
  57. 57.
    Hay KA, Hanafi L-A, Li D, Gust J, Liles WC, et al. 2017.. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. . Blood 130:(21):2295306
    [Crossref] [Google Scholar]
  58. 58.
    Goebeler M-E, Bargou RC. 2020.. T cell-engaging therapies—BiTEs and beyond. . Nat. Rev. Clin. Oncol. 17:(7):41834
    [Crossref] [Google Scholar]
  59. 59.
    Donnadieu E, Luu M, Alb M, Anliker B, Arcangeli S, et al. 2022.. Time to evolve: predicting engineered T cell-associated toxicity with next-generation models. . J. Immunother. Cancer 10:(5):e003486
    [Crossref] [Google Scholar]
  60. 60.
    Mazein A, Shoaib M, Alb M, Sakellariou C, Sommer C, et al. 2023.. Using interactive platforms to encode, manage and explore immune-related adverse outcome pathways. . bioRxiv 2023.03.21.533620. https://doi.org/10.1101/2023.03.21.533620
  61. 61.
    Rooney C, Sauer T. 2018.. Modeling cytokine release syndrome. . Nat. Med. 24:(6):7056
    [Crossref] [Google Scholar]
  62. 62.
    Albelda SM. 2024.. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. . Nat. Rev. Clin. Oncol. 21:(1):4766
    [Crossref] [Google Scholar]
  63. 63.
    Eastwood D, Findlay L, Poole S, Bird C, Wadhwa M, et al. 2010.. Monoclonal antibody TGN1412 trial failure explained by species differences in CD28 expression on CD4+ effector memory T-cells. . Br. J. Pharmacol. 161:(3):51226
    [Crossref] [Google Scholar]
  64. 64.
    Alb M, Reiche K, Rade M, Sewald K, Loskill P, et al. 2024.. Novel strategies to assess cytokine release mediated by CAR T cells based on their irAOP concept. . J. Immunotoxicol. In press
    [Google Scholar]
  65. 65.
    Wan Z, Floryan MA, Coughlin MF, Zhang S, Zhong AX, et al. 2023.. New strategy for promoting vascularization in tumor spheroids in a microfluidic assay. . Adv. Healthc. Mater. 12:(14):e2201784
    [Crossref] [Google Scholar]
  66. 66.
    Maulana TI, Teufel C, Cipriano M, Roosz J, Lazarevski L, et al. 2024.. Breast cancer-on-chip for patient-specific efficacy and safety testing of CAR-T cells. . Cell Stem Cell 31::9891002.e9
    [Crossref] [Google Scholar]
  67. 67.
    Pollet AMAO, den Toonder JMJ. 2020.. Recapitulating the vasculature using organ-on-chip technology. . Bioengineering 7:(1):17
    [Crossref] [Google Scholar]
  68. 68.
    Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, et al. 2019.. Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology. . Adv. Drug Deliv. Rev. 140::6877
    [Crossref] [Google Scholar]
  69. 69.
    Biglari S, Le TYL, Tan RP, Wise SG, Zambon A, et al. 2019.. Simulating inflammation in a wound microenvironment using a dermal wound-on-a-chip model. . Adv. Healthc. Mater. 8:(1):e1801307
    [Crossref] [Google Scholar]
  70. 70.
    Herland A, van der Meer AD, FitzGerald EA, Park T-E, Sleeboom JJF, Ingber DE. 2016.. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. . PLOS ONE 11:(3):e0150360
    [Crossref] [Google Scholar]
  71. 71.
    Jain A, van der Meer AD, Papa A-L, Barrile R, Lai A, et al. 2016.. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. . Biomed. Microdevices 18:(4):73
    [Crossref] [Google Scholar]
  72. 72.
    Jain A, Barrile R, van der Meer AD, Mammoto A, Mammoto T, et al. 2018.. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. . Clin. Pharmacol. Ther. 103:(2):33240
    [Crossref] [Google Scholar]
  73. 73.
    Lee J, Kim S-E, Moon D, Doh J. 2021.. A multilayered blood vessel/tumor tissue chip to investigate T cell infiltration into solid tumor tissues. . Lab Chip 21:(11):214252
    [Crossref] [Google Scholar]
  74. 74.
    Chand D, Mohr F, McMillan H, Tukov FF, Montgomery K, et al. 2021.. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. . J. Hepatol. 74:(3):56066
    [Crossref] [Google Scholar]
  75. 75.
    Shieh PB, Kuntz NL, Dowling JJ, Müller-Felber W, Bönnemann CG, et al. 2023.. Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial. . Lancet Neurol. 22:(12):112539
    [Crossref] [Google Scholar]
  76. 76.
    Jagadisan B, Dhawan A. 2023.. Hepatotoxicity in adeno-associated viral vector gene therapy. . Curr. Hepatol. Rep. 22:(4):27690
    [Crossref] [Google Scholar]
  77. 77.
    Hamilton BA, Wright JF. 2021.. Challenges posed by immune responses to AAV vectors: addressing root causes. . Front. Immunol. 12::675897
    [Crossref] [Google Scholar]
  78. 78.
    Kumar SRP, Biswas M, Cao D, Arisa S, Muñoz-Melero M, et al. 2024.. TLR9-independent CD8+ T cell responses in hepatic AAV gene transfer through IL-1R1-MyD88 signaling. . Mol. Ther. 32:(2):32539
    [Crossref] [Google Scholar]
  79. 79.
    Watkins PB. 2022.. Liver injury due to drugs and viruses: mechanistic similarities and implications for AAV gene therapy. . Clin. Pharmacol. Ther. 112:(4):75153
    [Crossref] [Google Scholar]
  80. 80.
    van der Laan LJ, Wang Y, Tilanus HW, Janssen HL, Pan Q. 2011.. AAV-mediated gene therapy for liver diseases: the prime candidate for clinical application?. Expert Opin. Biol. Ther. 11:(3):31527
    [Crossref] [Google Scholar]
  81. 81.
    Mücke MM, Fong S, Foster GR, Lillicrap D, Miesbach W, Zeuzem S. 2024.. Adeno-associated viruses for gene therapy—clinical implications and liver related complications, a guide for hepatologists. . J. Hepatol. 80:(2):35261
    [Crossref] [Google Scholar]
  82. 82.
    Gonzalez TJ, Simon KE, Blondel LO, Fanous MM, Roger AL, et al. 2022.. Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing. . Nat. Commun. 13:(1):5947
    [Crossref] [Google Scholar]
  83. 83.
    Liu S, Razon L, Ritchie O, Sihn C-R, Handyside B, et al. 2022.. Application of in-vitro-cultured primary hepatocytes to evaluate species translatability and AAV transduction mechanisms of action. . Mol. Ther. Methods Clin. Dev. 26::6171
    [Crossref] [Google Scholar]
  84. 84.
    Westhaus A, Cabanes-Creus M, Dilworth KL, Zhu E, Salas Gómez D, et al. 2023.. Assessment of pre-clinical liver models based on their ability to predict the liver-tropism of adeno-associated virus vectors. . Hum. Gene Ther. 34:(7–8):27388
    [Crossref] [Google Scholar]
  85. 85.
    Durost PA, Aryee K-E, Manzoor F, Tisch RM, Mueller C, et al. 2018.. Gene therapy with an adeno-associated viral vector expressing human interleukin-2 alters immune system homeostasis in humanized mice. . Hum. Gene Ther. 29:(3):35265
    [Crossref] [Google Scholar]
  86. 86.
    Cabanes-Creus M, Navarro RG, Liao SHY, Scott S, Carlessi R, et al. 2023.. Characterization of the humanized FRG mouse model and development of an AAV-LK03 variant with improved liver lobular biodistribution. . Mol. Ther. Methods Clin. Dev. 28::22037
    [Crossref] [Google Scholar]
  87. 87.
    Münch RC, Muth A, Muik A, Friedel T, Schmatz J, et al. 2015.. Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. . Nat. Commun. 6:(1):6246
    [Crossref] [Google Scholar]
  88. 88.
    Dalwadi DA, Calabria A, Tiyaboonchai A, Posey J, Naugler WE, et al. 2021.. AAV integration in human hepatocytes. . Mol. Ther. 29:(10):2898909
    [Crossref] [Google Scholar]
  89. 89.
    Feaver RE, Cole BK, Lawson MJ, Hoang SA, Marukian S, et al. 2016.. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. . JCI Insight 1:(20):e90954
    [Crossref] [Google Scholar]
  90. 90.
    Li X, George SM, Vernetti L, Gough AH, Taylor DL. 2018.. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. . Lab Chip 18:(17):261431
    [Crossref] [Google Scholar]
  91. 91.
    Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, et al. 2021.. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®. . Toxicology 450::152667
    [Crossref] [Google Scholar]
  92. 92.
    Rubiano A, Indapurkar A, Yokosawa R, Miedzik A, Rosenzweig B, et al. 2021.. Characterizing the reproducibility in using a liver microphysiological system for assaying drug toxicity, metabolism, and accumulation. . Clin. Transl. Sci. 14:(3):104961
    [Crossref] [Google Scholar]
  93. 93.
    Ewart L, Apostolou A, Briggs SA, Carman CV, Chaff JT, et al. 2022.. Performance assessment and economic analysis of a human liver-chip for predictive toxicology. . Commun. Med. 2:(1):154
    [Crossref] [Google Scholar]
  94. 94.
    Gröger M, Rennert K, Giszas B, Weiß E, Dinger J, et al. 2016.. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model. . Sci. Rep. 6::21868
    [Crossref] [Google Scholar]
  95. 95.
    Azizgolshani H, Coppeta JR, Vedula EM, Marr EE, Cain BP, et al. 2021.. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. . Lab Chip 21:(8):145474
    [Crossref] [Google Scholar]
  96. 96.
    Bonanini F, Kurek D, Previdi S, Nicolas A, Hendriks D, et al. 2022.. In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed. . Angiogenesis 25:(4):45570
    [Crossref] [Google Scholar]
  97. 97.
    Ferrari E, Monti E, Cerutti C, Visone R, Occhetta P, et al. 2023.. A method to generate perfusable physiologic-like vascular channels within a liver-on-chip model. . Biomicrofluidics 17:(6):064103
    [Crossref] [Google Scholar]
  98. 98.
    Papaioannou S, See J-X, Jeong M, De La Torre C, Ast V, et al. 2023.. Liver sinusoidal endothelial cells orchestrate NK cell recruitment and activation in acute inflammatory liver injury. . Cell Rep. 42:(8):112836
    [Crossref] [Google Scholar]
  99. 99.
    Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Ying Shun T, et al. 2016.. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. . Exp. Biol. Med. 241:(1):10114
    [Crossref] [Google Scholar]
  100. 100.
    Bonkovsky HL, Barnhart HX, Foureau DM, Steuerwald N, Lee WM, et al. 2018.. Cytokine profiles in acute liver injury—results from the US Drug-Induced Liver Injury Network (DILIN) and the Acute Liver Failure Study Group. . PLOS ONE 13:(10):e0206389
    [Crossref] [Google Scholar]
  101. 101.
    Baudy AR, Otieno MA, Hewitt P, Gan J, Roth A, et al. 2020.. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. . Lab Chip 20:(2):21525
    [Crossref] [Google Scholar]
  102. 102.
    deLemos AS, Ghabril M, Rockey DC, Gu J, Barnhart HX, et al. 2016.. Amoxicillin–clavulanate-induced liver injury. . Dig. Dis. Sci. 61:(8):240616
    [Crossref] [Google Scholar]
  103. 103.
    Shah P, Sundaram V, Björnsson E. 2020.. Biologic and checkpoint inhibitor-induced liver injury: a systematic literature review. . Hepatol. Commun. 4:(2):17284
    [Crossref] [Google Scholar]
  104. 104.
    Fu Z, Gao C, Wu T, Wang L, Li S, et al. 2023.. Peripheral neuropathy associated with monomethyl auristatin E-based antibody-drug conjugates. . iScience 26:(10):107778
    [Crossref] [Google Scholar]
  105. 105.
    Lehmann HC, Staff NP, Hoke A. 2020.. Modeling chemotherapy induced peripheral neuropathy (CIPN) in vitro: prospects and limitations. . Exp. Neurol. 326::113140
    [Crossref] [Google Scholar]
  106. 106.
    Eskes C, Boström A-C, Bowe G, Coecke S, Hartung T, et al. 2017.. Good cell culture practices & in vitro toxicology. . Toxicol. In Vitro 45:(Pt. 3):27277
    [Crossref] [Google Scholar]
  107. 107.
    Eldridge S, Scuteri A, Jones EMC, Cavaletti G, Guo L, Glaze E. 2021.. Considerations for a reliable in vitro model of chemotherapy-induced peripheral neuropathy. . Toxics 9:(11):300
    [Crossref] [Google Scholar]
  108. 108.
    Kramer L, Nguyen HT, Jacobs E, McCoy L, Curley JL, et al. 2020.. Modeling chemotherapy-induced peripheral neuropathy using a nerve-on-a-chip microphysiological system. . ALTEX 37:(3):35064
    [Google Scholar]
  109. 109.
    Matsuda K, Han X, Matsuda N, Yamanaka M, Suzuki I. 2023.. Development of an in vitro assessment method for chemotherapy-induced peripheral neuropathy (CIPN) by integrating a microphysiological system (MPS) with morphological deep learning of soma and axonal images. . Toxics 11:(10):848
    [Crossref] [Google Scholar]
  110. 110.
    Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, et al. 2019.. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. . Nat. Neurosci. 22:(2):16779
    [Crossref] [Google Scholar]
  111. 111.
    Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, et al. 2019.. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. . Nat. Neurosci. 22:(2):18090
    [Crossref] [Google Scholar]
  112. 112.
    Spijkers XM, Pasteuning-Vuhman S, Dorleijn JC, Vulto P, Wevers NR, Pasterkamp RJ. 2021.. A directional 3D neurite outgrowth model for studying motor axon biology and disease. . Sci. Rep. 11:(1):2080
    [Crossref] [Google Scholar]
  113. 113.
    Sharma AD, McCoy L, Jacobs E, Willey H, Behn JQ, et al. 2019.. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. . Sci. Rep. 9:(1):8921
    [Crossref] [Google Scholar]
  114. 114.
    Ertl HCJ. 2022.. Immunogenicity and toxicity of AAV gene therapy. . Front. Immunol. 13::975803
    [Crossref] [Google Scholar]
  115. 115.
    Fu Z, Liu J, Li S, Shi C, Zhang Y. 2023.. Treatment-related adverse events associated with HER2-targeted antibody-drug conjugates in clinical trials: a systematic review and meta-analysis. . eClinicalMedicine 55::101795
    [Crossref] [Google Scholar]
  116. 116.
    D'Arienzo A, Verrazzo A, Pagliuca M, Napolitano F, Parola S, et al. 2023.. Toxicity profile of antibody-drug conjugates in breast cancer: practical considerations. . eClinicalMedicine 62::102113
    [Crossref] [Google Scholar]
  117. 117.
    Witztum JL, Gaudet D, Arca M, Jones A, Soran H, et al. 2023.. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome: long-term efficacy and safety data from patients in an open-label extension trial. . J. Clin. Lipidol. 17:(3):34255
    [Crossref] [Google Scholar]
  118. 118.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, et al. 2018.. Inotersen treatment for patients with hereditary transthyretin amyloidosis. . N. Engl. J. Med. 379:(1):2231
    [Crossref] [Google Scholar]
  119. 119.
    Crooke ST, Baker BF, Witztum JL, Kwoh TJ, Pham NC, et al. 2017.. The effects of 2′-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. . Nucleic Acid Ther. 27:(3):12129
    [Crossref] [Google Scholar]
  120. 120.
    Guillou J, de Pellegars A, Porcheret F, Frémeaux-Bacchi V, Allain-Launay E, et al. 2022.. Fatal thrombotic microangiopathy case following adeno-associated viral SMN gene therapy. . Blood Adv. 6:(14):426670
    [Crossref] [Google Scholar]
  121. 121.
    Salabarria SM, Corti M, Coleman KE, Wichman MB, Berthy JA, et al. Thrombotic microangiopathy following systemic AAV administration is dependent on anti-capsid antibodies. . J. Clin. Investig. 134:(1):e173510
    [Crossref] [Google Scholar]
  122. 122.
    García-García A, Martin I. 2021.. Biomimetic human bone marrow tissues: models to study hematopoiesis and platforms for drug testing. . Mol. Cell Oncol. 8:(6):2007030
    [Crossref] [Google Scholar]
  123. 123.
    Henry SP, Narayanan P, Shen L, Bhanot S, Younis HS, Burel SA. 2017.. Assessment of the effects of 2′-methoxyethyl antisense oligonucleotides on platelet count in cynomolgus nonhuman primates. . Nucleic Acid Ther. 27:(4):197208
    [Crossref] [Google Scholar]
  124. 124.
    Sykes SM, Scadden DT. 2013.. Modeling human hematopoietic stem cell biology in the mouse. . Semin. Hematol. 50:(2):92100
    [Crossref] [Google Scholar]
  125. 125.
    Abarrategi A, Mian SA, Passaro D, Rouault-Pierre K, Grey W, Bonnet D. 2018.. Modeling the human bone marrow niche in mice: from host bone marrow engraftment to bioengineering approaches. . J. Exp. Med. 215:(3):72943
    [Crossref] [Google Scholar]
  126. 126.
    Cai S, Wang H, Bailey B, Ernstberger A, Juliar BE, et al. 2011.. Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity. . Clin. Cancer Res. 17:(8):2195206
    [Crossref] [Google Scholar]
  127. 127.
    Ware J. 2004.. Dysfunctional platelet membrane receptors: from humans to mice. . Thromb. Haemost. 92:(09):47885
    [Crossref] [Google Scholar]
  128. 128.
    Bournazos S, Gupta A, Ravetch JV. 2020.. The role of IgG Fc receptors in antibody-dependent enhancement. . Nat. Rev. Immunol. 20:(10):63343
    [Crossref] [Google Scholar]
  129. 129.
    Martínez-Botía P, Villar P, Carbajo-Argüelles G, Jaiteh Z, Acebes-Huerta A, Gutiérrez L. 2023.. Proteomics-wise, how similar are mouse and human platelets?. Platelets 34:(1):2220415
    [Crossref] [Google Scholar]
  130. 130.
    Raic A, Naolou T, Mohra A, Chatterjee C, Lee-Thedieck C. 2019.. 3D models of the bone marrow in health and disease: yesterday, today and tomorrow. . MRS Commun. 9:(1):3752
    [Crossref] [Google Scholar]
  131. 131.
    Chou DB, Frismantas V, Milton Y, David R, Pop-Damkov P, et al. 2020.. On-chip recapitulation of clinical bone-marrow toxicities and patient-specific pathophysiology. . Nat. Biomed. Eng. 4:(4):394406
    [Crossref] [Google Scholar]
  132. 132.
    Glaser DE, Curtis MB, Sariano PA, Rollins ZA, Shergill BS, et al. 2022.. Organ-on-a-chip model of vascularized human bone marrow niches. . Biomaterials 280::121245
    [Crossref] [Google Scholar]
  133. 133.
    Blin A, Le Goff A, Magniez A, Poirault-Chassac S, Teste B, et al. 2016.. Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics. . Sci. Rep. 6::21700
    [Crossref] [Google Scholar]
  134. 134.
    Thon JN, Mazutis L, Wu S, Sylman JL, Ehrlicher A, et al. 2014.. Platelet bioreactor-on-a-chip. . Blood 124:(12):185767
    [Crossref] [Google Scholar]
  135. 135.
    Chand DH, Zaidman C, Arya K, Millner R, Farrar MA, et al. 2021.. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. . J. Pediatr. 231::26568
    [Crossref] [Google Scholar]
  136. 136.
    Hao Z, Lv H, Tan R, Yang X, Liu Y, Xia Y-L. 2021.. A three-dimensional microfluidic device for monitoring cancer and chemotherapy-associated platelet activation. . ACS Omega 6:(4):316472
    [Crossref] [Google Scholar]
  137. 137.
    Zhang YS, Davoudi F, Walch P, Manbachi A, Luo X, et al. 2016.. Bioprinted thrombosis-on-a-chip. . Lab Chip 16:(21):4097105
    [Crossref] [Google Scholar]
  138. 138.
    Barrile R, van der Meer AD, Park H, Fraser JP, Simic D, et al. 2018.. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems. . Clin. Pharmacol. Ther. 104:(6):124048
    [Crossref] [Google Scholar]
  139. 139.
    Ehlers H, Nicolas A, Schavemaker F, Heijmans JPM, Bulst M, et al. 2023.. Vascular inflammation on a chip: a scalable platform for trans-endothelial electrical resistance and immune cell migration. . Front. Immunol. 14::1118624
    [Crossref] [Google Scholar]
  140. 140.
    Matevosyan K, Sarode R. 2015.. Thrombosis, microangiopathies, and inflammation. . Semin. Thromb. Hemost. 41:(6):55662
    [Crossref] [Google Scholar]
  141. 141.
    Shanti A, Hallfors N, Petroianu GA, Planelles L, Stefanini C. 2021.. Lymph nodes-on-chip: promising immune platforms for pharmacological and toxicological applications. . Front. Pharmacol. 12::711307
    [Crossref] [Google Scholar]
  142. 142.
    Vunjak-Novakovic G, Ronaldson-Bouchard K, Radisic M. 2021.. Organs-on-a-chip models for biological research. . Cell 184:(18):4597611
    [Crossref] [Google Scholar]
  143. 143.
    Leung CM, de Haan P, Ronaldson-Bouchard K, Kim G-A, Ko J, et al. 2022.. A guide to the organ-on-a-chip. . Nat. Rev. Methods Primers 2:(1):33
    [Crossref] [Google Scholar]
  144. 144.
    Junaid A, Mashaghi A, Hankemeier T, Vulto P. 2017.. An end-user perspective on organ-on-a-chip: assays and usability aspects. . Curr. Opin. Biomed. Eng. 1::1522
    [Crossref] [Google Scholar]
  145. 145.
    Homan KA. 2023.. Industry adoption of organoids and organs-on-chip technology: toward a paradox of choice. . Adv. Biol. 7:(6):2200334
    [Crossref] [Google Scholar]
  146. 146.
    Avila AM, Bebenek I, Mendrick DL, Peretz J, Yao J, Brown PC. 2023.. Gaps and challenges in nonclinical assessments of pharmaceuticals: an FDA/CDER perspective on considerations for development of new approach methodologies. . Regul. Toxicol. Pharmacol. 139::105345
    [Crossref] [Google Scholar]
  147. 147.
    Loskill P, Hardwick RN, Roth A. 2021.. Challenging the pipeline. . Stem Cell Rep. 16:(9):203337
    [Crossref] [Google Scholar]
  148. 148.
    Ainslie GR, Davis M, Ewart L, Lieberman LA, Rowlands DJ, et al. 2019.. Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective. . Lab Chip 19:(19):315261
    [Crossref] [Google Scholar]
  149. 149.
    Hardwick RN, Betts CJ, Whritenour J, Sura R, Thamsen M, et al. 2020.. Drug-induced skin toxicity: gaps in preclinical testing cascade as opportunities for complex in vitro models and assays. . Lab Chip 20:(2):199214
    [Crossref] [Google Scholar]
  150. 150.
    Pointon A, Maher J, Davis M, Baker T, Cichocki J, et al. 2021.. Cardiovascular microphysiological systems (CVMPS) for safety studies—a pharma perspective. . Lab Chip 21:(3):45872
    [Crossref] [Google Scholar]
  151. 151.
    Peters MF, Choy AL, Pin C, Leishman DJ, Moisan A, et al. 2020.. Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. . Lab Chip 20:(7):117790
    [Crossref] [Google Scholar]
  152. 152.
    Wang X, Kopec A, Collinge M, David R, Grant C, et al. 2023.. Application of immunocompetent microphysiological systems in drug development: current perspective and recommendations. . ALTEX 40:(2):31436
    [Google Scholar]
  153. 153.
    Ramsden D, Belair DG, Agarwal S, Andersson P, Humphreys S, et al. 2022.. Leveraging microphysiological systems to address challenges encountered during development of oligonucleotide therapeutics. . ALTEX 39:(2):27396
    [Google Scholar]
  154. 154.
    Peterson NC, Mahalingaiah PK, Fullerton A, Piazza MD. 2020.. Application of microphysiological systems in biopharmaceutical research and development. . Lab Chip 20:(4):697708
    [Crossref] [Google Scholar]
  155. 155.
    Kerns SJ, Belgur C, Petropolis D, Kanellias M, Barrile R, et al. 2021.. Human immunocompetent organ-on-chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. . eLife 10::e67106
    [Crossref] [Google Scholar]
  156. 156.
    Sasserath T, Rumsey JW, McAleer CW, Bridges LR, Long CJ, et al. 2020.. Differential monocyte actuation in a three-organ functional innate immune system-on-a-chip. . Adv. Sci. 7:(13):2000323
    [Crossref] [Google Scholar]
  157. 157.
    Rajan SAP, Sherfey J, Ohri S, Nichols L, Smith JT, et al. 2023.. A novel milli-fluidic liver tissue chip with continuous recirculation for predictive pharmacokinetics applications. . AAPS J. 25:(6):102
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080621
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080621
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error