1932

Abstract

The study of the adverse effects of chemical substances on living organisms is an old and intense field of research. However, toxicological and environmental health sciences have long been dominated by descriptive approaches that enable associations or correlations but relatively few robust causal links and molecular mechanisms. Recent achievements have shown that structural biology approaches can bring this added value to the field. By providing atomic-level information, structural biology is a powerful tool to decipher the mechanisms by which toxicants bind to and alter the normal function of essential cell components, causing adverse effects. Here, using endocrine-disrupting chemicals as illustrative examples, we describe recent advances in the structure-based understanding of their modes of action and how this knowledge can be exploited to develop computational tools aimed at predicting properties of large collections of compounds.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080642
2025-01-23
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080642.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080642&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rappaport SM. 2016.. Genetic factors are not the major causes of chronic diseases. . PLOS ONE 11:(4):e0154387
    [Crossref] [Google Scholar]
  2. 2.
    Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. 2009.. Finding the missing heritability of complex diseases. . Nature 461:(7265):74753
    [Crossref] [Google Scholar]
  3. 3.
    Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, et al. 2018.. The Lancet Commission on pollution and health. . Lancet 391:(10119):462512
    [Crossref] [Google Scholar]
  4. 4.
    Ziegler SJ, Mallinson SJB, St. John PC, Bomble YJ. 2021.. Advances in integrative structural biology: towards understanding protein complexes in their cellular context. . Comput. Struct. Biotechnol. J. 19::21425
    [Crossref] [Google Scholar]
  5. 5.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. 2000.. The Protein Data Bank. . Nucleic Acids Res. 28:(1):23542
    [Crossref] [Google Scholar]
  6. 6.
    Blundell TL. 2017.. Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry. . IUCrJ 4:(Pt. 4):30821
    [Crossref] [Google Scholar]
  7. 7.
    van Montfort RLM, Workman P. 2017.. Structure-based drug design: aiming for a perfect fit. . Essays Biochem. 61:(5):43137
    [Crossref] [Google Scholar]
  8. 8.
    Arrowsmith CH. 2024.. Structure-guided drug discovery: back to the future. . Nat. Struct. Mol. Biol. 31:(3):39596
    [Crossref] [Google Scholar]
  9. 9.
    Zoeller RT, Bergman Å, Becher G, Bjerregaard P, Bornman R, et al. 2014.. A path forward in the debate over health impacts of endocrine disrupting chemicals. . Environ. Health 13:(1):118
    [Crossref] [Google Scholar]
  10. 10.
    Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, et al. 2015.. EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. . Endocr. Rev. 36:(6):E1150
    [Crossref] [Google Scholar]
  11. 11.
    La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, et al. 2020.. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. . Nat. Rev. Endocrinol. 16:(1):4557
    [Crossref] [Google Scholar]
  12. 12.
    Toporova L, Balaguer P. 2020.. Nuclear receptors are the major targets of endocrine disrupting chemicals. . Mol. Cell. Endocrinol. 502::110665
    [Crossref] [Google Scholar]
  13. 13.
    Schug TT, Janesick A, Blumberg B, Heindel JJ. 2011.. Endocrine disrupting chemicals and disease susceptibility. . J. Steroid Biochem. Mol. Biol. 127:(3):20415
    [Crossref] [Google Scholar]
  14. 14.
    Mohajer N, Joloya EM, Seo J, Shioda T, Blumberg B. 2021.. Epigenetic transgenerational inheritance of the effects of obesogen exposure. . Front. Endocrinol. 12::787580
    [Crossref] [Google Scholar]
  15. 15.
    Xin F, Susiarjo M, Bartolomei MS. 2015.. Multigenerational and transgenerational effects of endocrine disrupting chemicals: a role for altered epigenetic regulation?. Semin. Cell Dev. Biol. 43::6675
    [Crossref] [Google Scholar]
  16. 16.
    Nilsson EE, Ben Maamar M, Skinner MK. 2022.. Role of epigenetic transgenerational inheritance in generational toxicology. . Environ. Epigenet. 8:(1):dvac001
    [Crossref] [Google Scholar]
  17. 17.
    Germain P, Staels B, Dacquet C, Spedding M, Laudet V. 2006.. Overview of nomenclature of nuclear receptors. . Pharmacol. Rev. 58:(4):685704
    [Crossref] [Google Scholar]
  18. 18.
    Gronemeyer H, Gustafsson J-A, Laudet V. 2004.. Principles for modulation of the nuclear receptor superfamily. . Nat. Rev. Drug Discov. 3:(11):95064
    [Crossref] [Google Scholar]
  19. 19.
    Evans RM, Mangelsdorf DJ. 2014.. Nuclear receptors, RXR, and the Big Bang. . Cell 157:(1):25566
    [Crossref] [Google Scholar]
  20. 20.
    Sun L, Cai J, Gonzalez FJ. 2021.. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. . Nat. Rev. Gastroenterol. Hepatol. 18:(5):33547
    [Crossref] [Google Scholar]
  21. 21.
    Wagner M, Zollner G, Trauner M. 2011.. Nuclear receptors in liver disease. . Hepatology 53:(3):102334
    [Crossref] [Google Scholar]
  22. 22.
    Zhao L, Hu H, Gustafsson J-Å, Zhou S. 2020.. Nuclear receptors in cancer inflammation and immunity. . Trends Immunol. 41:(2):17285
    [Crossref] [Google Scholar]
  23. 23.
    Yang Z, Gimple RC, Zhou N, Zhao L, Gustafsson J-Å, Zhou S. 2021.. Targeting nuclear receptors for cancer therapy: premises, promises, and challenges. . Trends Cancer 7:(6):54156
    [Crossref] [Google Scholar]
  24. 24.
    Levin ER. 2015.. Extranuclear steroid receptors are essential for steroid hormone actions. . Annu. Rev. Med. 66::27180
    [Crossref] [Google Scholar]
  25. 25.
    Arnal J-F, Lenfant F, Metivier R, Flouriot G, Henrion D, et al. 2017.. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. . Physiol. Rev. 97:(3):104587
    [Crossref] [Google Scholar]
  26. 26.
    Weikum ER, Liu X, Ortlund EA. 2018.. The nuclear receptor superfamily: a structural perspective. . Protein Sci. 27:(11):187692
    [Crossref] [Google Scholar]
  27. 27.
    Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. 2013.. Understanding nuclear receptor form and function using structural biology. . J. Mol. Endocrinol. 51:(3):T121
    [Crossref] [Google Scholar]
  28. 28.
    Chen P, Li B, Ou-Yang L. 2022.. Role of estrogen receptors in health and disease. . Front. Endocrinol. 13::839005
    [Crossref] [Google Scholar]
  29. 29.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, et al. 2007.. Estrogen receptors: How do they signal and what are their targets. . Physiol. Rev. 87:(3):90531
    [Crossref] [Google Scholar]
  30. 30.
    Jia M, Dahlman-Wright K, Gustafsson J-Å. 2015.. Estrogen receptor alpha and beta in health and disease. . Best Pract. Res. Clin. Endocrinol. Metab. 29:(4):55768
    [Crossref] [Google Scholar]
  31. 31.
    Acconcia F, Fiocchetti M, Marino M. 2017.. Xenoestrogen regulation of ERα/ERβ balance in hormone-associated cancers. . Mol. Cell. Endocrinol. 457::312
    [Crossref] [Google Scholar]
  32. 32.
    Nwachukwu JC, Srinivasan S, Zheng Y, Wang S, Min J, et al. 2016.. Predictive features of ligand-specific signaling through the estrogen receptor. . Mol. Syst. Biol. 12:(4):864
    [Crossref] [Google Scholar]
  33. 33.
    Delfosse V, Grimaldi M, Cavaillès V, Balaguer P, Bourguet W. 2014.. Structural and functional profiling of environmental ligands for estrogen receptors. . Environ. Health Perspect. 122:(12):130613
    [Crossref] [Google Scholar]
  34. 34.
    Delfosse V, Grimaldi M, Pons J-L, Boulahtouf A, le Maire A, et al. 2012.. Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. . PNAS 109:(37):1493035
    [Crossref] [Google Scholar]
  35. 35.
    Singh J, Petter RC, Baillie TA, Whitty A. 2011.. The resurgence of covalent drugs. . Nat. Rev. Drug Discov. 10:(4):30717
    [Crossref] [Google Scholar]
  36. 36.
    Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. 2020.. Advances in covalent kinase inhibitors. . Chem. Soc. Rev. 49:(9):261787
    [Crossref] [Google Scholar]
  37. 37.
    Katzenellenbogen JA, Katzenellenbogen BS. 1984.. Affinity labeling of receptors for steroid and thyroid hormones. . Vitam. Horm. 41::21374
    [Crossref] [Google Scholar]
  38. 38.
    Frigo DE, Bondesson M, Williams C. 2021.. Nuclear receptors: from molecular mechanisms to therapeutics. . Essays Biochem. 65:(6):84756
    [Crossref] [Google Scholar]
  39. 39.
    Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, et al. 2008.. Structural basis for the activation of PPARγ by oxidized fatty acids. . Nat. Struct. Mol. Biol. 15:(9):92431
    [Crossref] [Google Scholar]
  40. 40.
    Waku T, Shiraki T, Oyama T, Fujimoto Y, Maebara K, et al. 2009.. Structural insight into PPARγ activation through covalent modification with endogenous fatty acids. . J. Mol. Biol. 385:(1):18899
    [Crossref] [Google Scholar]
  41. 41.
    Egawa D, Itoh T, Akiyama Y, Saito T, Yamamoto K. 2016.. 17-OxoDHA is a PPARα/γ dual covalent modifier and agonist. . ACS Chem. Biol. 11:(9):244755
    [Crossref] [Google Scholar]
  42. 42.
    Sharma AM, Staels B. 2007.. Peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism. . J. Clin. Endocrinol. Metab. 92:(2):38695
    [Crossref] [Google Scholar]
  43. 43.
    Graceli JB, Sena GC, Lopes PFI, Zamprogno GC, da Costa MB, et al. 2013.. Organotins: a review of their reproductive toxicity, biochemistry, and environmental fate. . Reprod. Toxicol. 36::4052
    [Crossref] [Google Scholar]
  44. 44.
    Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J. 2005.. Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor γ/retinoid X receptor pathway. . Mol. Pharmacol. 67:(3):76674
    [Crossref] [Google Scholar]
  45. 45.
    Grün F, Blumberg B. 2006.. Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. . Endocrinology 147:(6):s5055
    [Crossref] [Google Scholar]
  46. 46.
    Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, et al. 2006.. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. . Mol. Endocrinol. 20:(9):214155
    [Crossref] [Google Scholar]
  47. 47.
    le Maire A, Grimaldi M, Roecklin D, Dagnino S, Vivat-Hannah V, et al. 2009.. Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. . EMBO Rep. 10:(4):36773
    [Crossref] [Google Scholar]
  48. 48.
    Harada S, Hiromori Y, Nakamura S, Kawahara K, Fukakusa S, et al. 2015.. Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds. . Sci. Rep. 5::8520
    [Crossref] [Google Scholar]
  49. 49.
    Delfosse V, Huet T, Harrus D, Granell M, Bourguet M, et al. 2021.. Mechanistic insights into the synergistic activation of the RXR-PXR heterodimer by endocrine disruptor mixtures. . PNAS 118:(1):e2020551118
    [Crossref] [Google Scholar]
  50. 50.
    Gallastegui N, Mackinnon JAG, Fletterick RJ, Estébanez-Perpiñá E. 2015.. Advances in our structural understanding of orphan nuclear receptors. . Trends Biochem. Sci. 40:(1):2535
    [Crossref] [Google Scholar]
  51. 51.
    Rocchi S, Picard F, Vamecq J, Gelman L, Potier N, et al. 2001.. A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity. . Mol. Cell 8:(4):73747
    [Crossref] [Google Scholar]
  52. 52.
    Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, et al. 2012.. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. . PLOS ONE 7:(5):e36297
    [Crossref] [Google Scholar]
  53. 53.
    Zhang H, Xu X, Chen L, Chen J, Hu L, et al. 2011.. Molecular determinants of magnolol targeting both RXRα and PPARγ. . PLOS ONE 6:(11):e28253
    [Crossref] [Google Scholar]
  54. 54.
    Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K. 2010.. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. . EMBO J. 29:(19):3395407
    [Crossref] [Google Scholar]
  55. 55.
    Puhl AC, Milton FA, Cvoro A, Sieglaff DH, Campos JCL, et al. 2015.. Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs. . Nucl. Recept. Signal. 13::e004
    [Crossref] [Google Scholar]
  56. 56.
    Useini A, Engelberger F, Künze G, Sträter N. 2023.. Structural basis of the activation of PPARγ by the plasticizer metabolites MEHP and MINCH. . Environ. Int. 173::107822
    [Crossref] [Google Scholar]
  57. 57.
    Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, et al. 2018.. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. . eLife 7::e43320
    [Crossref] [Google Scholar]
  58. 58.
    Wang Y-M, Ong SS, Chai SC, Chen T. 2012.. Role of CAR and PXR in xenobiotic sensing and metabolism. . Expert Opin. Drug Metab. Toxicol. 8:(7):80317
    [Crossref] [Google Scholar]
  59. 59.
    Pondugula SR, Pavek P, Mani S. 2016.. Pregnane X receptor and cancer: Context-specificity is key. . Nucl. Recept. Res. 3::101198
    [Google Scholar]
  60. 60.
    Daujat-Chavanieu M, Gerbal-Chaloin S. 2020.. Regulation of CAR and PXR expression in health and disease. . Cells 9:(11):2395
    [Crossref] [Google Scholar]
  61. 61.
    Gee RRF, Huber AD, Chen T. 2024.. Regulation of PXR in drug metabolism: chemical and structural perspectives. . Expert Opin. Drug Metab. Toxicol. 20:(1–2):923
    [Crossref] [Google Scholar]
  62. 62.
    Pascussi J-M, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem M-J, Maurel P. 2008.. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. . Annu. Rev. Pharmacol. Toxicol. 48::132
    [Crossref] [Google Scholar]
  63. 63.
    Delfosse V, Dendele B, Huet T, Grimaldi M, Boulahtouf A, et al. 2015.. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. . Nat. Commun. 6::8089
    [Crossref] [Google Scholar]
  64. 64.
    Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. 2022.. Aryl hydrocarbon receptor and its diverse ligands and functions: an exposome receptor. . Annu. Rev. Pharmacol. Toxicol. 62::383404
    [Crossref] [Google Scholar]
  65. 65.
    Denison MS, Nagy SR. 2003.. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. . Annu. Rev. Pharmacol. Toxicol. 43::30934
    [Crossref] [Google Scholar]
  66. 66.
    Poland A, Glover E, Kende AS. 1976.. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol: evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. . J. Biol. Chem. 251:(16):493646
    [Crossref] [Google Scholar]
  67. 67.
    Burbach KM, Poland A, Bradfield CA. 1992.. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. . PNAS 89:(17):818589
    [Crossref] [Google Scholar]
  68. 68.
    Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, et al. 2022.. The aryl hydrocarbon receptor as a model PAS sensor. . Toxicol. Rep. 9::111
    [Crossref] [Google Scholar]
  69. 69.
    McIntosh BE, Hogenesch JB, Bradfield CA. 2010.. Mammalian Per-Arnt-Sim proteins in environmental adaptation. . Annu. Rev. Physiol. 72::62545
    [Crossref] [Google Scholar]
  70. 70.
    Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. 2008.. The aryl hydrocarbon receptor complex and the control of gene expression. . Crit. Rev. Eukaryot. Gene Expr. 18:(3):20750
    [Crossref] [Google Scholar]
  71. 71.
    Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B. 2011.. Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. . Toxicol. Sci. 124:(1):122
    [Crossref] [Google Scholar]
  72. 72.
    Bukowska B, Mokra K, Michałowicz J. 2022.. Benzo[a]pyrene—environmental occurrence, human exposure, and mechanisms of toxicity. . Int. J. Mol. Sci. 23:(11):6348
    [Crossref] [Google Scholar]
  73. 73.
    Okey AB. 2007.. An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. . Toxicol. Sci. 98:(1):538
    [Crossref] [Google Scholar]
  74. 74.
    Swedenborg E, Pongratz I. 2010.. AhR and ARNT modulate ER signaling. . Toxicology 268:(3):13238
    [Crossref] [Google Scholar]
  75. 75.
    Hankinson O. 2005.. Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. . Arch. Biochem. Biophys. 433:(2):37986
    [Crossref] [Google Scholar]
  76. 76.
    Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, et al. 2007.. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. . Nature 446:(7135):56266
    [Crossref] [Google Scholar]
  77. 77.
    Nebert DW. 2017.. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. . Prog. Lipid Res. 67::3857
    [Crossref] [Google Scholar]
  78. 78.
    Gruszczyk J, Grandvuillemin L, Lai-Kee-Him J, Paloni M, Savva CG, et al. 2022.. Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex. . Nat. Commun. 13:(1):7010
    [Crossref] [Google Scholar]
  79. 79.
    Kwong H-S, Paloni M, Grandvuillemin L, Sirounian S, Ancelin A, et al. 2024.. Structural insights into the activation of human aryl hydrocarbon receptor by the environmental contaminant benzo[a]pyrene and structurally related compounds. . J. Mol. Biol. 436:(3):168411
    [Crossref] [Google Scholar]
  80. 80.
    Wen Z, Zhang Y, Zhang B, Hang Y, Xu L, et al. 2023.. Cryo-EM structure of the cytosolic AhR complex. . Structure 31:(3):295308.e4
    [Crossref] [Google Scholar]
  81. 81.
    Dai S, Qu L, Li J, Zhang Y, Jiang L, et al. 2022.. Structural insight into the ligand binding mechanism of aryl hydrocarbon receptor. . Nat. Commun. 13:(1):6234
    [Crossref] [Google Scholar]
  82. 82.
    Schneider M, Pons J-L, Labesse G, Bourguet W. 2019.. In silico predictions of endocrine disruptors properties. . Endocrinology 160:(11):270916
    [Crossref] [Google Scholar]
  83. 83.
    Ahalawat N, Mondal J. 2021.. An appraisal of computer simulation approaches in elucidating biomolecular recognition pathways. . J. Phys. Chem. Lett. 12:(1):63341
    [Crossref] [Google Scholar]
  84. 84.
    Pinzi L, Rastelli G. 2019.. Molecular docking: shifting paradigms in drug discovery. . Int. J. Mol. Sci. 20:(18):4331
    [Crossref] [Google Scholar]
  85. 85.
    Trisciuzzi D, Alberga D, Leonetti F, Novellino E, Nicolotti O, Mangiatordi GF. 2018.. Molecular docking for predictive toxicology. . Methods Mol. Biol. 1800::18197
    [Crossref] [Google Scholar]
  86. 86.
    Sellami A, Réau M, Montes M, Lagarde N. 2022.. Review of in silico studies dedicated to the nuclear receptor family: therapeutic prospects and toxicological concerns. . Front. Endocrinol. 13::986016
    [Crossref] [Google Scholar]
  87. 87.
    Banerjee A, De P, Kumar V, Kar S, Roy K. 2022.. Quick and efficient quantitative predictions of androgen receptor binding affinity for screening endocrine disruptor chemicals using 2D-QSAR and chemical read-across. . Chemosphere 309:(Pt. 1):136579
    [Crossref] [Google Scholar]
  88. 88.
    Sellami A, Montes M, Lagarde N. 2021.. Predicting potential endocrine disrupting chemicals binding to estrogen receptor α (ERα) using a pipeline combining structure-based and ligand-based in silico methods. . Int. J. Mol. Sci. 22:(6):2846
    [Crossref] [Google Scholar]
  89. 89.
    Vázquez J, López M, Gibert E, Herrero E, Luque FJ. 2020.. Merging ligand-based and structure-based methods in drug discovery: an overview of combined virtual screening approaches. . Molecules 25:(20):4723
    [Crossref] [Google Scholar]
  90. 90.
    Montes-Grajales D, Olivero-Verbel J. 2020.. Structure-based identification of endocrine disrupting pesticides targeting breast cancer proteins. . Toxicology 439::152459
    [Crossref] [Google Scholar]
  91. 91.
    Trisciuzzi D, Alberga D, Mansouri K, Judson R, Novellino E, et al. 2017.. Predictive structure-based toxicology approaches to assess the androgenic potential of chemicals. . J. Chem. Inf. Model. 57:(11):287484
    [Crossref] [Google Scholar]
  92. 92.
    Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. 2021.. Theoretical study on endocrine disrupting effects of polychlorinated dibenzo-p-dioxins using molecular docking simulation. . J. Appl. Toxicol. 41:(2):23346
    [Crossref] [Google Scholar]
  93. 93.
    Vedani A, Dobler M, Hu Z, Smieško M. 2015.. OpenVirtualToxLab–a platform for generating and exchanging in silico toxicity data. . Toxicol. Lett. 232:(2):51932
    [Crossref] [Google Scholar]
  94. 94.
    Kolšek K, Mavri J, Sollner Dolenc M, Gobec S, Turk S. 2014.. Endocrine Disruptome—an open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding. . J. Chem. Inf. Model. 54:(4):125467
    [Crossref] [Google Scholar]
  95. 95.
    Schneider M, Pons J-L, Bourguet W, Labesse G. 2020.. Towards accurate high-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity. . Bioinformatics 36:(1):16068
    [Crossref] [Google Scholar]
  96. 96.
    Basciu A, Callea L, Motta S, Bonvin AMJJ, Bonati L, Vargiu AV. 2022.. No dance, no partner! A tale of receptor flexibility in docking and virtual screening. . In Annual Reports in Medicinal Chemistry: Virtual Screening and Drug Docking, ed. J Caballero , pp. 4397. Cambridge, MA:: Academic
    [Google Scholar]
  97. 97.
    Wang F, Chang S, Kong R. 2022.. ER/AR Multi-Conformational Docking Server: a tool for discovering and studying estrogen and androgen receptor modulators. . Front. Pharmacol. 13::800885
    [Crossref] [Google Scholar]
  98. 98.
    Jaladanki CK, He Y, Zhao LN, Maurer-Stroh S, Loo L-H, et al. 2021.. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids. . Arch. Toxicol. 95:(1):35574
    [Crossref] [Google Scholar]
  99. 99.
    Wahl J, Smieško M. 2018.. Endocrine disruption at the androgen receptor: employing molecular dynamics and docking for improved virtual screening and toxicity prediction. . Int. J. Mol. Sci. 19:(6):1784
    [Crossref] [Google Scholar]
  100. 100.
    Li L, Wang Q, Zhang Y, Niu Y, Yao X, Liu H. 2015.. The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD) simulations. . PLOS ONE 10:(3):e0120330
    [Crossref] [Google Scholar]
  101. 101.
    Li Y, Perera L, Coons LA, Burns KA, Ramsey JT, et al. 2018.. Differential in vitro biological action, coregulator interactions, and molecular dynamic analysis of bisphenol A (BPA), BPAF, and BPS ligand-ERα complexes. . Environ. Health Perspect. 126:(1):017012
    [Crossref] [Google Scholar]
  102. 102.
    Zhang J, Begum A, Brännström K, Grundström C, Iakovleva I, et al. 2016.. Structure-based virtual screening protocol for in silico identification of potential thyroid disrupting chemicals targeting transthyretin. . Environ. Sci. Technol. 50:(21):1198493
    [Crossref] [Google Scholar]
  103. 103.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  104. 104.
    Krishna R, Wang J, Ahern W, Sturmfels P, Venkatesh P, et al. 2024.. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. . Science 384::eadl2528
    [Crossref] [Google Scholar]
  105. 105.
    Chatterjee A, Walters R, Shafi Z, Ahmed OS, Sebek M, et al. 2023.. Improving the generalizability of protein-ligand binding predictions with AI-Bind. . Nat. Commun. 14:(1):1989
    [Crossref] [Google Scholar]
  106. 106.
    Paggi JM, Belk JA, Hollingsworth SA, Villanueva N, Powers AS, et al. 2021.. Leveraging nonstructural data to predict structures and affinities of protein-ligand complexes. . PNAS 118:(51):e2112621118
    [Crossref] [Google Scholar]
  107. 107.
    Xia C-Q, Pan X, Shen H-B. 2020.. Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data. . Bioinformatics 36:(10):301827
    [Crossref] [Google Scholar]
  108. 108.
    Wang DD, Wu W, Wang R. 2024.. Structure-based, deep-learning models for protein-ligand binding affinity prediction. . J. Cheminformat. 16:(1):2
    [Crossref] [Google Scholar]
  109. 109.
    Ghislat G, Rahman T, Ballester PJ. 2021.. Recent progress on the prospective application of machine learning to structure-based virtual screening. . Curr. Opin. Chem. Biol. 65::2834
    [Crossref] [Google Scholar]
  110. 110.
    Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, et al. 2022.. Recent progress in the structural study of ion channels as insecticide targets. . Insect Sci. 29:(6):152251
    [Crossref] [Google Scholar]
  111. 111.
    Raisch T, Raunser S. 2023.. The modes of action of ion-channel-targeting neurotoxic insecticides: lessons from structural biology. . Nat. Struct. Mol. Biol. 30:(10):141127
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080642
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080642
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error