1932

Abstract

Ryanodine receptor type 2 (RyR2) is the principal intracellular calcium release channel in the cardiac sarcoplasmic reticulum (SR). Pathological RyR2 hyperactivity generates arrhythmia risk in genetic and structural heart diseases. gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia. In structural heart diseases (i.e., heart failure), posttranslation modifications render RyR2 channels leaky, resulting in pathologic calcium release during diastole, contributing to arrhythmogenesis and contractile dysfunction. Hence, RyR2 represents a therapeutic target in arrhythmogenic heart diseases. We provide an overview of the structure and function of RyR2, and then review US Food and Drug Administration–approved and investigational RyR2 inhibitors. A therapeutic classification of RyR2 inhibitors is proposed based on their mechanism of action. Class I RyR2 inhibitors (e.g., flecainide) do not change SR calcium content and are primarily antiarrhythmic. Class II RyR2 inhibitors (e.g., dantrolene) increase SR calcium content, making them less effective as antiarrhythmics but preferable in conditions with reduced SR calcium content such as heart failure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080739
2025-01-23
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080739.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080739&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bers DM. 2002.. Cardiac excitation-contraction coupling. . Nature 415::198205
    [Crossref] [Google Scholar]
  2. 2.
    Kamp TJ, Hell JW. 2000.. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. . Circ. Res. 87::1095102
    [Crossref] [Google Scholar]
  3. 3.
    Garcia J, Tanabe T, Beam KG. 1994.. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. . J. Gen. Physiol. 103::12547
    [Crossref] [Google Scholar]
  4. 4.
    Sibbles ET, Waddell HMM, Mereacre V, Jones PP, Munro ML. 2022.. The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias. . Biophys. Rev. 14::32952
    [Crossref] [Google Scholar]
  5. 5.
    Chazin WJ, Johnson CN. 2020.. Calmodulin mutations associated with heart arrhythmia: a status report. . Int. J. Mol. Sci. 21::1418
    [Crossref] [Google Scholar]
  6. 6.
    Chopra N, Knollmann BC. 2013.. Triadin regulates cardiac muscle couplon structure and microdomain Ca2+ signalling: a path towards ventricular arrhythmias. . Cardiovasc. Res. 98::18791
    [Crossref] [Google Scholar]
  7. 7.
    Fowler ED, Zissimopoulos S. 2022.. Molecular, subcellular, and arrhythmogenic mechanisms in genetic RyR2 disease. . Biomolecules 12::1030
    [Crossref] [Google Scholar]
  8. 8.
    Niggli E, Ullrich ND, Gutierrez D, Kyrychenko S, Polakova E, Shirokova N. 2013.. Posttranslational modifications of cardiac ryanodine receptors: Ca2+ signaling and EC-coupling. . Biochim. Biophys. Acta Mol. Cell Res. 1833::86675
    [Crossref] [Google Scholar]
  9. 9.
    Okolo CA, Khaing EP, Mereacre V, Wallace RS, Munro ML, et al. 2023.. Direct regulation of the cardiac ryanodine receptor (RyR2) by O-GlcNAcylation. . Cardiovasc. Diabetol. 22::276
    [Crossref] [Google Scholar]
  10. 10.
    Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A, et al. 2008.. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. . Circ. Res. 103::146672
    [Crossref] [Google Scholar]
  11. 11.
    Sleiman Y, Lacampagne A, Meli AC. 2021.. “Ryanopathies” and RyR2 dysfunctions: Can we further decipher them using in vitro human disease models?. Cell Death Dis. 12::1041
    [Crossref] [Google Scholar]
  12. 12.
    Dobrev D, Carlsson L, Nattel S. 2012.. Novel molecular targets for atrial fibrillation therapy. . Nat. Rev. Drug Discov. 11::27591
    [Crossref] [Google Scholar]
  13. 13.
    Wit AL. 2018.. Afterdepolarizations and triggered activity as a mechanism for clinical arrhythmias. . Pacing Clin. Electrophysiol. 41::88396
    [Crossref] [Google Scholar]
  14. 14.
    Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, et al. 2006.. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. . J. Clin. Investig. 116::251020
    [Google Scholar]
  15. 15.
    Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, et al. 2022.. Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment. . Sci. Adv. 8::eabo1272
    [Crossref] [Google Scholar]
  16. 16.
    Postma AV, Denjoy I, Hoorntje TM, Lupoglazoff JM, Da Costa A, et al. 2002.. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. . Circ. Res. 91::e2126
    [Crossref] [Google Scholar]
  17. 17.
    Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, et al. 2002.. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. . Circulation 106::6974
    [Crossref] [Google Scholar]
  18. 18.
    Chopra N, Kannankeril PJ, Yang T, Hlaing T, Holinstat I, et al. 2007.. Modest reductions of cardiac calsequestrin increase sarcoplasmic reticulum Ca2+ leak independent of luminal Ca2+ and trigger ventricular arrhythmias in mice. . Circ. Res. 101::61726
    [Crossref] [Google Scholar]
  19. 19.
    van Opbergen CJM, Bagwan N, Maurya SR, Kim JC, Smith AN, et al. 2022.. Exercise causes arrhythmogenic remodeling of intracellular calcium dynamics in plakophilin-2-deficient hearts. . Circulation 145::148096
    [Crossref] [Google Scholar]
  20. 20.
    Knollmann BC, Roden DM. 2008.. A genetic framework for improving arrhythmia therapy. . Nature 451::92936
    [Crossref] [Google Scholar]
  21. 21.
    Sen-Chowdhry S, Morgan RD, Chambers JC, McKenna WJ. 2010.. Arrhythmogenic cardiomyopathy: etiology, diagnosis, and treatment. . Annu. Rev. Med. 61::23353
    [Crossref] [Google Scholar]
  22. 22.
    Van Petegem F. 2012.. Ryanodine receptors: structure and function. . J. Biol. Chem. 287::3162432
    [Crossref] [Google Scholar]
  23. 23.
    Peng W, Shen H, Wu J, Guo W, Pan X, et al. 2016.. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. . Science 354::aah5324
    [Crossref] [Google Scholar]
  24. 24.
    George CH, Yin CC, Lai FA. 2005.. Toward a molecular understanding of the structure-function of ryanodine receptor Ca2+ release channels: perspectives from recombinant expression systems. . Cell Biochem. Biophys. 42::197222
    [Crossref] [Google Scholar]
  25. 25.
    Laver DR. 2018.. Regulation of the RyR channel gating by Ca2+ and Mg2+. . Biophys. Rev. 10::108795
    [Crossref] [Google Scholar]
  26. 26.
    Jones PP, Guo W, Chen SRW. 2017.. Control of cardiac ryanodine receptor by sarcoplasmic reticulum luminal Ca2+. . J. Gen. Physiol. 149::86775
    [Crossref] [Google Scholar]
  27. 27.
    Ching LL, Williams AJ, Sitsapesan R. 2000.. Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. . Circ. Res. 87::2016
    [Crossref] [Google Scholar]
  28. 28.
    Chen W, Wang R, Chen B, Zhong X, Kong H, et al. 2014.. The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. . Nat. Med. 20::18492
    [Crossref] [Google Scholar]
  29. 29.
    Laver DR. 2010.. Regulation of RyR channel gating by Ca2+, Mg2+ and ATP. . Curr. Top. Membr. 66::6989
    [Crossref] [Google Scholar]
  30. 30.
    Huang X, Fruen B, Farrington DT, Wagenknecht T, Liu Z. 2012.. Calmodulin-binding locations on the skeletal and cardiac ryanodine receptors. . J. Biol. Chem. 287::3032835
    [Crossref] [Google Scholar]
  31. 31.
    Dumont FJ. 2000.. FK506, an immunosuppressant targeting calcineurin function. . Curr. Med. Chem. 7::73148
    [Crossref] [Google Scholar]
  32. 32.
    Chi X, Gong D, Ren K, Zhou G, Huang G, et al. 2019.. Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. . PNAS 116::2557582
    [Crossref] [Google Scholar]
  33. 33.
    Maximciuc AA, Putkey JA, Shamoo Y, Mackenzie KR. 2006.. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. . Structure 14::154756
    [Crossref] [Google Scholar]
  34. 34.
    Walweel K, Gomez-Hurtado N, Rebbeck RT, Oo YW, Beard NA, et al. 2019.. Calmodulin inhibition of human RyR2 channels requires phosphorylation of RyR2-S2808 or RyR2-S2814. . J. Mol. Cell. Cardiol. 130::96106
    [Crossref] [Google Scholar]
  35. 35.
    Wleklinski MJ, Kryshtal DO, Kim K, Parikh SS, Blackwell DJ, et al. 2022.. Impaired dynamic sarcoplasmic reticulum Ca buffering in autosomal dominant CPVT2. . Circ. Res. 131::67386
    [Crossref] [Google Scholar]
  36. 36.
    Uchinoumi H, Yang Y, Oda T, Li N, Alsina KM, et al. 2016.. CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. . J. Mol. Cell. Cardiol. 98::6272
    [Crossref] [Google Scholar]
  37. 37.
    Potenza DM, Janicek R, Fernandez-Tenorio M, Camors E, Ramos-Mondragon R, et al. 2019.. Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete β-adrenergic response. . J. Gen. Physiol. 151::13145
    [Crossref] [Google Scholar]
  38. 38.
    Ponting C, Schultz J, Bork P. 1997.. SPRY domains in ryanodine receptors (Ca2+-release channels). . Trends Biochem. Sci. 22::19394
    [Crossref] [Google Scholar]
  39. 39.
    Euden J, Mason SA, Williams AJ. 2013.. Functional characterization of the cardiac ryanodine receptor pore-forming region. . PLOS ONE 8::e66542
    [Crossref] [Google Scholar]
  40. 40.
    Uchinoumi H, Yano M, Suetomi T, Ono M, Xu X, et al. 2010.. Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. . Circ. Res. 106::141324
    [Crossref] [Google Scholar]
  41. 41.
    Hadiatullah H, He Z, Yuchi Z. 2022.. Structural insight into ryanodine receptor channelopathies. . Front. Pharmacol. 13::897494
    [Crossref] [Google Scholar]
  42. 42.
    Xiao Z, Guo W, Sun B, Hunt DJ, Wei J, et al. 2016.. Enhanced cytosolic Ca2+ activation underlies a common defect of central domain cardiac ryanodine receptor mutations linked to arrhythmias. . J. Biol. Chem. 291::2452837
    [Crossref] [Google Scholar]
  43. 43.
    Uehara A, Murayama T, Yasukochi M, Fill M, Horie M, et al. 2017.. Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity. . J. Gen. Physiol. 149::199218
    [Crossref] [Google Scholar]
  44. 44.
    Xu X, Yano M, Uchinoumi H, Hino A, Suetomi T, et al. 2010.. Defective calmodulin binding to the cardiac ryanodine receptor plays a key role in CPVT-associated channel dysfunction. . Biochem. Biophys. Res. Commun. 394::66066
    [Crossref] [Google Scholar]
  45. 45.
    Wleklinski MJ, Kannankeril PJ, Knollmann BC. 2020.. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. . J. Physiol. 598::281734
    [Crossref] [Google Scholar]
  46. 46.
    Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, et al. 2000.. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. . Cell 101::36576
    [Crossref] [Google Scholar]
  47. 47.
    Ono M, Yano M, Hino A, Suetomi T, Xu X, et al. 2010.. Dissociation of calmodulin from cardiac ryanodine receptor causes aberrant Ca2+ release in heart failure. . Cardiovasc. Res. 87::60917
    [Crossref] [Google Scholar]
  48. 48.
    Fukuda M, Yamamoto T, Nishimura S, Kato T, Murakami W, et al. 2014.. Enhanced binding of calmodulin to RyR2 corrects arrhythmogenic channel disorder in CPVT-associated myocytes. . Biochem. Biophys. Res. Commun. 448::17
    [Crossref] [Google Scholar]
  49. 49.
    Zhao F, Li P, Chen SR, Louis CF, Fruen BR. 2001.. Dantrolene inhibition of ryanodine receptor Ca2+ release channels: molecular mechanism and isoform selectivity. . J. Biol. Chem. 276::1381016
    [Crossref] [Google Scholar]
  50. 50.
    Mehra D, Imtiaz MS, van Helden DF, Knollmann BC, Laver DR. 2014.. Multiple modes of ryanodine receptor 2 inhibition by flecainide. . Mol. Pharmacol. 86::696706
    [Crossref] [Google Scholar]
  51. 51.
    Savio-Galimberti E, Knollmann BC. 2015.. Channel activity of cardiac ryanodine receptors (RyR2) determines potency and efficacy of flecainide and R-propafenone against arrhythmogenic calcium waves in ventricular cardiomyocytes. . PLOS ONE 10::e0131179
    [Crossref] [Google Scholar]
  52. 52.
    Zhou Q, Xiao J, Jiang D, Wang R, Vembaiyan K, et al. 2011.. Carvedilol and its new analogs suppress arrhythmogenic store overload–induced Ca2+ release. . Nat. Med. 17::10039
    [Crossref] [Google Scholar]
  53. 53.
    Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, et al. 2024.. 2023 ACC/AHA/ACCP/HRS guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. . Circulation 149::e1156
    [Crossref] [Google Scholar]
  54. 54.
    Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, et al. 2018.. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. . Heart Rhythm 15::e190252
    [Crossref] [Google Scholar]
  55. 55.
    Kobayashi S, Wakeyama T, Ono S, Ikeda Y, Omura M, et al. 2020.. A multicenter, randomized, double-blind, controlled study to evaluate the efficacy and safety of dantrolene on ventricular arrhythmia as well as mortality and morbidity in patients with chronic heart failure (SHO-IN trial): rationale and design. . J. Cardiol. 75::45461
    [Crossref] [Google Scholar]
  56. 56.
    Batiste SM, Blackwell DJ, Kim K, Kryshtal DO, Gomez-Hurtado N, et al. 2019.. Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-mediated calcium leak and is antiarrhythmic. . PNAS 116::481015
    [Crossref] [Google Scholar]
  57. 57.
    Smith AN, Blackwell DJ, Knollmann BC, Johnston JN. 2021.. Ring size as an independent variable in cyclooligomeric depsipeptide antiarrhythmic activity. . ACS Med. Chem. Lett. 12::194247
    [Crossref] [Google Scholar]
  58. 58.
    Blackwell DJ, Smith AN, Do T, Gochman A, Schmeckpeper J, et al. 2023.. In vivo pharmacokinetic and pharmacodynamic properties of the antiarrhythmic molecule ent-verticilide. . J. Pharmacol. Exp. Ther. 385::20513
    [Crossref] [Google Scholar]
  59. 59.
    Kim K, Blackwell DJ, Yuen SL, Thorpe MP, Johnston JN, et al. 2023.. The selective RyR2 inhibitor ent-verticilide suppresses atrial fibrillation susceptibility caused by Pitx2 deficiency. . J. Mol. Cell. Cardiol. 180::19
    [Crossref] [Google Scholar]
  60. 60.
    Akiyama T, Pawitan Y, Greenberg H, Kuo CS, Reynolds-Haertle RA. 1991.. Increased risk of death and cardiac arrest from encainide and flecainide in patients after non-Q-wave acute myocardial infarction in the Cardiac Arrhythmia Suppression Trial. . Am. J. Cardiol. 68::155155
    [Crossref] [Google Scholar]
  61. 61.
    Schmeckpeper J, Kim K, George SA, Blackwell DJ, Brennan JA, et al. 2023.. RyR2 inhibition with dantrolene is antiarrhythmic, prevents further pathological remodeling, and improves cardiac function in chronic ischemic heart disease. . J. Mol. Cell. Cardiol. 181::6778
    [Crossref] [Google Scholar]
  62. 62.
    Fujii S, Kobayashi S, Chang Y, Nawata J, Yoshitomi R, et al. 2023.. RyR2-targeting therapy prevents left ventricular remodeling and ventricular tachycardia in post-infarction heart failure. . J. Mol. Cell. Cardiol. 178::3650
    [Crossref] [Google Scholar]
  63. 63.
    Dykes MH. 1975.. Evaluation of a muscle relaxant: dantrolene sodium (Dantrium). . JAMA 231::86264
    [Crossref] [Google Scholar]
  64. 64.
    Britt BA. 1984.. Dantrolene. . Can. Anaesth. Soc. J. 31::6175
    [Crossref] [Google Scholar]
  65. 65.
    Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F. 2004.. Dantrolene—a review of its pharmacology, therapeutic use and new developments. . Anaesthesia 59::36473
    [Crossref] [Google Scholar]
  66. 66.
    Kaur H, Katyal N, Yelam A, Kumar K, Srivastava H, Govindarajan R. 2019.. Malignant hyperthermia. . Mo. Med. 116::15459
    [Google Scholar]
  67. 67.
    Bauerova-Hlinkova V, Hajduchova D, Bauer JA. 2020.. Structure and function of the human ryanodine receptors and their association with myopathies-present state, challenges, and perspectives. . Molecules 25::4040
    [Crossref] [Google Scholar]
  68. 68.
    Kobayashi S, Yano M, Uchinoumi H, Suetomi T, Susa T, et al. 2010.. Dantrolene, a therapeutic agent for malignant hyperthermia, inhibits catecholaminergic polymorphic ventricular tachycardia in a RyR2R2474S/+ knock-in mouse model. . Circ. J. 74::257984
    [Crossref] [Google Scholar]
  69. 69.
    Jung CB, Moretti A, Mederos y Schnitzler M, Iop L, Storch U, et al. 2012.. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. . EMBO Mol. Med. 4::18091
    [Crossref] [Google Scholar]
  70. 70.
    Joshi P, Estes S, DeMazumder D, Knollmann BC, Dey S. 2023.. Ryanodine receptor 2 inhibition reduces dispersion of cardiac repolarization, improves contractile function, and prevents sudden arrhythmic death in failing hearts. . eLife 12::RP88638
    [Crossref] [Google Scholar]
  71. 71.
    George SA, Brennan-McLean JA, Trampel KA, Rytkin E, Faye NR, et al. 2023.. Ryanodine receptor inhibition with acute dantrolene treatment reduces arrhythmia susceptibility in human hearts. . Am. J. Physiol. Heart Circ. Physiol. 325::H72028
    [Crossref] [Google Scholar]
  72. 72.
    Oo YW, Gomez-Hurtado N, Walweel K, van Helden DF, Imtiaz MS, et al. 2015.. Essential role of calmodulin in RyR inhibition by dantrolene. . Mol. Pharmacol. 88::5763
    [Crossref] [Google Scholar]
  73. 73.
    Cheng H, Lederer WJ, Cannell MB. 1993.. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. . Science 262::74044
    [Crossref] [Google Scholar]
  74. 74.
    Zamiri N, Masse S, Ramadeen A, Kusha M, Hu X, et al. 2014.. Dantrolene improves survival after ventricular fibrillation by mitigating impaired calcium handling in animal models. . Circulation 129::87585
    [Crossref] [Google Scholar]
  75. 75.
    Maxwell JT, Domeier TL, Blatter LA. 2012.. Dantrolene prevents arrhythmogenic Ca2+ release in heart failure. . Am. J. Physiol. Heart Circ. Physiol. 302::H95363
    [Crossref] [Google Scholar]
  76. 76.
    Walweel K, Beard N, van Helden DF, Laver DR. 2023.. Dantrolene inhibition of ryanodine channels (RyR2) in artificial lipid bilayers depends on FKBP12.6. . J. Gen. Physiol. 155::e202213277
    [Crossref] [Google Scholar]
  77. 77.
    King GS, Goyal A, Grigorova Y, Patel P, Hashmi MF. 2024.. Antiarrhythmic medications. . In StatPearls. Treasure Island, FL:: StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK482322/
    [Google Scholar]
  78. 78.
    Anderson JL, Stewart JR, Perry BA, Van Hamersveld DD, Johnson TA, et al. 1981.. Oral flecainide acetate for the treatment of ventricular arrhythmias. . N. Engl. J. Med. 305::47377
    [Crossref] [Google Scholar]
  79. 79.
    Anderson JL, Gilbert EM, Alpert BL, Henthorn RW, Waldo AL, et al. 1989.. Prevention of symptomatic recurrences of paroxysmal atrial fibrillation in patients initially tolerating antiarrhythmic therapy. A multicenter, double-blind, crossover study of flecainide and placebo with transtelephonic monitoring. . Circulation 80::155770
    [Crossref] [Google Scholar]
  80. 80.
    Hodges M, Haugland JM, Granrud G, Conard GJ, Asinger RW, et al. 1982.. Suppression of ventricular ectopic depolarizations by flecainide acetate, a new antiarrhythmic agent. . Circulation 65::87985
    [Crossref] [Google Scholar]
  81. 81.
    Smith GH. 1985.. Flecainide: a new class Ic antidysrhythmic. . Drug Intell. Clin. Pharm. 19::7037
    [Google Scholar]
  82. 82.
    Watanabe H, Chopra N, Laver D, Hwang HS, Davies SS, et al. 2009.. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. . Nat. Med. 15::38083
    [Crossref] [Google Scholar]
  83. 83.
    Kryshtal DO, Blackwell DJ, Egly CL, Smith AN, Batiste SM, et al. 2021.. RYR2 channel inhibition is the principal mechanism of flecainide action in CPVT. . Circ. Res. 128::32131
    [Crossref] [Google Scholar]
  84. 84.
    van der Werf C, Kannankeril PJ, Sacher F, Krahn AD, Viskin S, et al. 2011.. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. . J. Am. Coll. Cardiol. 57::224454
    [Crossref] [Google Scholar]
  85. 85.
    Kannankeril PJ, Moore JP, Cerrone M, Priori SG, Kertesz NJ, et al. 2017.. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. . JAMA Cardiol. 2::75966
    [Crossref] [Google Scholar]
  86. 86.
    Hilliard FA, Steele DS, Laver D, Yang Z, Le Marchand SJ, et al. 2010.. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. . J. Mol. Cell. Cardiol. 48::293301
    [Crossref] [Google Scholar]
  87. 87.
    Bannister ML, Alvarez-Laviada A, Thomas NL, Mason SA, Coleman S, et al. 2016.. Effect of flecainide derivatives on sarcoplasmic reticulum calcium release suggests a lack of direct action on the cardiac ryanodine receptor. . Br. J. Pharmacol. 173::244659
    [Crossref] [Google Scholar]
  88. 88.
    Bannister ML, Thomas NL, Sikkel MB, Mukherjee S, Maxwell C, et al. 2015.. The mechanism of flecainide action in CPVT does not involve a direct effect on RyR2. . Circ. Res. 116::132435
    [Crossref] [Google Scholar]
  89. 89.
    Liu N, Denegri M, Ruan Y, Avelino-Cruz JE, Perissi A, et al. 2011.. Short communication: Flecainide exerts an antiarrhythmic effect in a mouse model of catecholaminergic polymorphic ventricular tachycardia by increasing the threshold for triggered activity. . Circ. Res. 109::29195
    [Crossref] [Google Scholar]
  90. 90.
    Sikkel MB, Collins TP, Rowlands C, Shah M, O'Gara P, et al. 2013.. Flecainide reduces Ca2+ spark and wave frequency via inhibition of the sarcolemmal sodium current. . Cardiovasc. Res. 98::28696
    [Crossref] [Google Scholar]
  91. 91.
    Gillespie D, Fill M. 2008.. Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. . Biophys. J. 95::370614
    [Crossref] [Google Scholar]
  92. 92.
    Zsolnay V, Fill M, Gillespie D. 2018.. Sarcoplasmic reticulum Ca2+ release uses a cascading network of intra-SR and channel countercurrents. . Biophys. J. 114::46273
    [Crossref] [Google Scholar]
  93. 93.
    Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, et al. 1991.. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. . N. Engl. J. Med. 324::78188
    [Crossref] [Google Scholar]
  94. 94.
    Husti Z, Varro A, Baczko I. 2021.. Arrhythmogenic remodeling in the failing heart. . Cells 10::3203
    [Crossref] [Google Scholar]
  95. 95.
    Melgari D, Zhang Y, El Harchi A, Dempsey CE, Hancox JC. 2015.. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. . J. Mol. Cell. Cardiol. 86::4253
    [Crossref] [Google Scholar]
  96. 96.
    Kroemer HK, Funck-Brentano C, Silberstein DJ, Wood AJ, Eichelbaum M, et al. 1989.. Stereoselective disposition and pharmacologic activity of propafenone enantiomers. . Circulation 79::106876
    [Crossref] [Google Scholar]
  97. 97.
    Schreibmayer W, Lindner W. 1992.. Stereoselective interactions of (R)- and (S)-propafenone with the cardiac sodium channel. . J. Cardiovasc. Pharmacol. 20::32431
    [Crossref] [Google Scholar]
  98. 98.
    Hwang HS, Hasdemir C, Laver D, Mehra D, Turhan K, et al. 2011.. Inhibition of cardiac Ca2+ release channels (RyR2) determines efficacy of class I antiarrhythmic drugs in catecholaminergic polymorphic ventricular tachycardia. . Circ. Arrhythm. Electrophysiol. 4::12835
    [Crossref] [Google Scholar]
  99. 99.
    Voigt N, Heijman J, Wang Q, Chiang DY, Li N, et al. 2014.. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. . Circulation 129::14556
    [Crossref] [Google Scholar]
  100. 100.
    Voigt N, Li N, Wang Q, Wang W, Trafford AW, et al. 2012.. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. . Circulation 125::205970
    [Crossref] [Google Scholar]
  101. 101.
    Shoemaker MB, Yoneda ZT, Crawford DM, Akers WS, Richardson T, et al. 2022.. A mechanistic clinical trial using (R)- versus (S)-propafenone to test RyR2 (ryanodine receptor) inhibition for the prevention of atrial fibrillation induction. . Circ. Arrhythm. Electrophysiol. 15::e010713
    [Crossref] [Google Scholar]
  102. 102.
    Roden DM. 2014.. Pharmacology and toxicology of Nav1.5-class 1 anti-arrhythmic drugs. . Card. Electrophysiol. Clin. 6::695704
    [Crossref] [Google Scholar]
  103. 103.
    Kühlkamp V, Bosch R, Mewis C, Seipel L. 2002.. Use of β-blockers in atrial fibrillation. . Am. J. Cardiovasc. Drugs 2::3742
    [Crossref] [Google Scholar]
  104. 104.
    Reiter MJ. 2004.. Cardiovascular drug class specificity: β-blockers. . Prog. Cardiovasc. Dis. 47::1133
    [Crossref] [Google Scholar]
  105. 105.
    Yao A, Kohmoto O, Oyama T, Sugishita Y, Shimizu T, et al. 2003.. Characteristic effects of α11,2-adrenergic blocking agent, carvedilol, on [Ca2+]i in ventricular myocytes compared with those of timolol and atenolol. . Circ. J. 67::8390
    [Crossref] [Google Scholar]
  106. 106.
    Stringer CM, Lopez MJ, Maani CV. 2023.. Tetracaine. . In StatPearls. Treasure Island, FL:: StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK535437/
    [Google Scholar]
  107. 107.
    Raymond SA, Steffensen SC, Gugino LD, Strichartz GR. 1989.. The role of length of nerve exposed to local anesthetics in impulse blocking action. . Anesth. Analg. 68::56370
    [Crossref] [Google Scholar]
  108. 108.
    Venetucci LA, Trafford AW, Diaz ME, O'Neill SC, Eisner DA. 2006.. Reducing ryanodine receptor open probability as a means to abolish spontaneous Ca2+ release and increase Ca2+ transient amplitude in adult ventricular myocytes. . Circ. Res. 98::1299305
    [Crossref] [Google Scholar]
  109. 109.
    Laver DR, van Helden DF. 2011.. Three independent mechanisms contribute to tetracaine inhibition of cardiac calcium release channels. . J. Mol. Cell. Cardiol. 51::35769
    [Crossref] [Google Scholar]
  110. 110.
    Shoshan-Barmatz V, Zchut S. 1993.. The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum. . J. Membr. Biol. 133::17181
    [Crossref] [Google Scholar]
  111. 111.
    Klipp RC, Li N, Wang Q, Word TA, Sibrian-Vazquez M, et al. 2018.. EL20, a potent antiarrhythmic compound, selectively inhibits calmodulin-deficient ryanodine receptor type 2. . Heart Rhythm 15::57886
    [Crossref] [Google Scholar]
  112. 112.
    Word TA, Quick AP, Miyake CY, Shak MK, Pan X, et al. 2021.. Efficacy of RyR2 inhibitor EL20 in induced pluripotent stem cell-derived cardiomyocytes from a patient with catecholaminergic polymorphic ventricular tachycardia. . J. Cell. Mol. Med. 25::611524
    [Crossref] [Google Scholar]
  113. 113.
    Pinder RM, Brogden RN, Speight TM, Avery GS. 1977.. Dantrolene sodium: a review of its pharmacological properties and therapeutic efficacy in spasticity. . Drugs 13::323
    [Crossref] [Google Scholar]
  114. 114.
    Arrhythm Card. Suppr. Trial Investig. 1989.. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. . N. Engl. J. Med. 321::40612
    [Crossref] [Google Scholar]
  115. 115.
    Newman DJ, Cragg GM. 2016.. Natural products as sources of new drugs from 1981 to 2014. . J. Nat. Prod. 79::62961
    [Crossref] [Google Scholar]
  116. 116.
    Shiomi K, Matsui R, Kakei A, Yamaguchi Y, Masuma R, et al. 2010.. Verticilide, a new ryanodine-binding inhibitor, produced by Verticillium sp. FKI-1033. . J. Antibiot. 63::7782
    [Crossref] [Google Scholar]
  117. 117.
    Šeflová J, Schwarz JA, Smith AN, Svensson B, Blackwell DJ, et al. 2023.. RyR2 binding of an antiarrhythmic cyclic depsipeptide mapped using confocal fluorescence lifetime detection of FRET. . ACS Chem. Biol. 18::229099
    [Crossref] [Google Scholar]
  118. 118.
    Smith AN, Thorpe MP, Blackwell DJ, Batiste SM, Hopkins CR, et al. 2022.. Structure-activity relationships for the N-Me- versus N-H-amide modification to macrocyclic ent-verticilide antiarrhythmics. . ACS Med. Chem. Lett. 13::175562
    [Crossref] [Google Scholar]
  119. 119.
    Gochman A, Do TQ, Kim K, Schwarz JA, Thorpe MP, et al. 2024. ent-Verticilide B1 inhibits type 2 ryanodine receptor channels and is antiarrhythmic in Casq2−/− mice. . Mol. Pharmacol. 105:(3):194201
    [Crossref] [Google Scholar]
  120. 120.
    McAuley BJ, Schroeder JS. 1982.. The use of diltiazem hydrochloride in cardiovascular disorders. . Pharmacotherapy 2::12133
    [Crossref] [Google Scholar]
  121. 121.
    Markham A, Brogden RN. 1993.. Diltiazem. A review of its pharmacology and therapeutic use in older patients. . Drugs Aging 3::36390
    [Crossref] [Google Scholar]
  122. 122.
    Kaneko N. 1994.. New 1,4-benzothiazepine derivative, K201, demonstrates cardioprotective effects against sudden cardiac cell-death and intracellular calcium blocking action. . Drug Develop. Res. 33::42938
    [Crossref] [Google Scholar]
  123. 123.
    Wehrens XH, Lehnart SE, Reiken S, van der Nagel R, Morales R, et al. 2005.. Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. . PNAS 102::960712
    [Crossref] [Google Scholar]
  124. 124.
    Wehrens XHT, Lehnart SE, Reiken SR, Deng SX, Vest JA, et al. 2004.. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. . Science 304::29296
    [Crossref] [Google Scholar]
  125. 125.
    Hasumi H, Matsuda R, Shimamoto K, Hata Y, Kaneko N. 2007.. K201, a multi-channel blocker, inhibits clofilium-induced torsades de pointes and attenuates an increase in repolarization. . Eur. J. Pharmacol. 555::5460
    [Crossref] [Google Scholar]
  126. 126.
    Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, et al. 2008.. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. . J. Clin. Investig. 118::223045
    [Google Scholar]
  127. 127.
    Sasaki K, Makiyama T, Yoshida Y, Wuriyanghai Y, Kamakura T, et al. 2016.. Patient-specific human induced pluripotent stem cell model assessed with electrical pacing validates S107 as a potential therapeutic agent for catecholaminergic polymorphic ventricular tachycardia. . PLOS ONE 11::e0164795
    [Crossref] [Google Scholar]
  128. 128.
    Shan J, Betzenhauser MJ, Kushnir A, Reiken S, Meli AC, et al. 2010.. Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. . J. Clin. Investig. 120::437587
    [Crossref] [Google Scholar]
  129. 129.
    Marks AR. 2023.. Targeting ryanodine receptors to treat human diseases. . J. Clin. Investig. 133::e162891
    [Crossref] [Google Scholar]
  130. 130.
    Kushnir A, Todd JJ, Witherspoon JW, Yuan Q, Reiken S, et al. 2020.. Intracellular calcium leak as a therapeutic target for RYR1-related myopathies. . Acta Neuropathol. 139::1089104
    [Crossref] [Google Scholar]
  131. 131.
    Shannon TR, Ginsburg KS, Bers DM. 2002.. Quantitative assessment of the SR Ca2+ leak-load relationship. . Circ. Res. 91::594600
    [Crossref] [Google Scholar]
  132. 132.
    Jiang D, Wang R, Xiao B, Kong H, Hunt DJ, et al. 2005.. Enhanced store overload–induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. . Circ. Res. 97::117381
    [Crossref] [Google Scholar]
  133. 133.
    Sun B, Yao J, Ni M, Wei J, Zhong X, et al. 2021.. Cardiac ryanodine receptor calcium release deficiency syndrome. . Sci. Transl. Med. 13::eaba7287
    [Crossref] [Google Scholar]
  134. 134.
    Marx A, Lange B, Nalenz C, Hoffmann B, Rostock T, Konrad T. 2019.. A 35-year effective treatment of catecholaminergic polymorphic ventricular tachycardia with propafenone. . HeartRhythm Case Rep. 5::7477
    [Crossref] [Google Scholar]
  135. 135.
    Penttinen K, Swan H, Vanninen S, Paavola J, Lahtinen AM, et al. 2015.. Antiarrhythmic effects of dantrolene in patients with catecholaminergic polymorphic ventricular tachycardia and replication of the responses using iPSC models. . PLOS ONE 10::e0125366
    [Crossref] [Google Scholar]
  136. 136.
    Kolb ME, Horne ML, Martz R. 1982.. Dantrolene in human malignant hyperthermia. . Anesthesiology 56::25462
    [Crossref] [Google Scholar]
  137. 137.
    Wong S, Hart LL. 1990.. Tetracaine/adrenaline/cocaine for local anesthesia. . DICP 24::118183
    [Google Scholar]
  138. 138.
    Todd JJ, Lawal TA, Chrismer IC, Kokkinis A, Grunseich C, et al. 2024.. Rycal S48168 (ARM210) for RYR1-related myopathies: a phase one, open-label, dose-escalation trial. . eClinicalMedicine 68::102433
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080739
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080739
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error