1932

Abstract

Advances in molecular biology and molecular genetics as well as major scientific breakthroughs in immunology and oncology have led to the rapid growth of biologic therapeutics. Their success has resulted in significant changes to virtually every step in the drug discovery and development process. Biologics are produced by living organisms, and screening libraries are generated by immunization or phage display. Lead optimization utilizes sophisticated protein engineering to improve drug-like properties and targeting specificity. The manufacturing process for biologics is complex and requires highly specialized facilities. Determination of pharmacology and safety must overcome the complications associated with species specificity. Initial clinical testing must proceed more slowly and carefully due to the limited predictive utility of preclinical data. In summary, the drug discovery and development process has been dramatically altered by biologic therapeutics and will continue to evolve with the introduction of messenger RNA–based therapeutics and the application of artificial intelligence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080811
2025-01-23
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080811.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080811&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Strohl WR, Knight DM. 2009.. Discovery and development of biopharmaceuticals: current issues. . Curr. Opin. Biotech. 20::66872
    [Crossref] [Google Scholar]
  2. 2.
    Strohl WR. 2020.. Therapeutic monoclonal antibodies—past, present, and future. . In Therapeutic Monoclonal Antibodies: From Bench to Clinic, ed. Z An , pp. 450. New York:: John Wiley & Sons
    [Google Scholar]
  3. 3.
    Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. 2022.. Development of therapeutic antibodies for the treatment of diseases. . Mol. Biomed. 3::35
    [Crossref] [Google Scholar]
  4. 4.
    Richards JM, Vogelzang NJ, Bluestone JA. 1990.. Neurotoxicity after treatment with muromonab-CD3. . N. Engl. J. Med. 323:(7):48788
    [Crossref] [Google Scholar]
  5. 5.
    Faulds D, Sorkin EM. 1994.. Abciximab (c7E3 Fab). A review of its pharmacology and therapeutic potential in ischaemic heart disease. . Drugs 48:(4):58398
    [Crossref] [Google Scholar]
  6. 6.
    Tsurushita N, Hinton PR, Kumar S. 2005.. Design of humanized antibodies: from anti-Tac to Zenapax. . Methods 36:(1):6983
    [Crossref] [Google Scholar]
  7. 7.
    Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, et al. 1998.. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. . N. Engl. J. Med. 338:(3):16165
    [Crossref] [Google Scholar]
  8. 8.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ. 1990.. Phage antibodies: filamentous phage displaying antibody variable domains. . Nature 348:(6301):55254
    [Crossref] [Google Scholar]
  9. 9.
    Senior M. 2023.. Fresh from the biotech pipeline: fewer approvals but biologics gain share. . Nat. Biotech. 41::17482
    [Crossref] [Google Scholar]
  10. 10.
    Leader B, Baca QJ, Golan DE. 2008.. Protein therapeutics: a summary and pharmacological classification. . Nat. Rev. Drug Discov. 7:(1):2139
    [Crossref] [Google Scholar]
  11. 11.
    Buss NAPS, Henderson SJ, McFarland Shenton JM, de Haan L. 2012.. Monoclonal antibody therapeutics: history and future. . Curr. Opin. Pharmacol. 12::61522
    [Crossref] [Google Scholar]
  12. 12.
    Ricklin D, Hajishengallis G, Yang K, Lambris JD. 2010.. Complement: a key system for immune surveillance and homeostasis. . Nat. Immunol. 11::78597
    [Crossref] [Google Scholar]
  13. 13.
    Roopenian DC, Akilesh S. 2007.. FcRn: the neonatal Fc receptor comes of age. . Nat. Rev. Immunol. 7:(9):71525
    [Crossref] [Google Scholar]
  14. 14.
    Smith GP. 1985.. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. . Science 228::131517
    [Crossref] [Google Scholar]
  15. 15.
    Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, et al. 1994.. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. . Nature 368::85659
    [Crossref] [Google Scholar]
  16. 16.
    Kohler G, Milstein C. 1975.. Continuous cultures of fused cells secreting antibody of predefined specificity. . Nature 256::49597
    [Crossref] [Google Scholar]
  17. 17.
    Leenars M, Hendriksen CFM. 2005.. Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. . ILAR J. 46:(3):26979
    [Crossref] [Google Scholar]
  18. 18.
    Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Lausten AH. 2018.. Basics of antibody phage display technology. . Toxins 10::236
    [Crossref] [Google Scholar]
  19. 19.
    Mould DR, Meibohm B. 2016.. Drug development of therapeutic monoclonal antibodies. . BioDrugs 30::27593
    [Crossref] [Google Scholar]
  20. 20.
    An Z, Forrest G, Moore R, Cukan M, Haytko P, et al. 2009.. IgG2m4, an engineered antibody isotype with reduced Fc function. . mAbs 1::57279
    [Crossref] [Google Scholar]
  21. 21.
    Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, et al. 2004.. Engineered human IgG antibodies with longer serum half-lives in primates. . J. Biol. Chem. 279::621316
    [Crossref] [Google Scholar]
  22. 22.
    Dall'Acqua WF, Kiener PA, Wu H. 2006.. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). . J. Biol. Chem. 281::2351424
    [Crossref] [Google Scholar]
  23. 23.
    Strohl WR. 2009.. Optimization of Fc-mediated effector functions of monoclonal antibodies. . Curr. Opin. Biotechnol. 20::68591
    [Crossref] [Google Scholar]
  24. 24.
    Chan AC, Carter PJ. 2010.. Therapeutic antibodies for autoimmunity and inflammation. . Nat. Rev. Immunol. 10::30116
    [Crossref] [Google Scholar]
  25. 25.
    Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. 2017.. Advances in antibody-drug conjugates: a new era of targeted cancer therapy. . Drug Discov. Today 22:(10):154756
    [Crossref] [Google Scholar]
  26. 26.
    Tsuchikama K, An Z. 2018.. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. . Protein Cell 9:(1):3346
    [Crossref] [Google Scholar]
  27. 27.
    Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, et al. 2002.. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody−calicheamicin conjugate for treatment of acute myeloid leukemia. . Bioconjug. Chem. 13::4758
    [Crossref] [Google Scholar]
  28. 28.
    Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. 2020.. Antibody-drug conjugates: the last decade. . Pharmaceuticals 13:(9):245
    [Crossref] [Google Scholar]
  29. 29.
    Ricart AD. 2011.. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. . Clin. Cancer Res. 17::641727
    [Crossref] [Google Scholar]
  30. 30.
    Brinkmann U, Kontermann R. 2017.. The making of bispecific antibodies. . mAbs 9:(2):182212
    [Crossref] [Google Scholar]
  31. 31.
    Thakur A, Huang M, Lum LG. 2018.. Bispecific antibody based therapeutics: strengths and challenges. . Blood Rev. 32:(4):33947
    [Crossref] [Google Scholar]
  32. 32.
    Gökbuget N, Dombret H, Bonifacio M, et al. 2018.. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. . Blood 131:(14):152231
    [Crossref] [Google Scholar]
  33. 33.
    Zhai T, Wang C, Xu Y, Huang W, Yuan Z, et al. 2021.. Generation of a safe and efficacious llama single-domain antibody fragment (vHH) targeting the membrane-proximal region of 4-1BB for engineering therapeutic bispecific antibodies for cancer. . J. Immunother. Cancer 9:(6):e002131
    [Crossref] [Google Scholar]
  34. 34.
    Jähnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, et al. 2010.. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. . PNAS 107:(47):2056570
    [Crossref] [Google Scholar]
  35. 35.
    Castelli MS, McGonigle P, Hornby PJ. 2019.. The pharmacology and therapeutic applications of monoclonal antibodies. . Pharmacol. Res. Perspect. 7:(6):e00535
    [Crossref] [Google Scholar]
  36. 36.
    McGonigle P, Ruggeri B. 2014.. Animal models of human diseases. Challenges in enabling translation. . Biochem. Pharmacol. 87::16271
    [Crossref] [Google Scholar]
  37. 37.
    Gibbs JP. 2010.. Prediction of exposure-response relationships to support first-in-human study design. . AAPS J. 12:(4):75058
    [Crossref] [Google Scholar]
  38. 38.
    Brennan FR, Morton LD, Spindeldreher S, Kiessling A, Allenspach R, et al. 2010.. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. . mAbs 2:(3):23355
    [Crossref] [Google Scholar]
  39. 39.
    Chapman K, Pullen N, Graham M, Ragan I. 2007.. Preclinical safety testing of monoclonal antibodies: the significance of species relevance. . Nat. Rev. Drug Discov. 6:(2):12026
    [Crossref] [Google Scholar]
  40. 40.
    Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, et al. 2006.. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. . N. Engl. J. Med. 355::101828
    [Crossref] [Google Scholar]
  41. 41.
    Waibler Z, Sender LY, Kamp C, Müller-Berghaus J, Liedert B, et al. 2008.. Toward experimental assessment of receptor occupancy: TGN1412 revisited. . Allergy Clin. Immunol. 122:(5):89092
    [Crossref] [Google Scholar]
  42. 42.
    Muller PY, Milton M, Lloyd P, Sims J, Brennan FR. 2009.. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. . Curr. Opin. Biotechnol. 20:(6):72229
    [Crossref] [Google Scholar]
  43. 43.
    Tabares P, Berr S, Romer PS, Chuvpilo S, Matskevich AA, et al. 2014.. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. . Eur. J. Immunol. 44:(4):122536
    [Crossref] [Google Scholar]
  44. 44.
    Zhao L, Ji P, Li Z, Roy P, Sahajwalla CG. 2013.. The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. . J. Clin. Pharmacol. 53:(3):31425
    [Crossref] [Google Scholar]
  45. 45.
    Gill KL, Gardner I, Li L, Jamei M. 2016.. A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins. . AAPS J. 18:(1):15670
    [Crossref] [Google Scholar]
  46. 46.
    Ovacik M, Lin K. 2018.. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. . Clin. Transl. Sci. 11:(6):54052
    [Crossref] [Google Scholar]
  47. 47.
    Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. 2010.. Clinical pharmacokinetics of therapeutic monoclonal antibodies. . Clin. Pharmacokinet. 49:(8):493507
    [Crossref] [Google Scholar]
  48. 48.
    Muzammil S, Mabus JR, Cooper PR, Brezski RJ, Bement CB, et al. 2016.. FcRn binding is not sufficient for achieving systemic therapeutic levels of immunoglobulin G after oral delivery of enteric-coated capsules in cynomolgus macaques. . Pharmacol. Res. Perspect. 4:(3):e00218
    [Crossref] [Google Scholar]
  49. 49.
    Glassman PM, Balthasar JP. 2014.. Mechanistic considerations for the use of monoclonal antibodies for cancer therapy. . Cancer Biol. Med. 11:(1):2033
    [Google Scholar]
  50. 50.
    Shankar G, Pendley C, Stein KE. 2007.. A risk-based bioanalytical strategy for the assessment of antibody immune responses against biological drugs. . Nat. Biotechnol. 25::55561
    [Crossref] [Google Scholar]
  51. 51.
    Greenmeier L. 2008.. Heparin scare: deaths from tainted blood-thinner spur race for safe replacement. . Scientific American, Nov. 4. https://www.scientificamerican.com/article/heparin-scare-deaths/#:∼:text=In%20the%20wake%20of%20the,Baxter%20International%2C%20Inc.%2C%20in
    [Google Scholar]
  52. 52.
    Liu YD, Goetze AM, Bass RB, Flynn GC. 2011.. N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. . J. Biol. Chem. 286::1121117
    [Crossref] [Google Scholar]
  53. 53.
    Jiang G, Yu C, Yadav DB, Hu Z, Amurao A, et al. 2016.. Evaluation of heavy-chain C-terminal deletion on product quality and pharmacokinetics of monoclonal antibodies. . J. Pharm. Sci. 105::206672
    [Crossref] [Google Scholar]
  54. 54.
    Rosenberg AS. 2006.. Effects of protein aggregates: an immunologic perspective. . AAPS J. 8::E5017
    [Crossref] [Google Scholar]
  55. 55.
    Chennamsetty N, Helk B, Voynov V, Kayser V, Trout BL. 2009.. Aggregation-prone motifs in human immunoglobulin G. . J. Mol. Biol. 391::40413
    [Crossref] [Google Scholar]
  56. 56.
    Dudgeon K, Rouet R, Kokmeijer I, Schofield P, Stolp J, et al. 2012.. General strategy for the generation of human antibody variable domains with increased aggregation resistance. . PNAS 109::1087984
    [Crossref] [Google Scholar]
  57. 57.
    Wu SJ, Luo J, O'Neil KT, Kang J, Lacy ER, et al. 2010.. Structure-based engineering of a monoclonal antibody for improved solubility. . Protein Eng. Des. Sel. 23::64351
    [Crossref] [Google Scholar]
  58. 58.
    Xu Y, Wang D, Mason B, Rossomando T, Li N, et al. 2019.. Structure, heterogeneity and developability of therapeutic antibodies. . mAbs 11:(2):23964
    [Crossref] [Google Scholar]
  59. 59.
    Baek Y, Zydney AL. 2017.. Intermolecular interactions in highly concentrated formulations of recombinant therapeutic proteins. . Curr. Opin. Biotechnol. 53::5964
    [Crossref] [Google Scholar]
  60. 60.
    Pindrus M, Shire SJ, Kelley RF, Demeule B, Wong R, et al. 2015.. Solubility challenges in high concentration monoclonal antibody formulations: relationship with amino acid sequence and intermolecular interactions. . Mol. Pharm. 12::3896907
    [Crossref] [Google Scholar]
  61. 61.
    FDA (US Food Drug Admin.). 2022.. Office of Generic Drugs 2022 annual report. Rep. , FDA, Silver Spring, MD:. https://www.fda.gov/drugs/generic-drugs/office-generic-drugs-2022-annual-report
    [Google Scholar]
  62. 62.
    FDA (US Food Drug Admin.). 2020.. Biosimilar and interchangeable biosimilars: licensure for fewer than all conditions of use for which the reference product has been licensed. Guidance for industry. Guid. Doc., FDA, Silver Spring, MD:. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/biosimilars-and-interchangeable-biosimilars-licensure-fewer-all-conditions-use-which-reference
    [Google Scholar]
  63. 63.
    Ledford H. 2015.. First biosimilar drug set to enter US market. . Nature 517::25354
    [Crossref] [Google Scholar]
  64. 64.
    Sarpatwari A, Avorn J, Kesselheim KS. 2015.. Progress and hurdles for follow-on biologics. . N. Engl. J. Med. 372:(25):238082
    [Crossref] [Google Scholar]
  65. [Google Scholar]
  66. 66.
    Combe C, Tredree RL, Schellekens H. 2005.. Biosimilar epoetins: an analysis based on recently implemented European Medicines Evaluation Agency guidelines on comparability of biopharmaceutical proteins. . Pharmacotherapy 25::95462
    [Crossref] [Google Scholar]
  67. 67.
    Colwell J. 2015.. FDA approves first biosimilar, Zarxio. . Cancer Discov. 5::460
    [Crossref] [Google Scholar]
  68. 68.
    Drugs.com. 2024.. What biosimilars have been approved in the United States?. Drugs.com, July 24. https://www.drugs.com/medical-answers/many-biosimilars-approved-united-states-3463281/
    [Google Scholar]
  69. 69.
    Eur. Med. Agency. 2022.. Biosimilar medicines can be interchanged. . European Medicines Agency, Sept. 19. https://www.ema.europa.eu/en/news/biosimilar-medicines-can-be-interchanged
    [Google Scholar]
  70. 70.
    Verdin P. 2024.. Top companies and drugs by sales in 2023. . Nat. Rev. Drug Disc. 23:(4):240
    [Crossref] [Google Scholar]
  71. 71.
    Mulcahy AW, Predmore Z, Soeren Mattke S. 2014.. The cost savings potential of biosimilar drugs in the United States. Perspect. PE-127-SANI, Rand Corp. , Santa Monica, CA:. http://www.rand.org/content/dam/rand/pubs/perspectives/PE100/PE127/RAND_PE127.pdf
    [Google Scholar]
  72. 72.
    Smietana K, Siatkowski M, Moller M. 2016.. Trends in clinical success rates. . Nat. Rev. Drug Disc. 15::37980
    [Crossref] [Google Scholar]
  73. 73.
    Cohen J. 2023.. Inflation Reduction Act favors biologics over small molecules: in the long term, this could partly undermine bill's effort to contain costs. . Forbes, Jan. 15. https://www.forbes.com/sites/joshuacohen/2023/01/15/inflation-reduction-act-favors-biologics-over-small-molecules-in-the-long-term-this-could-partly-undermine-bills-effort-to-contain-costs/
    [Google Scholar]
  74. 74.
    Popoviciu MS, Paduraru L, Yahya G, Metwally K, Cavalu S. 2023.. Emerging role of GLP-1 agonists in obesity: a comprehensive review of randomized controlled trials. . Int. J. Mol. Sci. 24:(13):10449
    [Crossref] [Google Scholar]
  75. 75.
    Lincoff AM, Brown-Fransten K, Colhoun HM, Deanfield J, Emerson SS, et al. 2023.. Semaglutide and cardiovascular outcomes in obesity without diabetes. . N. Engl. J. Med. 389:(24):222132
    [Crossref] [Google Scholar]
  76. 76.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596:(7873):58389
    [Crossref] [Google Scholar]
  77. 77.
    Kariko K, Buckstein M, Ni H, Weissman D. 2005.. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. . Immunity 23:(2):16575
    [Crossref] [Google Scholar]
  78. 78.
    Fang E, Liu X, Li M, Zhang Z, Song L, et al. 2022.. Advances in COVID-19 mRNA vaccine development. . Signal Transduct. Target. Ther. 7:(1):94
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080811
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080811
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error