1932

Abstract

G protein–coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers. Greater acceptance of oligomerization occurred with the recognition that GPCR interactions form heteromeric receptor complexes, which was validated in vivo, often with pharmacologic, signaling, and functional properties distinct from the constituent protomers. GPCR heteromerization is reviewed in the context of brain disorders, with examples illustrating their functional implication in diverse neuropsychiatric and neurodegenerative disorders, making them an enormous unexploited resource for selective pharmacotherapy target identification. The strategies for development of heteromer-selective ligands are discussed as a new opportunity to precisely target the function of a receptor complex with greater specificity, in contrast to the classical ligands targeting individual receptors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080727
2025-01-23
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080727.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080727&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Pierce KL, Premont RT, Lefkowitz RJ. 2002.. Seven-transmembrane receptors. . Nat. Rev. Mol. Cell Biol. 3::63950
    [Crossref] [Google Scholar]
  2. 2.
    Munk C, Mutt E, Isberg V, Nikolajsen LF, Bibbe JM, et al. 2019.. An online resource for GPCR structure determination and analysis. . Nat. Methods 16::15162
    [Crossref] [Google Scholar]
  3. 3.
    Alexander SP, Christopoulos A, Davenport AP, Kelly E, Mathie A, et al. 2021.. The Concise Guide To Pharmacology 2021/22: G protein-coupled receptors. . Br. J. Pharmacol. 178:(Suppl. 1):S27156
    [Google Scholar]
  4. 4.
    Gurevich VV, Gurevich EV. 2020.. Biased GPCR signaling: possible mechanisms and inherent limitations. . Pharmacol. Ther. 211::107540
    [Crossref] [Google Scholar]
  5. 5.
    Kobilka BK. 2007.. G protein coupled receptor structure and activation. . Biochim. Biophys. Acta 1768::794807
    [Crossref] [Google Scholar]
  6. 6.
    Lefkowitz RJ. 2007.. Seven transmembrane receptors: something old, something new. . Acta Physiol. 190::919
    [Crossref] [Google Scholar]
  7. 7.
    Sriram K, Insel PA. 2018.. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?. Mol. Pharmacol. 93::25158
    [Crossref] [Google Scholar]
  8. 8.
    Allen JA, Roth BL. 2011.. Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. . Annu. Rev. Pharmacol. Toxicol. 51::11744
    [Crossref] [Google Scholar]
  9. 9.
    Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, et al. 2017.. A comprehensive map of molecular drug targets. . Nat. Rev. Drug Discov. 16::1934
    [Crossref] [Google Scholar]
  10. 10.
    Rask-Andersen M, Masuram S, Schioth HB. 2014.. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. . Annu. Rev. Pharmacol. Toxicol. 54::926
    [Crossref] [Google Scholar]
  11. 11.
    Hauser AS, Kooistra AJ, Munk C, Heydenreich FM, Veprintsev DB, et al. 2021.. GPCR activation mechanisms across classes and macro/microscales. . Nat. Struct. Mol. Biol. 28::87988
    [Crossref] [Google Scholar]
  12. 12.
    Erlandson SC, McMahon C, Kruse AC. 2018.. Structural basis for G protein–coupled receptor signaling. . Annu. Rev. Biophys. 47::118
    [Crossref] [Google Scholar]
  13. 13.
    Kim HR, Xu J, Maeda S, Duc NM, Ahn D, et al. 2020.. Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family. . Nat. Commun. 11::3160
    [Crossref] [Google Scholar]
  14. 14.
    Jelinek V, Mösslein N, Bünemann M. 2021.. Structures in G proteins important for subtype selective receptor binding and subsequent activation. . Commun. Biol. 4::635
    [Crossref] [Google Scholar]
  15. 15.
    Pándy-Szekeres G, Esguerra M, Hauser AS, Caroli J, Munk C, et al. 2022.. The G protein database, GproteinDb. . Nucleic Acids Res. 50::D51825
    [Crossref] [Google Scholar]
  16. 16.
    Munk C, Isberg V, Mordalski S, Harpsøe K, Rataj K, et al. 2016.. GPCRdb: the G protein-coupled receptor database—an introduction. . Br. J. Pharmacol. 173::2195207
    [Crossref] [Google Scholar]
  17. 17.
    Ueda T, Kofuku Y, Okude J, Imai S, Shiraishi Y, Shimada I. 2019.. Function-related conformational dynamics of G protein-coupled receptors revealed by NMR. . Biophys. Rev. 11::40918
    [Crossref] [Google Scholar]
  18. 18.
    Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, et al. 2015.. Structural insights into the dynamic process of β2-adrenergic receptor signaling. . Cell 161::110111
    [Crossref] [Google Scholar]
  19. 19.
    Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M, et al. 2017.. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. . Nature 547::6873
    [Crossref] [Google Scholar]
  20. 20.
    Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, et al. 2011.. Multiple ligand-specific conformations of the β2-adrenergic receptor. . Nat. Chem. Biol. 7::692700
    [Crossref] [Google Scholar]
  21. 21.
    West GM, Chien EY, Katritch V, Gatchalian J, Chalmers MJ, et al. 2011.. Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. . Structure 19::142432
    [Crossref] [Google Scholar]
  22. 22.
    Bouvier M. 2001.. Oligomerization of G-protein-coupled transmitter receptors. . Nat. Rev. Neurosci. 2::27486
    [Crossref] [Google Scholar]
  23. 23.
    Borroto-Escuela DO, Fuxe K. 2019.. Oligomeric receptor complexes and their allosteric receptor-receptor interactions in the plasma membrane represent a new biological principle for integration of signals in the CNS. . Front. Mol. Neurosci. 12::230
    [Crossref] [Google Scholar]
  24. 24.
    Botta J, Appelhans J, McCormick PJ. 2020.. Continuing challenges in targeting oligomeric GPCR-based drugs. . Prog. Mol. Biol. Transl. Sci. 169::21345
    [Crossref] [Google Scholar]
  25. 25.
    Franco R, Navarro G, Martinez-Pinilla E. 2023.. The adenosine A2A receptor in the basal ganglia: expression, heteromerization, functional selectivity and signalling. . Int. Rev. Neurobiol. 170::4971
    [Crossref] [Google Scholar]
  26. 26.
    George SR, O'Dowd BF. 2007.. A novel dopamine receptor signaling unit in brain: heterooligomers of D1 and D2 dopamine receptors. . ScientificWorldJournal 7::5863
    [Crossref] [Google Scholar]
  27. 27.
    Fuxe K, Marcellino D, Guidolin D, Woods AS, Agnati L. 2009.. Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and novel targets for drug development. . J. Acupunct. Meridian Stud. 2::125
    [Crossref] [Google Scholar]
  28. 28.
    Jordan BA, Devi LA. 1999.. G-protein-coupled receptor heterodimerization modulates receptor function. . Nature 399::697700
    [Crossref] [Google Scholar]
  29. 29.
    George SR, Fan T, Xie Z, Tse R, Tam V, et al. 2000.. Oligomerization of μ- and δ-opioid receptors: generation of novel functional properties. . J. Biol. Chem. 275::2612835
    [Crossref] [Google Scholar]
  30. 30.
    White JH, Wise A, Main MJ, Green A, Fraser NJ, et al. 1998.. Heterodimerization is required for the formation of a functional GABAB receptor. . Nature 396::67982
    [Crossref] [Google Scholar]
  31. 31.
    Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, et al. 1998.. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. . Nature 396::67479
    [Crossref] [Google Scholar]
  32. 32.
    Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, et al. 1998.. GABAB-receptor subtypes assemble into functional heteromeric complexes. . Nature 396::68387
    [Crossref] [Google Scholar]
  33. 33.
    Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC. 1999.. Role of heteromer formation in GABAB receptor function. . Science 283::7477
    [Crossref] [Google Scholar]
  34. 34.
    Margeta-Mitrovic M, Jan YN, Jan LY. 2000.. A trafficking checkpoint controls GABAB receptor heterodimerization. . Neuron 27::97106
    [Crossref] [Google Scholar]
  35. 35.
    Angers S, Salahpour A, Bouvier M. 2001.. Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. . Life Sci. 68::224350
    [Crossref] [Google Scholar]
  36. 36.
    Salahpour A, Angers S, Mercier JF, Lagacé M, Marullo S, Bouvier M. 2004.. Homodimerization of the β2-adrenergic receptor as a prerequisite for cell surface targeting. . J. Biol. Chem. 279::3339097
    [Crossref] [Google Scholar]
  37. 37.
    Bourque K, Frohlich E, Hébert TE. 2023.. Approaching GPCR dimers and higher-order oligomers using biophysical, biochemical, and proteomic methods. . In GPCRs as Therapeutic Targets: GPCR Pharmacology/Signaling, ed. A Gilchrist , pp. 81108. Hoboken, NJ:: John Wiley
    [Google Scholar]
  38. 38.
    Agnati LF, Guidolin D, Vilardaga JP, Ciruela F, Fuxe K. 2010.. On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. . J. Recept. Signal Transduct. Res. 30::287303
    [Crossref] [Google Scholar]
  39. 39.
    Hasbi A, Nguyen T, Fan T, Cheng R, Rashid A, et al. 2007.. Trafficking of preassembled opioid μ-δ heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. . Biochemistry 46::129973009
    [Crossref] [Google Scholar]
  40. 40.
    Hasbi A, Fan T, Alijaniaram M, Nguyen T, Perreault ML, et al. 2009.. Calcium signaling cascade links dopamine D1-D2 receptor heteromer to striatal BDNF production and neuronal growth. . PNAS 106::2137782
    [Crossref] [Google Scholar]
  41. 41.
    Lohse MJ. 2010.. Dimerization in GPCR mobility and signaling. . Curr. Opin. Pharmacol. 10::5358
    [Crossref] [Google Scholar]
  42. 42.
    Milligan G. 2009.. G protein–coupled receptor hetero-dimerization: contribution to pharmacology and function. . Br. J. Pharmacol. 158::514
    [Crossref] [Google Scholar]
  43. 43.
    Franco R. 2009.. G-protein-coupled receptor heteromers or how neurons can display differently flavoured patterns in response to the same neurotransmitter. . Br. J. Pharmacol. 158::2331
    [Crossref] [Google Scholar]
  44. 44.
    Reyes-Resina I, Jimenez J, Navarro G, Franco R. 2019.. Identification of heteroreceptors complexes and signal transduction events using bioluminescence resonance energy transfer (BRET). . Bio Protoc. 9::e3385
    [Crossref] [Google Scholar]
  45. 45.
    Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, et al. 2011.. Crystal structure of the β2 adrenergic receptor-Gs protein complex. . Nature 477::54955
    [Crossref] [Google Scholar]
  46. 46.
    Wu JX, Shan FX, Zheng JN, Pei DS. 2014.. β-Arrestin promotes c-Jun N-terminal kinase mediated apoptosis via a GABABR·β-arrestin·JNK signaling module. Asian Pac. . J. Cancer Prev. 15::104146
    [Google Scholar]
  47. 47.
    Zhang Z, Zhang W, Huang S, Sun Q, Wang Y, et al. 2015.. GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. . J. Cell Sci. 128::230213
    [Crossref] [Google Scholar]
  48. 48.
    Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. 2003.. Atomic-force microscopy: rhodopsin dimers in native disc membranes. . Nature 421::12728
    [Crossref] [Google Scholar]
  49. 49.
    Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, et al. 2017.. Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. . Nature 546::11823
    [Crossref] [Google Scholar]
  50. 50.
    Congreve M, Marshall F. 2010.. The impact of GPCR structures on pharmacology and structure-based drug design. . Br. J. Pharmacol. 159::98696
    [Crossref] [Google Scholar]
  51. 51.
    Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, et al. 2016.. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. . FEBS J. 283::1197217
    [Crossref] [Google Scholar]
  52. 52.
    Jonas KC, Fanelli F, Huhtaniemi IT, Hanyaloglu AC. 2015.. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. . J. Biol. Chem. 290::387592
    [Crossref] [Google Scholar]
  53. 53.
    Pin JP, Neubig R, Bouvier M, Devi L, Filizola M, et al. 2007.. International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. . Pharmacol. Rev. 59::513
    [Crossref] [Google Scholar]
  54. 54.
    Hasbi A, O'Dowd BF, George SR. 2011.. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. . Mol. Brain 4::26
    [Crossref] [Google Scholar]
  55. 55.
    Hasbi A, O'Dowd BF, George SR. 2010.. Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms. . Curr. Opin. Pharmacol. 10::9399
    [Crossref] [Google Scholar]
  56. 56.
    DelaCuesta-Barrutia J, Peñagarikano O, Erdozain AM. 2020.. G protein-coupled receptor heteromers as putative pharmacotherapeutic targets in autism. . Front. Cell Neurosci. 14::588662
    [Crossref] [Google Scholar]
  57. 57.
    Faklaris O, Bancel-Vallée L, Dauphin A, Monterroso B, Frère P, et al. 2022.. Quality assessment in light microscopy for routine use through simple tools and robust metrics. . J. Cell Biol. 221::e202107093
    [Crossref] [Google Scholar]
  58. 58.
    Fanelli F, Hanyaloglu AC, Jonas K. 2020.. Integrated structural modeling and super-resolution imaging resolve GPCR oligomers. . Prog. Mol. Biol. Transl. Sci. 169::15179
    [Crossref] [Google Scholar]
  59. 59.
    Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, et al. 2009.. Building a new conceptual framework for receptor heteromers. . Nat. Chem. Biol. 5::13134
    [Crossref] [Google Scholar]
  60. 60.
    Kenakin T, Agnati LF, Caron M, Fredholm B, Guidoli D, et al. 2010.. International Workshop at the Nobel Forum, Karolinska Institutet on G protein-coupled receptors: finding the words to describe monomers, oligomers, and their molecular mechanisms and defining their meaning. Can a consensus be reached?. J. Recept Signal Transduct. Res. 30::28486
    [Crossref] [Google Scholar]
  61. 61.
    Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KD, Devi LA. 2016.. G protein-coupled receptor heteromers. . Annu. Rev. Pharmacol. Toxicol. 56::40325
    [Crossref] [Google Scholar]
  62. 62.
    Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, et al. 2004.. Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. . J. Biol. Chem. 279::3567178
    [Crossref] [Google Scholar]
  63. 63.
    Rashid AJ, So CH, Kong MMC, Furtak T, El-Ghundi M, et al. 2007.. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. . PNAS 104::65459
    [Crossref] [Google Scholar]
  64. 64.
    Pei L, Li SP, Wang M, Diwan M, Anisman H, et al. 2010.. Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. . Nat. Med. 16::139395
    [Crossref] [Google Scholar]
  65. 65.
    Chun LS, Free RB, Doyle TB, Huang XP, Rankin ML, Sibley DR. 2013.. D1-D2 dopamine receptor synergy promotes calcium signaling via multiple mechanisms. . Mol. Pharmacol. 84::190200
    [Crossref] [Google Scholar]
  66. 66.
    Chun LS, Free RB, Sibley DR. 2015.. Calcium and phospholipase Cβ signaling through dopamine receptors. . Neuromethods 96::25163
    [Crossref] [Google Scholar]
  67. 67.
    Dziedzicka-Wasylewska M, Faron-Gorecka A, Andrecka J, Polit A, Kusmider M, Wasylewski Z. 2006.. Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane. . Biochemistry 45::875159
    [Crossref] [Google Scholar]
  68. 68.
    Lukasiewicz S, Faron-Gorecka A, Dobrucki J, Polit A, Dziedzicka-Wasylewska M. 2009.. Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D1 and D2 receptor oligomerization. . FEBS J. 276::76075
    [Crossref] [Google Scholar]
  69. 69.
    So CH, Varghese G, Curley KJ, Kong MMC, Alijaniaram M, et al. 2005.. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. . Mol. Pharmacol. 68::56878
    [Crossref] [Google Scholar]
  70. 70.
    Hasbi A, Perreault ML, Shen MYF, Fan T, Nguyen T, et al. 2018.. Activation of dopamine D1-D2 receptor complex attenuates cocaine reward and reinstatement of cocaine-seeking through inhibition of DARPP-32, ERK, and ΔFosB. . Front. Pharmacol. 8::924
    [Crossref] [Google Scholar]
  71. 71.
    Perreault ML, Hasbi A, Alijaniaram M, Fan T, Varghese G, et al. 2010.. The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia. . J. Biol. Chem. 285::3662534
    [Crossref] [Google Scholar]
  72. 72.
    Perreault ML, Hasbi A, Shen MYF, Fan T, Navarro G, et al. 2016.. Disruption of a dopamine receptor complex amplifies the actions of cocaine. . Eur. Neuropsychopharm. 26::136677
    [Crossref] [Google Scholar]
  73. 73.
    Hasbi A, Madras BK, Bergman J, Kohut S, Lin ZC, et al. 2020.. Δ-Tetrahydrocannabinol increases dopamine D1-D2 receptor heteromer and elicits phenotypic reprogramming in adult primate striatal neurons. . iScience 23::100794
    [Crossref] [Google Scholar]
  74. 74.
    Hasbi A, Nguyen T, Rahal H, Manduca JD, Miksys S, et al. 2020.. Sex difference in dopamine D1-D2 receptor complex expression and signaling affects depression- and anxiety-like behaviors. . Biol. Sex Differ. 11::8
    [Crossref] [Google Scholar]
  75. 75.
    Rico AJ, Dopeso-Reyes IG, Martinez-Pinilla E, Sucunza D, Pignataro D, et al. 2017.. Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. . Brain Struct. Funct. 222::176784
    [Crossref] [Google Scholar]
  76. 76.
    Hasbi A, Sivasubramanian M, Milenkovic M, Komarek K, Madras BK, George SR. 2020.. Dopamine D1-D2 receptor heteromer expression in key brain regions of rat and higher species: upregulation in rat striatum after cocaine administration. . Neurobiol. Dis. 143::105017
    [Crossref] [Google Scholar]
  77. 77.
    Heyl DL, Champion M, Muterspaugh R, Connolly M, Baraka A, et al. 2019.. Characterizing the binding of dopamine D1–D2 receptors in vitro and in temporal and frontal lobe tissue total protein. . FEBS Lett. 593::73242
    [Crossref] [Google Scholar]
  78. 78.
    Bao YN, Dai WL, Fan JF, Ma B, Li SS, et al. 2021.. The dopamine D1-D2DR complex in the rat spinal cord promotes neuropathic pain by increasing neuronal excitability after chronic constriction injury. . Exp. Mol. Med. 53::23549
    [Crossref] [Google Scholar]
  79. 79.
    Ma XN, Yao CH, Yang YJ, Li X, Zhou MY, et al. 2024.. Blockade of spinal dopamine D1/D2 receptor heteromers by levo-Corydalmine suppressed calcium signaling cascade in spinal neurons to alleviate bone cancer pain in rats. . J. Cancer 15::104152
    [Crossref] [Google Scholar]
  80. 80.
    Ng J, Rashid AJ, So CH, O'Dowd BF, George SR. 2010.. Activation of calcium/calmodulin-dependent protein kinase IIα in the striatum by the heteromeric D1-D2 dopamine receptor complex. . Neuroscience 165::53541
    [Crossref] [Google Scholar]
  81. 81.
    Hasbi A, Madras BK, George SR. 2023.. Daily Δ9-tetrahydrocannabinol and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia- and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. . Biol. Psychiatry Glob. Open Sci. 3::55066
    [Crossref] [Google Scholar]
  82. 82.
    Hasbi A, Perreault ML, Shen MY, Zhang L, To R, et al. 2014.. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. . FASEB J. 28::480620
    [Crossref] [Google Scholar]
  83. 83.
    O'Dowd BF, Ji X, Nguyen T, George SR. 2012.. Two amino acids in each of D1 and D2 dopamine receptor cytoplasmic regions are involved in D1-D2 heteromer formation. . Biochem. Biophys. Res. Commun. 417::2328
    [Crossref] [Google Scholar]
  84. 84.
    Shen MYF, Perreault ML, Fan T, George SR. 2015.. The dopamine D1-D2 receptor heteromer exerts a tonic inhibitory effect on the expression of amphetamine-induced locomotor sensitization. . Pharmacol. Biochem. Behav. 128::3340
    [Crossref] [Google Scholar]
  85. 85.
    Di Raddo ME, Milenkovic M, Sivasubramanian M, Hasbi A, Bergman J, et al. 2023.. Δ9-Tetrahydrocannabinol does not upregulate an aversive dopamine receptor mechanism in adolescent brain unlike in adults. . Curr. Res. Neurobiol. 5::100107
    [Crossref] [Google Scholar]
  86. 86.
    Shen MYF, Perreault ML, Bambico FR, Jones-Tabah J, Cheung M, et al. 2015.. Rapid anti-depressant and anxiolytic actions following dopamine D1-D2 receptor heteromer inactivation. . Eur. Neuropsychopharm. 25::243748
    [Crossref] [Google Scholar]
  87. 87.
    Uefune F, Aonishi T, Kitaguchi T, Takahashi H, Seino S, et al. 2022.. Dopamine negatively regulates insulin secretion through activation of D1-D2 receptor heteromer. . Diabetes 71::194661
    [Crossref] [Google Scholar]
  88. 88.
    Lencesova L, Szadvari I, Babula P, Kubickova J, Chovancova B, et al. 2017.. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells. . Life Sci. 191::18694
    [Crossref] [Google Scholar]
  89. 89.
    Frederick AL, Yano H, Trifilieff P, Vishwasrao HD, Biezonski D, et al. 2015.. Evidence against dopamine D1/D2 receptor heteromers. . Mol. Psychiatr. 20::137385
    [Crossref] [Google Scholar]
  90. 90.
    Urizar E, Yano H, Kolster R, Gales C, Lambert N, Javitch JA. 2011.. CODA-RET reveals functional selectivity as a result of GPCR heteromerization. . Nat. Chem. Biol. 7::62430
    [Crossref] [Google Scholar]
  91. 91.
    Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G. 2016.. Basic pharmacological and structural evidence for class A G-protein-coupled receptor heteromerization. . Front. Pharmacol. 7::76
    [Crossref] [Google Scholar]
  92. 92.
    U. N. Off. Drugs Crime. 2023.. World drug report 2023. Rep. , U. N. Off. Drugs Crime, Vienna, Austria:. https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html
    [Google Scholar]
  93. 93.
    Dichiara G, Imperato A. 1988.. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. . PNAS 85::527478
    [Crossref] [Google Scholar]
  94. 94.
    Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F. 2007.. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. . Arch. Neurol. 64::157579
    [Crossref] [Google Scholar]
  95. 95.
    Bossong MG, van Berckel BN, Boellaard R, Zuurman L, Schuit RC, et al. 2009.. Δ9-Tetrahydrocannabinol induces dopamine release in the human striatum. . Neuropsychopharmacology 34::75966
    [Crossref] [Google Scholar]
  96. 96.
    Koob GF, Volkow ND. 2016.. Neurobiology of addiction: a neurocircuitry analysis. . Lancet Psychiatry 3::76073
    [Crossref] [Google Scholar]
  97. 97.
    Moreno E, Quiroz C, Rea W, Cai NS, Mallol J, et al. 2017.. Functional μ-opioid-galanin receptor heteromers in the ventral tegmental area. . J. Neurosci. 37::117686
    [Crossref] [Google Scholar]
  98. 98.
    De Oliveira PA, Moreno E, Casajuana-Martin N, Casado-Anguera V, Cai NS, et al. 2022.. Preferential Gs protein coupling of the galanin Gal1 receptor in the μ-opioid-Gal1 receptor heterotetramer. . Pharmacol. Res. 182::106322
    [Crossref] [Google Scholar]
  99. 99.
    Cai NS, Quiroz C, Bonaventura J, Bonifazi A, Cole TO, et al. 2019.. Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids. . J. Clin. Investig. 129::273044
    [Crossref] [Google Scholar]
  100. 100.
    Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, et al. 2006.. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. . J. Neurosci. 26::208087
    [Crossref] [Google Scholar]
  101. 101.
    Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K. 1991.. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. . PNAS 88::723841
    [Crossref] [Google Scholar]
  102. 102.
    Borroto-Escuela DO, Wydra K, Li X, Rodriguez D, Carlsson J, et al. 2018.. Disruption of A2AR-D2R heteroreceptor complexes after A2AR transmembrane 5 peptide administration enhances cocaine self-administration in rats. . Mol. Neurobiol. 55::703848
    [Crossref] [Google Scholar]
  103. 103.
    Price AE, Sholler DJ, Stutz SJ, Anastasio NC, Cunningham KA. 2019.. Endogenous serotonin 5-HT2A and 5-HT2C receptors associate in the medial prefrontal cortex. . ACS Chem. Neurosci. 10::324148
    [Crossref] [Google Scholar]
  104. 104.
    Anastasio NC, Stutz SJ, Fink LH, Swinford-Jackson SE, Sears RM, et al. 2015.. Serotonin (5-HT) 5-HT2A receptor (5-HT2AR):5-HT2CR imbalance in medial prefrontal cortex associates with motor impulsivity. . ACS Chem. Neurosci. 6::124858
    [Crossref] [Google Scholar]
  105. 105.
    Moutkine I, Quentin E, Guiard BP, Maroteaux L, Doly S. 2017.. Heterodimers of serotonin receptor subtypes 2 are driven by 5-HT2C protomers. . J. Biol. Chem. 292::635268
    [Crossref] [Google Scholar]
  106. 106.
    Köfalvi A, Moreno E, Cordomi A, Cai NS, Fernandez-Duenas V, et al. 2020.. Control of glutamate release by complexes of adenosine and cannabinoid receptors. . BMC Biol. 18::9
    [Crossref] [Google Scholar]
  107. 107.
    Ferré S, Lluís C, Justinova Z, Quiroz C, Orru M, et al. 2010.. Adenosine-cannabinoid receptor interactions: implications for striatal function. . Br. J. Pharmacol. 160::44353
    [Crossref] [Google Scholar]
  108. 108.
    Moreno E, Chiarlone A, Medrano M, Puigdellivol M, Bibic L, et al. 2018.. Singular location and signaling profile of adenosine A2A-cannabinoid CB1 receptor heteromers in the dorsal striatum. . Neuropsychopharmacology 43::96477
    [Crossref] [Google Scholar]
  109. 109.
    Sinha R. 2011.. New findings on biological factors predicting addiction relapse vulnerability. . Curr. Psychiat. Rep. 13::398405
    [Crossref] [Google Scholar]
  110. 110.
    Toda S, Alguacil LF, Kalivas PW. 2003.. Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. . J. Neurochem. 87::147884
    [Crossref] [Google Scholar]
  111. 111.
    Pierre F, Ugur M, Faivre F, Doridot S, Veinante P, Massotte D. 2019.. Morphine-dependent and abstinent mice are characterized by a broader distribution of the neurons co-expressing mu and delta opioid receptors. . Neuropharmacology 152::3041
    [Crossref] [Google Scholar]
  112. 112.
    Kabli N, Nguyen T, Balboni G, O'Dowd BF, George SR. 2014.. Antidepressant-like and anxiolytic-like effects following activation of the μ-δ opioid receptor heteromer in the nucleus accumbens. . Mol. Psychiatr. 19::98694
    [Crossref] [Google Scholar]
  113. 113.
    Ben-Shahar O, Keeley P, Cook M, Brake W, Joyce M, et al. 2007.. Changes in levels of D1, D2, or NMDA receptors during withdrawal from brief or extended daily access to IV cocaine. . Brain Res. 1131::22028
    [Crossref] [Google Scholar]
  114. 114.
    Hurd YL, Herkenham M. 1993.. Molecular alterations in the neostriatum of human cocaine addicts. . Synapse 13::35769
    [Crossref] [Google Scholar]
  115. 115.
    Santomauro DF, Herrera AMM, Shadid J, Zheng P, Ashbaugh C, et al. 2021.. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. . Lancet 398::170012
    [Crossref] [Google Scholar]
  116. 116.
    Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, et al. 2018.. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. . Lancet 391::135766
    [Crossref] [Google Scholar]
  117. 117.
    Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. 2008.. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. . PLOS Med. 5::26068
    [Crossref] [Google Scholar]
  118. 118.
    Braund TA, Tillman G, Palmer DM, Gordon E, Rush AJ, Harris AWF. 2021.. Antidepressant side effects and their impact on treatment outcome in people with major depressive disorder: an iSPOT-D report. . Transl. Psychiatry 11::417
    [Crossref] [Google Scholar]
  119. 119.
    Krishnan V, Nestler EJ. 2008.. The molecular neurobiology of depression. . Nature 455::894902
    [Crossref] [Google Scholar]
  120. 120.
    Palmer SM, Crewther SG, Carey LM, Team SP. 2015.. A meta-analysis of changes in brain activity in clinical depression. . Front. Hum. Neurosci. 8::1045
    [Crossref] [Google Scholar]
  121. 121.
    Zhang RM, Li DD, Mao HL, Wei XN, Xu MD, et al. 2022.. Disruption of 5-hydroxytryptamine 1A receptor and orexin receptor 1 heterodimer formation affects novel G protein-dependent signaling pathways and has antidepressant effects in vivo. . Transl. Psychiatry 12::122
    [Crossref] [Google Scholar]
  122. 122.
    Vinals X, Moreno E, Lanfumey L, Cordomi A, Pastor A, et al. 2015.. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. . PLOS Biol. 13::e1002194
    [Crossref] [Google Scholar]
  123. 123.
    Szafran K, Lukasiewicz S, Faron-Gorecka A, Kolasa M, Kusmider M, et al. 2012.. Antidepressant drugs promote the heterodimerization of the dopamine D2 and somatostatin Sst5 receptors—fluorescence in vitro studies. . Pharmacol. Rep. 64::125358
    [Crossref] [Google Scholar]
  124. 124.
    Kamal M, Gbahou F, Guillaume JL, Daulat AM, Benleulmi-Chaachoua A, et al. 2015.. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. . J. Biol. Chem. 290::1153746
    [Crossref] [Google Scholar]
  125. 125.
    Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT. 2006.. Neurobiology of schizophrenia. . Neuron 52::13953
    [Crossref] [Google Scholar]
  126. 126.
    Potkin SG, Kane JM, Correll CU, Lindenmayer JP, Agid O, et al. 2020.. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. . NPJ Schizophr. 6::1
    [Crossref] [Google Scholar]
  127. 127.
    DiBonaventura M, Gabriel S, Dupclay L, Gupta S, Kim E. 2012.. A patient perspective of the impact of medication side effects on adherence: results of a cross-sectional nationwide survey of patients with schizophrenia. . BMC Psychiatry 12::20
    [Crossref] [Google Scholar]
  128. 128.
    Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, et al. 2006.. Psychosis pathways converge via D2High dopamine receptors. . Synapse 60::31946
    [Crossref] [Google Scholar]
  129. 129.
    Valle-Leon M, Callado LF, Aso E, Cajiao-Manrique MM, Sahlholm K, et al. 2021.. Decreased striatal adenosine A2A-dopamine D2 receptor heteromerization in schizophrenia. . Neuropsychopharmacology 46::66572
    [Crossref] [Google Scholar]
  130. 130.
    Moreno JL, Miranda-Azpiazu P, Garcia-Bea A, Younkin J, Cui M, et al. 2016.. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. . Sci. Signal. 9::ra5
    [Crossref] [Google Scholar]
  131. 131.
    Kern A, Mavrikaki M, Ullrich C, Albarran-Zeckler R, Brantley AF, Smith RG. 2015.. Hippocampal dopamine/DRD1 signaling dependent on the ghrelin receptor. . Cell 163::117690
    [Crossref] [Google Scholar]
  132. 132.
    Jiang H, Betancourt L, Smith RG. 2006.. Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. . Mol. Endocrinol. 20::177285
    [Crossref] [Google Scholar]
  133. 133.
    Casanovas M, Jimenez-Roses M, Cordomi A, Lillo A, Vega-Quiroga I, et al. 2021.. Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: structural and functional properties. . Addict. Biol. 26::e13017
    [Crossref] [Google Scholar]
  134. 134.
    Tian J, Guo L, Sui SM, Driskill C, Phensy A, et al. 2019.. Disrupted hippocampal growth hormone secretagogue receptor 1α interaction with dopamine receptor D1 plays a role in Alzheimer's disease. . Sci. Transl. Med. 11::eaav6278
    [Crossref] [Google Scholar]
  135. 135.
    Lukasiewicz S, Blasiak E, Szafran-Pilch K, Dziedzicka-Wasylewska M. 2016.. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics—in vitro studies. . J. Neurochem. 137::54960
    [Crossref] [Google Scholar]
  136. 136.
    Bagher AM, Young AP, Laprairie RB, Toguri JT, Kelly MEM, Denovan-Wright EM. 2020.. Heteromer formation between cannabinoid type 1 and dopamine type 2 receptors is altered by combination cannabinoid and antipsychotic treatments. . J. Neurosci. Res. 98::2496509
    [Crossref] [Google Scholar]
  137. 137.
    Marcellino D, Carriba P, Filip M, Borgkvist A, Frankowska M, et al. 2008.. Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. . Neuropharmacology 54::81523
    [Crossref] [Google Scholar]
  138. 138.
    Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, et al. 2011.. Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. . Mol. Pharmacol. 80::41625
    [Crossref] [Google Scholar]
  139. 139.
    Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, et al. 2015.. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. . Eur. Neuropsychopharm. 25::204961
    [Crossref] [Google Scholar]
  140. 140.
    Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. 2004.. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. . Nat. Genet. 36::13137
    [Crossref] [Google Scholar]
  141. 141.
    Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, et al. 2020.. The global burden of neurological disorders: translating evidence into policy. . Lancet Neurol. 19::25565
    [Crossref] [Google Scholar]
  142. 142.
    Zheng JC, Chen S. 2022.. Translational neurodegeneration in the era of fast growing international brain research. . Transl. Neurodegener. 11::1
    [Crossref] [Google Scholar]
  143. 143.
    Fernández-Dueñas V, Gómez-Soler M, Valle-León M, Watanabe M, Ferrer I, Ciruela F. 2019.. Revealing adenosine A2A-dopamine D2 receptor heteromers in Parkinson's disease post-mortem brain through a new AlphaScreen-based assay. . Int. J. Mol. Sci. 20::3600
    [Crossref] [Google Scholar]
  144. 144.
    Moreno-Delgado D, Puigdellivol M, Moreno E, Rodriguez-Ruiz M, Botta J, et al. 2020.. Modulation of dopamine D1 receptors via histamine H3 receptors is a novel therapeutic target for Huntington's disease. . eLife 9::e51093
    [Crossref] [Google Scholar]
  145. 145.
    Armstrong MJ, Okun MS. 2020.. Diagnosis and treatment of Parkinson disease: a review. . JAMA 323::54860
    [Crossref] [Google Scholar]
  146. 146.
    Martinez-Pinilla E, Rico AJ, Rivas-Santisteban R, Lillo J, Roda E, et al. 2020.. Expression of GPR55 and either cannabinoid CB1 or CB2 heteroreceptor complexes in the caudate, putamen, and accumbens nuclei of control, parkinsonian, and dyskinetic non-human primates. . Brain Struct. Funct. 225::215364
    [Crossref] [Google Scholar]
  147. 147.
    Pinna A, Bonaventura J, Farre D, Sanchez M, Simola N, et al. 2014.. l-DOPA disrupts adenosine A2A-cannabinoid CB1-dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies. . Exp. Neurol. 253::18091
    [Crossref] [Google Scholar]
  148. 148.
    Rivas-Santisteban R, Rico AJ, Munoz A, Rodríguez-Pérez AI, Reyes-Resina I, et al. 2023.. Boolean analysis shows a high proportion of dopamine D2 receptors interacting with adenosine A2A receptors in striatal medium spiny neurons of mouse and non-human primate models of Parkinson's disease. . Neurobiol. Dis. 188::106341
    [Crossref] [Google Scholar]
  149. 149.
    Farre D, Munoz A, Moreno E, Reyes-Resina I, Canet-Pons J, et al. 2015.. Stronger dopamine D1 receptor-mediated neurotransmission in dyskinesia. . Mol. Neurobiol. 52::140820
    [Crossref] [Google Scholar]
  150. 150.
    Jenner P. 2008.. Molecular mechanisms of l-DOPA-induced dyskinesia. . Nat. Rev. Neurosci. 9::66577
    [Crossref] [Google Scholar]
  151. 151.
    Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. 2017.. Huntington's disease: mechanisms of pathogenesis and therapeutic strategies. . Cold Spring Harb. Perspect. Med. 7::a024240
    [Crossref] [Google Scholar]
  152. 152.
    Casado-Anguera V, Cortes A, Casado V, Moreno E. 2019.. Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. . Expert Opin. Drug Discov. 14::1297312
    [Crossref] [Google Scholar]
  153. 153.
    Ferré S. 2015.. The GPCR heterotetramer: challenging classical pharmacology. . Trends Pharmacol. Sci. 36::14552
    [Crossref] [Google Scholar]
  154. 154.
    Farran B. 2017.. An update on the physiological and therapeutic relevance of GPCR oligomers. . Pharmacol. Res. 117::30327
    [Crossref] [Google Scholar]
  155. 155.
    Shpakov AO. 2023.. Allosteric regulation of G-protein-coupled receptors: from diversity of molecular mechanisms to multiple allosteric sites and their ligands. . Int. J. Mol. Sci. 24::6187
    [Crossref] [Google Scholar]
  156. 156.
    Franco R, Navarro G. 2023.. Neuroprotection afforded by targeting G protein-coupled receptors in heteromers and by heteromer-selective drugs. . Front. Pharmacol. 14::1222158
    [Crossref] [Google Scholar]
  157. 157.
    Springael JY, Urizar E, Costagliola S, Vassart G, Parmentier M. 2007.. Allosteric properties of G protein-coupled receptor oligomers. . Pharmacol. Ther. 115::41018
    [Crossref] [Google Scholar]
  158. 158.
    Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, et al. 2005.. A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. . PNAS 102::905055
    [Crossref] [Google Scholar]
  159. 159.
    Brugarolas M, Navarro G, Martinez-Pinilla E, Angelats E, Casado V, et al. 2014.. G-protein-coupled receptor heteromers as key players in the molecular architecture of the central nervous system. . CNS Neurosci. Ther. 20::7039
    [Crossref] [Google Scholar]
  160. 160.
    Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, et al. 2008.. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. . Brain Res. Rev. 58::41552
    [Crossref] [Google Scholar]
  161. 161.
    Szafran K, Faron-Górecka A, Kolasa M, Kusmider M, Solich J, et al. 2013.. Potential role of G protein-coupled receptor (GPCR) heterodimerization in neuropsychiatric disorders: a focus on depression. . Pharmacol. Rep. 65::1498505
    [Crossref] [Google Scholar]
  162. 162.
    Franco R, Canela EI, Casado V, Ferre S. 2010.. Platforms for the identification of GPCR targets, and of orthosteric and allosteric modulators. . Expert Opin. Drug Dis. 5::391403
    [Crossref] [Google Scholar]
  163. 163.
    Franco R, Martínez-Pinilla E, Ricobaraza A, McCormick PJ. 2013.. Challenges in the development of heteromer-GPCR-based drugs. . Prog. Mol. Biol. Transl. 117::14362
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080727
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080727
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error