1932

Abstract

Pharmacogenetic variation is common and an established driver of response for many drugs. There has been tremendous progress in pharmacogenetics knowledge over the last 30 years and in clinical implementation of that knowledge over the last 15 years. But there have also been many examples where translation has stalled because of the lack of available data sets for discovery or validation research. The recent availability of data from very large cohorts with linked genetic, electronic health record, and other data promises new opportunities to advance pharmacogenetics research. This review presents the stages from pharmacogenetics discovery to widespread clinical adoption using prominent gene-drug pairs that have been implemented into clinical practice as examples. We discuss the opportunities that the Research Program and other large biorepositories with genomic and linked electronic health record data present in advancing and accelerating the translation of pharmacogenetics into clinical practice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080718
2025-01-23
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080718.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080718&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kalow W. 2004.. Pharmacogenetics: a historical perspective. . In Pharmacogenomics: Applications to Patient Care, pp. 25169. Kansas City, MO:: Am. Coll. Clin. Pharm.
    [Google Scholar]
  2. 2.
    Jarvik GP. 2018.. Arno G. Motulsky, MD (1923–2018): Holocaust survivor who cofounded the field of medical genetics. . Genet. Med. 20::47779
    [Crossref] [Google Scholar]
  3. 3.
    Schwarz UI, Gulilat M, Kim RB. 2019.. The role of next-generation sequencing in pharmacogenetics and pharmacogenomics. . Cold Spring Harb. Perspect. Med. 9::a033027
    [Crossref] [Google Scholar]
  4. 4.
    Kehinde O, Ramsey LB, Gaedigk A, Oni-Orisan A. 2023.. Advancing CYP2D6 pharmacogenetics through a pharmacoequity lens. . Clin. Pharmacol. Ther. 114::6976
    [Crossref] [Google Scholar]
  5. 5.
    Popejoy AB. 2019.. Diversity in precision medicine and pharmacogenetics: methodological and conceptual considerations for broadening participation. . Pharmgenomics Pers. Med. 12::25771
    [Google Scholar]
  6. 6.
    Terra SG, Pauly DF, Lee CR, Patterson JH, Adams KF, et al. 2005.. β-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. . Clin. Pharmacol. Ther. 77::12737
    [Crossref] [Google Scholar]
  7. 7.
    Zineh I, Beitelshees AL, Gaedigk A, Walker JR, Pauly DF, et al. 2004.. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. . Clin. Pharmacol. Ther. 76::53644
    [Crossref] [Google Scholar]
  8. 8.
    Hamadeh IS, Langaee TY, Dwivedi R, Garcia S, Burkley BM, et al. 2014.. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. . Clin. Pharmacol. Ther. 96::17581
    [Crossref] [Google Scholar]
  9. 9.
    Lennard MS, Silas JH, Freestone S, Ramsay LE, Tucker GT, Woods HF. 1982.. Oxidation phenotype—a major determinant of metoprolol metabolism and response. . N. Engl. J. Med. 307::155860
    [Crossref] [Google Scholar]
  10. 10.
    Abdullah-Koolmees H, van Keulen AM, Nijenhuis M, Deneer VHM. 2020.. Pharmacogenetics guidelines: overview and comparison of the DPWG, CPIC, CPNDS, and RNPGx guidelines. . Front. Pharmacol. 11::595219
    [Crossref] [Google Scholar]
  11. 11.
    Relling MV, Klein TE. 2011.. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. . Clin. Pharmacol. Ther. 89::46467
    [Crossref] [Google Scholar]
  12. 12.
    Relling MV, Klein TE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Caudle KE. 2020.. The Clinical Pharmacogenetics Implementation Consortium: 10 years later. . Clin. Pharmacol. Ther. 107::17175
    [Crossref] [Google Scholar]
  13. 13.
    Cavallari LH, Lee CR, Duarte JD, Nutescu EA, Weitzel KW, et al. 2016.. Implementation of inpatient models of pharmacogenetics programs. . Am. J. Health Syst. Pharm. 73::194454
    [Crossref] [Google Scholar]
  14. 14.
    Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, et al. 2015.. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. . Annu. Rev. Pharmacol. Toxicol. 55::89106
    [Crossref] [Google Scholar]
  15. 15.
    Empey PE, Stevenson JM, Tuteja S, Weitzel KW, Angiolillo DJ, et al. 2018.. Multisite investigation of strategies for the implementation of CYP2C19 genotype-guided antiplatelet therapy. . Clin. Pharmacol. Ther. 104::66474
    [Crossref] [Google Scholar]
  16. 16.
    Magavern EF, Kaski JC, Turner RM, Drexel H, Janmohamed A, et al. 2022.. Challenges in cardiovascular pharmacogenomics implementation: a viewpoint from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. . Eur. Heart J. Cardiovasc. Pharmacother. 8::1003
    [Crossref] [Google Scholar]
  17. 17.
    Cicali EJ, Lemke L, Al Alshaykh H, Nguyen K, Cavallari LH, Wiisanen K. 2022.. How to implement a pharmacogenetics service at your institution. . J. Am. Coll. Clin. Pharm. 5::116175
    [Crossref] [Google Scholar]
  18. 18.
    Bank PCD, Swen JJ, Guchelaar HJ. 2018.. Implementation of pharmacogenomics in everyday clinical settings. . Adv. Pharmacol. 83::21946
    [Crossref] [Google Scholar]
  19. 19.
    Tuteja S, Salloum RG, Elchynski AL, Smith DM, Rowe E, et al. 2022.. Multisite evaluation of institutional processes and implementation determinants for pharmacogenetic testing to guide antidepressant therapy. . Clin. Transl. Sci. 15::37183
    [Crossref] [Google Scholar]
  20. 20.
    Duarte JD, Dalton R, Elchynski AL, Smith DM, Cicali EJ, et al. 2021.. Multisite investigation of strategies for the clinical implementation of pre-emptive pharmacogenetic testing. . Genet. Med. 23::233541
    [Crossref] [Google Scholar]
  21. 21.
    Hicks JK, El Rouby N, Ong HH, Schildcrout JS, Ramsey LB, et al. 2021.. Opportunity for genotype-guided prescribing among adult patients in 11 US health systems. . Clin. Pharmacol. Ther. 110::17988
    [Crossref] [Google Scholar]
  22. 22.
    Yu MHC, Chan MCY, Chung CCY, Li AWT, Yip CYW, et al. 2021.. Actionable pharmacogenetic variants in Hong Kong Chinese exome sequencing data and projected prescription impact in the Hong Kong population. . PLOS Genet. 17::e1009323
    [Crossref] [Google Scholar]
  23. 23.
    Verma SS, Keat K, Li B, Hoffecker G, Risman M, et al. 2022.. Evaluating the frequency and the impact of pharmacogenetic alleles in an ancestrally diverse Biobank population. . J. Transl. Med. 20::550
    [Crossref] [Google Scholar]
  24. 24.
    Bush WS, Crosslin DR, Owusu-Obeng A, Wallace J, Almoguera B, et al. 2016.. Genetic variation among 82 pharmacogenes: the PGRNseq data from the eMERGE Network. . Clin. Pharmacol. Ther. 100::16069
    [Crossref] [Google Scholar]
  25. 25.
    Van Driest SL, Shi Y, Bowton EA, Schildcrout JS, Peterson JF, et al. 2014.. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. . Clin. Pharmacol. Ther. 95::42331
    [Crossref] [Google Scholar]
  26. 26.
    Huang Q, Liao Y, Yu T, Lei W, Liang H, et al. 2023.. A retrospective analysis of preemptive pharmacogenomic testing in 22,918 individuals from China. . J. Clin. Lab. Anal. 37::e24855
    [Crossref] [Google Scholar]
  27. 27.
    ClinCalc DrugStats Database. 2021. The top 200 drugs of 2021. Database, ClinCalc.com. https://clincalc.com/DrugStats/
    [Google Scholar]
  28. 28.
    Ye Z, Mayer J, Leary EJ, Kitchner T, Dart RA, et al. 2023.. Estimating the efficacy of pharmacogenomics over a lifetime. . Front. Med. 10::1006743
    [Crossref] [Google Scholar]
  29. 29.
    Cavallari LH, Lee CR, Beitelshees AL, Cooper-Dehoff RM, Duarte JD, et al. 2018.. Multi-site investigation of outcomes with implementation of CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. . JACC Cardiovasc. Interv. 11::18191
    [Crossref] [Google Scholar]
  30. 30.
    Gurbel PA, Bliden K, Sherwood M, Taheri H, Tehrani B, et al. 2024.. Development of a routine bedside CYP2C19 genotype assessment program for antiplatelet therapy guidance in a community hospital catheterization laboratory. . J. Thromb. Thrombolys. 57::56675
    [Crossref] [Google Scholar]
  31. 31.
    Xi Z, Wang Y, Lu Q, Qiu H, Gao Y, et al. 2023.. Implementation of CYP2C19 genotyping and clinical outcomes following percutaneous coronary intervention in East Asian patients treated with oral P2Y12 inhibitors. . Thromb. Res. 228::8593
    [Crossref] [Google Scholar]
  32. 32.
    Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, et al. 2013.. A randomized trial of genotype-guided dosing of warfarin. . N. Engl. J. Med. 369::2294303
    [Crossref] [Google Scholar]
  33. 33.
    Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, et al. 2013.. A pharmacogenetic versus a clinical algorithm for warfarin dosing. . N. Engl. J. Med. 369::228393
    [Crossref] [Google Scholar]
  34. 34.
    Gage BF, Bass AR, Lin H, Woller SC, Stevens SM, et al. 2017.. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. . JAMA 318::111524
    [Crossref] [Google Scholar]
  35. 35.
    Guo C, Kuang Y, Zhou H, Yuan H, Pei Q, et al. 2020.. Genotype-guided dosing of warfarin in Chinese adults: a multicenter randomized clinical trial. . Circ. Genom. Precis. Med. 13::e002602
    [Crossref] [Google Scholar]
  36. 36.
    Syn NL, Wong AL, Lee SC, Teoh HL, Yip JWL, et al. 2018.. Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: a randomized controlled trial. . BMC Med. 16::104
    [Crossref] [Google Scholar]
  37. 37.
    Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, et al. 2012.. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). . Circulation 125::19972005
    [Crossref] [Google Scholar]
  38. 38.
    Mallal S, Phillips E, Carosi G, Molina JM, Workman C, et al. 2008.. HLA-B*5701 screening for hypersensitivity to abacavir. . N. Engl. J. Med. 358::56879
    [Crossref] [Google Scholar]
  39. 39.
    Oslin DW, Lynch KG, Shih MC, Ingram EP, Wray LO, et al. 2022.. Effect of pharmacogenomic testing for drug-gene interactions on medication selection and remission of symptoms in major depressive disorder: the PRIME Care randomized clinical trial. . JAMA 328::15161
    [Crossref] [Google Scholar]
  40. 40.
    Vos CF, Ter Hark SE, Schellekens AFA, Spijker J, van der Meij A, et al. 2023.. Effectiveness of genotype-specific tricyclic antidepressant dosing in patients with major depressive disorder: a randomized clinical trial. . JAMA Netw. Open 6::e2312443
    [Crossref] [Google Scholar]
  41. 41.
    Vande Voort JL, Orth SS, Shekunov J, Romanowicz M, Geske JR, et al. 2022.. A randomized controlled trial of combinatorial pharmacogenetics testing in adolescent depression. . J. Am. Acad. Child Adolesc. Psychiatry 61::4655
    [Crossref] [Google Scholar]
  42. 42.
    Tiwari AK, Zai CC, Altar CA, Tanner JA, Davies PE, et al. 2022.. Correction: Clinical utility of combinatorial pharmacogenomic testing in depression: a Canadian patient- and rater-blinded, randomized, controlled trial. . Transl. Psychiatry 12::214
    [Crossref] [Google Scholar]
  43. 43.
    Smith DM, Weitzel KW, Elsey AR, Langaee T, Gong Y, et al. 2019.. CYP2D6-guided opioid therapy improves pain control in CYP2D6 intermediate and poor metabolizers: a pragmatic clinical trial. . Genet. Med. 21::184250
    [Crossref] [Google Scholar]
  44. 44.
    Hamilton WG, Gargiulo JM, Parks NL. 2020.. Using pharmacogenetics to structure individual pain management protocols in total knee arthroplasty. . Bone Joint J. 102-B::7378
    [Crossref] [Google Scholar]
  45. 45.
    Hamilton WG, Gargiulo JM, Reynolds TR, Parks NL. 2022.. Prospective randomized study using pharmacogenetics to customize postoperative pain medication following hip and knee arthroplasty. . J. Arthroplasty 37::S7681
    [Crossref] [Google Scholar]
  46. 46.
    Thomas CD, Parvataneni HK, Gray CF, Deen JT, Prieto HA, et al. 2021.. A hybrid implementation-effectiveness randomized trial of CYP2D6-guided postoperative pain management. . Genet. Med. 23::62128
    [Crossref] [Google Scholar]
  47. 47.
    Kraus MB, Bingham JS, Kekic A, Erickson C, Grilli CB, et al. 2024.. Does preoperative pharmacogenomic testing of patients undergoing TKA improve postoperative pain? A randomized trial. . Clin. Orthop. Relat. Res. 482::291300
    [Crossref] [Google Scholar]
  48. 48.
    Han M, Lee HW, Lee HC, Kim HJ, Seong EY, Song SH. 2021.. Impact of nutritional index on contrast-associated acute kidney injury and mortality after percutaneous coronary intervention. . Sci. Rep. 11::7123
    [Crossref] [Google Scholar]
  49. 49.
    Cavallari LH, Cicali E, Wiisanen K, Fillingim RB, Chakraborty H, et al. 2022.. Implementing a pragmatic clinical trial to tailor opioids for acute pain on behalf of the IGNITE ADOPT PGx investigators. . Clin. Transl. Sci. 15::247992
    [Crossref] [Google Scholar]
  50. 50.
    Pereira NL, Farkouh ME, So D, Lennon R, Geller N, et al. 2020.. Effect of genotype-guided oral P2Y12 inhibitor selection versus conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention: the TAILOR-PCI randomized clinical trial. . JAMA 324::76171
    [Crossref] [Google Scholar]
  51. 51.
    Wang Y, Zhao X, Lin J, Li H, Johnston SC, et al. 2016.. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. . JAMA 316::7078
    [Crossref] [Google Scholar]
  52. 52.
    Wang Y, Meng X, Wang A, Xie X, Pan Y, et al. 2021.. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. . N. Engl. J. Med. 385::252030
    [Crossref] [Google Scholar]
  53. 53.
    Beitelshees AL, Thomas CD, Empey PE, Stouffer GA, Angiolillo DJ, et al. 2022.. CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention in diverse clinical settings. . J. Am. Heart Assoc. 11::e024159
    [Crossref] [Google Scholar]
  54. 54.
    Galli M, Benenati S, Franchi F, Rollini F, Capodanno D, et al. 2022.. Comparative effects of guided versus potent P2Y12 inhibitor therapy in acute coronary syndrome: a network meta-analysis of 61 898 patients from 15 randomized trials. . Eur. Heart J. 43::95967
    [Crossref] [Google Scholar]
  55. 55.
    Lee CR, Luzum JA, Sangkuhl K, Gammal RS, Sabatine MS, et al. 2022.. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. . Clin. Pharmacol. Ther. 112::95967
    [Crossref] [Google Scholar]
  56. 56.
    Galli M, Benenati S, Capodanno D, Franchi F, Rollini F, et al. 2021.. Guided versus standard antiplatelet therapy in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. . Lancet 397::147083
    [Crossref] [Google Scholar]
  57. 57.
    Pereira NL, Rihal C, Lennon R, Marcus G, Shrivastava S, et al. 2021.. Effect of CYP2C19 genotype on ischemic outcomes during oral P2Y12 inhibitor therapy: a meta-analysis. . JACC Cardiovasc. Interv. 14::73950
    [Crossref] [Google Scholar]
  58. 58.
    Morris ZS, Wooding S, Grant J. 2011.. The answer is 17 years, what is the question: understanding time lags in translational research. . J. R. Soc. Med. 104::51020
    [Crossref] [Google Scholar]
  59. 59.
    Pereira NL, Cresci S, Angiolillo DJ, Batchelor W, Capers Q, et al. 2024.. CYP2C19 genetic testing for oral P2Y12 inhibitor therapy: a scientific statement from the American Heart Association. . Circulation 150:(6):e12950
    [Crossref] [Google Scholar]
  60. 60.
    Lemke LK, Alam B, Williams R, Starostik P, Cavallari LH, et al. 2023.. Reimbursement of pharmacogenetic tests at a tertiary academic medical center in the United States. . Front. Pharmacol. 14::1179364
    [Crossref] [Google Scholar]
  61. 61.
    Keeling NJ, Rosenthal MM, West-Strum D, Patel AS, Haidar CE, Hoffman JM. 2019.. Preemptive pharmacogenetic testing: exploring the knowledge and perspectives of US payers. . Genet. Med. 21::122432
    [Crossref] [Google Scholar]
  62. 62.
    Kogan JN, Empey P, Kanter J, Keyser DJ, Shrank WH. 2018.. Delivering on the value proposition of precision medicine: the view from healthcare payers. . Am. J. Manag. Care 24::17779
    [Google Scholar]
  63. 63.
    Empey PE, Pratt VM, Hoffman JM, Caudle KE, Klein TE. 2021.. Expanding evidence leads to new pharmacogenomics payer coverage. . Genet. Med. 23::83032
    [Crossref] [Google Scholar]
  64. 64.
    Voskuil MD, Bangma A, Weersma RK, Festen EAM. 2019.. Predicting (side) effects for patients with inflammatory bowel disease: the promise of pharmacogenetics. . World J. Gastroenterol. 25::253948
    [Crossref] [Google Scholar]
  65. 65.
    Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, et al. 2019.. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. . Clin. Pharmacol. Ther. 105::1095105
    [Crossref] [Google Scholar]
  66. 66.
    Liu YP, Wu HY, Yang X, Xu HQ, Li YC, et al. 2015.. Association between thiopurine S-methyltransferase polymorphisms and thiopurine-induced adverse drug reactions in patients with inflammatory bowel disease: a meta-analysis. . PLOS ONE 10::e0121745
    [Crossref] [Google Scholar]
  67. 67.
    Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, et al. 2016.. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. . Nat. Genet. 48::36773
    [Crossref] [Google Scholar]
  68. 68.
    Weinshilboum RM, Sladek SL. 1980.. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. . Am. J. Hum. Genet. 32::65162
    [Google Scholar]
  69. 69.
    Harrill AH, Rusyn I. 2008.. Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. . Expert Opin. Drug Metab. Toxicol. 4::137989
    [Crossref] [Google Scholar]
  70. 70.
    Lennard L, Lewis IJ, Michelagnoli M, Lilleyman JS. 1997.. Thiopurine methyltransferase deficiency in childhood lymphoblastic leukaemia: 6-mercaptopurine dosage strategies. . Med. Pediatr. Oncol. 29::25255
    [Crossref] [Google Scholar]
  71. 71.
    Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, et al. 1997.. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. . Ann. Intern. Med. 126::60814
    [Crossref] [Google Scholar]
  72. 72.
    Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. 1990.. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. . Lancet 336::22529
    [Crossref] [Google Scholar]
  73. 73.
    Alvarnas JC, Brown PA, Aoun P, Ballen KK, Barta SK, et al. 2015.. Acute lymphoblastic leukemia, version 2.2015. . J. Natl. Compr. Canc. Netw. 13::124079
    [Crossref] [Google Scholar]
  74. 74.
    Brown P, Inaba H, Annesley C, Beck J, Colace S, et al. 2020.. Pediatric acute lymphoblastic leukemia, version 2.2020, NCCN clinical practice guidelines in oncology. . J. Natl. Compr. Canc. Netw. 18::81112
    [Crossref] [Google Scholar]
  75. 75.
    Lennard L, Cartwright CS, Wade R, Vora A. 2015.. Thiopurine methyltransferase and treatment outcome in the UK acute lymphoblastic leukaemia trial ALL2003. . Br. J. Haematol. 170::55058
    [Crossref] [Google Scholar]
  76. 76.
    Snow JL, Gibson LE. 1995.. The role of genetic variation in thiopurine methyltransferase activity and the efficacy and/or side effects of azathioprine therapy in dermatologic patients. . Arch. Dermatol. 131::19397
    [Crossref] [Google Scholar]
  77. 77.
    Kerstens PJ, Stolk JN, De Abreu RA, Lambooy LH, van de Putte LB, Boerbooms AA. 1995.. Azathioprine-related bone marrow toxicity and low activities of purine enzymes in patients with rheumatoid arthritis. . Arthritis Rheum. 38::14245
    [Crossref] [Google Scholar]
  78. 78.
    Gutierrez-Valencia M, Leache L, Saiz LC, Beloqui JJ, Barajas M, et al. 2023.. Role of pharmacogenomics in the efficacy and safety of thiopurines in inflammatory bowel disease: a systematic review and meta-analysis. . J. Clin. Gastroenterol. 57::67185
    [Crossref] [Google Scholar]
  79. 79.
    Abaji R, Krajinovic M. 2017.. Thiopurine S-methyltransferase polymorphisms in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders: influence on treatment response. . Pharmgenomics Pers. Med. 10::14356
    [Google Scholar]
  80. 80.
    Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, et al. 2019.. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. . Gut 68::s1106
    [Crossref] [Google Scholar]
  81. 81.
    Nakase H, Uchino M, Shinzaki S, Matsuura M, Matsuoka K, et al. 2021.. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020. . J. Gastroenterol. 56::489526
    [Crossref] [Google Scholar]
  82. 82.
    Burnett HF, Tanoshima R, Chandranipapongse W, Madadi P, Ito S, Ungar WJ. 2014.. Testing for thiopurine methyltransferase status for safe and effective thiopurine administration: a systematic review of clinical guidance documents. . Pharmacogenom. J. 14::493502
    [Crossref] [Google Scholar]
  83. 83.
    Karnes JH, Miller MA, White KD, Konvinse KC, Pavlos RK, et al. 2019.. Applications of immunopharmacogenomics: predicting, preventing, and understanding immune-mediated adverse drug reactions. . Annu. Rev. Pharmacol. Toxicol. 59::46386
    [Crossref] [Google Scholar]
  84. 84.
    Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, et al. 2002.. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. . Lancet 359::112122
    [Crossref] [Google Scholar]
  85. 85.
    Mallal S, Nolan D, Witt C, Masel G, Martin AM, et al. 2002.. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. . Lancet 359::72732
    [Crossref] [Google Scholar]
  86. 86.
    Churchill D, Waters L, Ahmed N, Angus B, Boffito M, et al. 2016.. British HIV Association guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy 2015. . HIV Med. 17:(Suppl. 4):s2104
    [Google Scholar]
  87. 87.
    Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ, et al. 2014.. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. . Clin. Pharmacol. Ther. 95::499500
    [Crossref] [Google Scholar]
  88. 88.
    Mallal S, Phillips E, Carosi G, Molina JM, Workman C, et al. 2008.. HLA-B*5701 screening for hypersensitivity to abacavir. . N. Engl. J. Med. 358::56879
    [Crossref] [Google Scholar]
  89. 89.
    Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, et al. 2016.. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. . Clin. Pharmacol. Ther. 99::3637
    [Crossref] [Google Scholar]
  90. 90.
    Leckband SG, Kelsoe JR, Dunnenberger HM, George AL Jr., Tran E, et al. 2013.. Clinical Pharmacogenetics Implementation Consortium guidelines for HLA-B genotype and carbamazepine dosing. . Clin. Pharmacol. Ther. 94::32428
    [Crossref] [Google Scholar]
  91. 91.
    Karnes JH, Rettie AE, Somogyi AA, Huddart R, Fohner AE, et al. 2021.. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and phenytoin dosing: 2020 update. . Clin. Pharmacol. Ther. 109::3029
    [Crossref] [Google Scholar]
  92. 92.
    CPIC (Clin. Pharmacogenetics Implement. Consort.). 2024.. Genes-drugs. Guidel., CPIC, US Dep. Health Hum. Serv., Washington, DC:. https://cpicpgx.org/genes-drugs/
    [Google Scholar]
  93. 93.
    Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, et al. 2019.. From big data to precision medicine. . Front. Med. 6::34
    [Crossref] [Google Scholar]
  94. 94.
    Bowton E, Field JR, Wang S, Schildcrout JS, Van Driest SL, et al. 2014.. Biobanks and electronic medical records: enabling cost-effective research. . Sci. Transl. Med. 6::234cm3
    [Crossref] [Google Scholar]
  95. 95.
    Pendergrass SA, Crawford DC. 2019.. Using electronic health records to generate phenotypes for research. . Curr. Protoc. Hum. Genet. 100::e80
    [Crossref] [Google Scholar]
  96. 96.
    Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. 2019.. Clinical use of current polygenic risk scores may exacerbate health disparities. . Nat. Genet. 51::58491
    [Crossref] [Google Scholar]
  97. 97.
    Popejoy AB, Fullerton SM. 2016.. Genomics is failing on diversity. . Nature 538::16164
    [Crossref] [Google Scholar]
  98. 98.
    Morales J, Welter D, Bowler EH, Cerezo M, Harris LW, et al. 2018.. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. . Genome Biol. 19::21
    [Crossref] [Google Scholar]
  99. 99.
    NIH (Natl. Inst. Health). 2024.. All of Us Research Program: about. . National Institutes of Health. https://allofus.nih.gov/about
    [Google Scholar]
  100. 100.
    All of Us Research Program Investig. 2019.. The “All of Us” Research Program. . N. Engl. J. Med. 381::66876
    [Crossref] [Google Scholar]
  101. 101.
    Bianchi DW, Brennan PF, Chiang MF, Criswell LA, D'Souza RN, et al. 2024.. The All of Us Research Program is an opportunity to enhance the diversity of US biomedical research. . Nat. Med. 30::33033
    [Crossref] [Google Scholar]
  102. 102.
    NIH (Natl. Inst. Health). 2024.. All of Us Research Program: data snapshots. NIH, Bethesda, MD:. https://www.researchallofus.org/data-tools/data-snapshots/
    [Google Scholar]
  103. 103.
    NIH (Natl. Inst. Health). 2023.. All of Us Research Program makes nearly 250,000 whole genome sequences available to advance precision medicine. News Release, April 20
    [Google Scholar]
  104. 104.
    Cronin RM, Jerome RN, Mapes B, Andrade R, Johnston R, et al. 2019.. Development of the initial surveys for the All of Us Research Program. . Epidemiology 30::597608
    [Crossref] [Google Scholar]
  105. 105.
    NIH (Natl. Inst. Health). 2023.. All of Us Research Program establishes new center for linkage and acquisition of data. News Release, Oct. 12
    [Google Scholar]
  106. 106.
    Ramirez AH, Sulieman L, Schlueter DJ, Halvorson A, Qian J, et al. 2022.. The All of Us Research Program: data quality, utility, and diversity. . Patterns 3::100570
    [Crossref] [Google Scholar]
  107. 107.
    Ramirez AH, Gebo KA, Harris PA. 2021.. Progress with the All of Us Research Program: opening access for researchers. . JAMA 325::244142
    [Crossref] [Google Scholar]
  108. 108.
    All of Us Res. Program Genom. Investig. 2024.. Genomic data in the All of Us Research Program. . Nature 627::34046
    [Crossref] [Google Scholar]
  109. 109.
    Venner E, Patterson K, Kalra D, Wheeler MM, Chen YJ, et al. 2024.. The frequency of pathogenic variation in the All of Us cohort reveals ancestry-driven disparities. . Commun. Biol. 7::174
    [Crossref] [Google Scholar]
  110. 110.
    Haddad A, Radhakrishnan A, McGee S, Smith JD, Karnes J, et al. 2023.. Frequency of pharmacogenomic variation and medication exposures among All of Us participants. . medRxiv 2024.06.12.24304664. https://doi.org/10.1101/2024.06.12.24304664
  111. 111.
    Lee SB, Wheeler MM, Thummel KE, Nickerson DA. 2019.. Calling star alleles with Stargazer in 28 pharmacogenes with whole genome sequences. . Clin. Pharmacol. Ther. 106::132837
    [Crossref] [Google Scholar]
  112. 112.
    Sangkuhl K, Whirl-Carrillo M, Whaley RM, Woon M, Lavertu A, et al. 2020.. Pharmacogenomics clinical annotation tool (PharmCAT). . Clin. Pharmacol. Ther. 107::20310
    [Crossref] [Google Scholar]
  113. 113.
    Turner AJ, Haidar CE, Yang W, Boone EC, Offer SM, et al. 2024.. Updated DPYD HapB3 haplotype structure and implications for pharmacogenomic testing. . Clin. Transl. Sci. 17::e13699
    [Crossref] [Google Scholar]
  114. 114.
    Phillips EJ, Sukasem C, Whirl-Carrillo M, Muller DJ, Dunnenberger HM, et al. 2018.. Clinical Pharmacogenetics Implementation Consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. . Clin. Pharmacol. Ther. 103::57481
    [Crossref] [Google Scholar]
  115. 115.
    Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, et al. 2017.. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. . Clin. Pharmacol. Ther. 102::397404
    [Crossref] [Google Scholar]
  116. 116.
    Allen NE, Sudlow C, Peakman T, Collins R, Biobank UK. 2014.. UK biobank data: Come and get it. . Sci. Transl. Med. 6::224ed4
    [Crossref] [Google Scholar]
  117. 117.
    Zeng C, Schlueter DJ, Tran TC, Babbar A, Cassini T, et al. 2024.. Comparison of phenomic profiles in the All of Us Research Program against the US general population and the UK Biobank. . J. Am. Med. Inform. Assoc. 31::84654
    [Crossref] [Google Scholar]
  118. 118.
    Li B, Sangkuhl K, Whaley R, Woon M, Keat K, et al. 2023.. Frequencies of pharmacogenomic alleles across biogeographic groups in a large-scale biobank. . Am. J. Hum. Genet. 110::162847
    [Crossref] [Google Scholar]
  119. 119.
    McInnes G, Lavertu A, Sangkuhl K, Klein TE, Whirl-Carrillo M, Altman RB. 2021.. Pharmacogenetics at scale: an analysis of the UK Biobank. . Clin. Pharmacol. Ther. 109::152837
    [Crossref] [Google Scholar]
  120. 120.
    Rohrer Vitek CR, Abul-Husn NS, Connolly JJ, Hartzler AL, Kitchner T, et al. 2017.. Healthcare provider education to support integration of pharmacogenomics in practice: the eMERGE Network experience. . Pharmacogenomics 18::101325
    [Crossref] [Google Scholar]
  121. 121.
    U.S. Dep. Veterans Aff. 2023.. MVP hits 1 million: VA national research program enrolls historic one millionth veteran. News Release, Nov. 15
    [Google Scholar]
  122. 122.
    Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, et al. 2016.. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. . J. Clin. Epidemiol. 70::21423
    [Crossref] [Google Scholar]
  123. 123.
    U.S. Dep. Veterans Aff. 2024.. MVP data available for research. . US Department of Veterans Affairs. https://www.mvp.va.gov/pwa/mvp-data-available-research
    [Google Scholar]
  124. 124.
    Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, et al. 2013.. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. . Genet. Med. 15::76171
    [Crossref] [Google Scholar]
  125. 125.
    Denny JC, Bastarache L, Roden DM. 2016.. Phenome-wide association studies as a tool to advance precision medicine. . Annu. Rev. Genom. Hum. Genet. 17::35373
    [Crossref] [Google Scholar]
  126. 126.
    Little A, Hu Y, Sun Q, Jain D, Broome J, et al. 2022.. Whole genome sequence analysis of platelet traits in the NHLBI Trans-Omics for Precision Medicine (TOPMed) initiative. . Hum. Mol. Genet. 31::34761
    [Crossref] [Google Scholar]
  127. 127.
    Armstrong ND, Srinivasasainagendra V, Ammous F, Assimes TL, Beitelshees AL, et al. 2023.. Whole genome sequence analysis of apparent treatment resistant hypertension status in participants from the Trans-Omics for Precision Medicine program. . Front. Genet. 14::1278215
    [Crossref] [Google Scholar]
  128. 128.
    Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, et al. 2019.. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. . PLOS Genet. 15::e1008500
    [Crossref] [Google Scholar]
  129. 129.
    Schatz MC, Philippakis AA, Afgan E, Banks E, Carey VJ, et al. 2022.. Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. . Cell Genom. 2::100085
    [Crossref] [Google Scholar]
  130. 130.
    Sun W, Rumshisky A, Uzuner O. 2013.. Evaluating temporal relations in clinical text: 2012 i2b2 Challenge. . J. Am. Med. Inform. Assoc. 20::80613
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080718
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080718
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error