1932

Abstract

G protein–coupled receptors (GPCRs) are a superfamily of transmembrane signal transducers that facilitate the flow of chemical signals across membranes. GPCRs are a desirable class of drug targets, and the activation and deactivation dynamics of these receptors are widely studied. Multidisciplinary approaches for studying GPCRs, such as downstream biochemical signaling assays, cryo-electron microscopy structural determinations, and molecular dynamics simulations, have provided insights concerning conformational dynamics and signaling mechanisms. However, new approaches including biosensors that use luminescence- and fluorescence-based readouts have been developed to investigate GPCR-related protein interactions and dynamics directly in cellular environments. Luminescence- and fluorescence-based readout approaches have also included the development of GPCR biosensor platforms that utilize enabling technologies to facilitate multiplexing and miniaturization. General principles underlying the biosensor platforms and technologies include scalability, orthogonality, and kinetic resolution. Further application and development of GPCR biosensors could facilitate hit identification in drug discovery campaigns. The goals of this review are to summarize developments in the field of GPCR-related biosensors and to discuss the current available technologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080836
2025-01-23
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080836.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080836&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Neves SR, Ram PT, Iyengar R. 2002.. G protein pathways. . Science 296::163639
    [Crossref] [Google Scholar]
  2. 2.
    Thomsen W, Frazer J, Unett D. 2005.. Functional assays for screening GPCR targets. . Curr. Opin. Biotechnol. 16::65565
    [Google Scholar]
  3. 3.
    Mahoney JP, Sunahara RK. 2016.. Mechanistic insights into GPCR–G protein interactions. . Curr. Opin. Struct. Biol. 41::24754
    [Crossref] [Google Scholar]
  4. 4.
    Guo S, Zhao T, Yun Y, Xie X. 2022.. Recent progress in assays for GPCR drug discovery. . Am. J. Physiol. Cell Physiol. 323::C58394
    [Crossref] [Google Scholar]
  5. 5.
    Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. 2017.. Trends in GPCR drug discovery: new agents, targets and indications. . Nat. Rev. Drug Discov. 16::82942
    [Crossref] [Google Scholar]
  6. 6.
    Yasi EA, Kruyer NS, Peralta-Yahya P. 2020.. Advances in G protein–coupled receptor high-throughput screening. . Curr. Opin. Biotechnol. 64::21017
    [Crossref] [Google Scholar]
  7. 7.
    Gu L, Li C, Aach J, Hill DE, Vidal M, Church GM. 2014.. Multiplex single-molecule interaction profiling of DNA-barcoded proteins. . Nature 515::55457
    [Crossref] [Google Scholar]
  8. 8.
    Barnea G, Strapps W, Herrada G, Berman Y, Ong J, et al. 2008.. The genetic design of signaling cascades to record receptor activation. . PNAS 105::6469
    [Crossref] [Google Scholar]
  9. 9.
    Schroeter EH, Kisslinger JA, Kopan R. 1998.. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. . Nature 393::38286
    [Crossref] [Google Scholar]
  10. 10.
    Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, et al. 2011.. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. . Nat. Chem. Biol. 7::76978
    [Crossref] [Google Scholar]
  11. 11.
    Sato S, Huang XP, Kroeze WK, Roth BL. 2016.. Discovery and characterization of novel GPR39 agonists allosterically modulated by zinc. . Mol. Pharmacol. 90::72637
    [Crossref] [Google Scholar]
  12. 12.
    Chen X, McCorvy JD, Fischer MG, Butler KV, Shen Y, et al. 2016.. Discovery of G protein–biased D2 dopamine receptor partial agonists. . J. Med. Chem. 59::1060118
    [Crossref] [Google Scholar]
  13. 13.
    Choi M, Staus DP, Wingler LM, Ahn S, Pani B, et al. 2018.. G protein–coupled receptor kinases (GRKs) orchestrate biased agonism at the β2-adrenergic receptor. . Sci. Signal. 11::eaar7084
    [Crossref] [Google Scholar]
  14. 14.
    Kim Y, Kim H, Lee J, Lee JK, Min SJ, et al. 2018.. Discovery of β-arrestin biased ligands of 5-HT7R. . J. Med. Chem. 61::721833
    [Crossref] [Google Scholar]
  15. 15.
    Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, et al. 2015.. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. . Nat. Struct. Mol. Biol. 22::36269
    [Crossref] [Google Scholar]
  16. 16.
    Kipniss NH, Dingal PCDP, Abbott TR, Gao Y, Wang H, et al. 2017.. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. . Nat. Commun. 8::2122
    [Crossref] [Google Scholar]
  17. 17.
    Galinski S, Wichert SP, Rossner MJ, Wehr MC. 2018.. Multiplexed profiling of GPCR activities by combining split TEV assays and EXT-based barcoded readouts. . Sci. Rep. 8::8137
    [Crossref] [Google Scholar]
  18. 18.
    Wehr MC, Laage R, Bolz U, Fischer TM, Grunewald S, et al. 2006.. Monitoring regulated protein-protein interactions using split TEV. . Nat. Methods 3::98593
    [Crossref] [Google Scholar]
  19. 19.
    Djannatian MS, Galinski S, Fischer TM, Rossner MJ. 2011.. Studying G protein–coupled receptor activation using split-tobacco etch virus assays. . Anal. Biochem. 412::14152
    [Crossref] [Google Scholar]
  20. 20.
    Wu Y, von Hauff IV, Jensen N, Rossner MJ, Wehr MC. 2022.. Improved split TEV GPCR β-arrestin-2 recruitment assays via systematic analysis of signal peptide and β-arrestin binding motif variants. . Biosensors 13::48
    [Crossref] [Google Scholar]
  21. 21.
    Botvinnik A, Wichert SP, Fischer TM, Rossner MJ. 2010.. Integrated analysis of receptor activation and downstream signaling with EXTassays. . Nat. Methods 7::7480
    [Crossref] [Google Scholar]
  22. 22.
    Chen H, Rosen CE, Gonzalez-Hernandez JA, Song D, Potempa J, et al. 2023.. Highly multiplexed bioactivity screening reveals human and microbiota metabolome-GPCRome interactions. . Cell 186::3095110.e19
    [Crossref] [Google Scholar]
  23. 23.
    Kim MW, Wang W, Sanchez MI, Coukos R, von Zastrow M, Ting AY. 2017.. Time-gated detection of protein-protein interactions with transcriptional readout. . eLife 6::e30233
    [Crossref] [Google Scholar]
  24. 24.
    Kim CK, Cho KF, Kim MW, Ting AY. 2019.. Luciferase-LOV BRET enables versatile and specific transcriptional readout of cellular protein-protein interactions. . eLife 8::e43826
    [Crossref] [Google Scholar]
  25. 25.
    Ladds G, Goddard A, Davey J. 2005.. Functional analysis of heterologous GPCR signalling pathways in yeast. . Trends Biotechnol. 23::36773
    [Crossref] [Google Scholar]
  26. 26.
    Shaw WM, Yamauchi H, Mead J, Gowers GF, Bell DJ, et al. 2019.. Engineering a model cell for rational tuning of GPCR signaling. . Cell 177::78296.e27
    [Crossref] [Google Scholar]
  27. 27.
    Yasi EA, Eisen SL, Wang H, Sugianto W, Minniefield AR, et al. 2019.. Rapid deorphanization of human olfactory receptors in yeast. . Biochemistry 58::216066
    [Crossref] [Google Scholar]
  28. 28.
    Scott BM, Chen SK, Van Nynatten A, Liu J, Schott RK, et al. 2024.. Scaling up functional analyses of the G protein–coupled receptor rhodopsin. . J. Mol. Evol. 92::6171
    [Crossref] [Google Scholar]
  29. 29.
    Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. 2021.. Directed evolution: methodologies and applications. . Chem. Rev. 121::12384444
    [Crossref] [Google Scholar]
  30. 30.
    Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. 2007.. Evolving the lock to fit the key to create a family of G protein–coupled receptors potently activated by an inert ligand. . PNAS 104::516368
    [Crossref] [Google Scholar]
  31. 31.
    Hudson BD, Christiansen E, Tikhonova IG, Grundmann M, Kostenis E, et al. 2012.. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. . FASEB J. 26::495165
    [Crossref] [Google Scholar]
  32. 32.
    Meister J, Wang L, Pydi SP, Wess J. 2021.. Chemogenetic approaches to identify metabolically important GPCR signaling pathways: therapeutic implications. . J. Neurochem. 158::60320
    [Crossref] [Google Scholar]
  33. 33.
    Ostrov N, Jimenez M, Billerbeck S, Brisbois J, Matragrano J, et al. 2017.. A modular yeast biosensor for low-cost point-of-care pathogen detection. . Sci. Adv. 3::e1603221
    [Crossref] [Google Scholar]
  34. 34.
    Miettinen K, Leelahakorn N, Almeida A, Zhao Y, Hansen LR, et al. 2022.. A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination. . Nat. Commun. 13::3664
    [Crossref] [Google Scholar]
  35. 35.
    Aper SJ, Dierickx P, Merkx M. 2016.. Dual readout BRET/FRET sensors for measuring intracellular zinc. . ACS Chem. Biol. 11::285464
    [Crossref] [Google Scholar]
  36. 36.
    Marullo S, Bouvier M. 2007.. Resonance energy transfer approaches in molecular pharmacology and beyond. . Trends Pharmacol. Sci. 28::36265
    [Crossref] [Google Scholar]
  37. 37.
    Zhou Y, Meng J, Xu C, Liu J. 2021.. Multiple GPCR functional assays based on resonance energy transfer sensors. . Front. Cell Dev. Biol. 9::611443
    [Crossref] [Google Scholar]
  38. 38.
    Greenwald EC, Mehta S, Zhang J. 2018.. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. . Chem. Rev. 118::1170794
    [Crossref] [Google Scholar]
  39. 39.
    Janetopoulos C, Jin T, Devreotes P. 2001.. Receptor-mediated activation of heterotrimeric G-proteins in living cells. . Science 291::240811
    [Crossref] [Google Scholar]
  40. 40.
    Hein P, Frank M, Hoffmann C, Lohse MJ, Bunemann M. 2005.. Dynamics of receptor/G protein coupling in living cells. . EMBO J. 24::410614
    [Crossref] [Google Scholar]
  41. 41.
    Jensen JB, Lyssand JS, Hague C, Hille B. 2009.. Fluorescence changes reveal kinetic steps of muscarinic receptor–mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. . J. Gen. Physiol. 133::34759
    [Crossref] [Google Scholar]
  42. 42.
    Reiner S, Ambrosio M, Hoffmann C, Lohse MJ. 2010.. Differential signaling of the endogenous agonists at the β2-adrenergic receptor. . J. Biol. Chem. 285::3618898
    [Crossref] [Google Scholar]
  43. 43.
    Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ. 2003.. Measurement of the millisecond activation switch of G protein–coupled receptors in living cells. . Nat. Biotechnol. 21::80712
    [Crossref] [Google Scholar]
  44. 44.
    Hu CD, Kerppola TK. 2003.. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. . Nat. Biotechnol. 21::53945
    [Crossref] [Google Scholar]
  45. 45.
    Hu CD, Chinenov Y, Kerppola TK. 2002.. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. . Mol. Cell 9::78998
    [Crossref] [Google Scholar]
  46. 46.
    Shyu YJ, Liu H, Deng X, Hu CD. 2006.. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. . BioTechniques 40::6166
    [Crossref] [Google Scholar]
  47. 47.
    Topell S, Hennecke J, Glockshuber R. 1999.. Circularly permuted variants of the green fluorescent protein. . FEBS Lett. 457::28389
    [Crossref] [Google Scholar]
  48. 48.
    Sun F, Zeng J, Jing M, Zhou J, Feng J, et al. 2018.. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. . Cell 174::48196.e19
    [Crossref] [Google Scholar]
  49. 49.
    Przybyla JA, Watts VJ. 2010.. Ligand-induced regulation and localization of cannabinoid CB1 and dopamine D2L receptor heterodimers. . J. Pharmacol. Exp. Ther. 332::71019
    [Crossref] [Google Scholar]
  50. 50.
    Ang Z, Xiong D, Wu M, Ding JL. 2018.. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. . FASEB J. 32::289303
    [Crossref] [Google Scholar]
  51. 51.
    Hoffmann C, Gaietta G, Bunemann M, Adams SR, Oberdorff-Maass S, et al. 2005.. A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. . Nat. Methods 2::17176
    [Crossref] [Google Scholar]
  52. 52.
    Griffin BA, Adams SR, Tsien RY. 1998.. Specific covalent labeling of recombinant protein molecules inside live cells. . Science 281::26972
    [Crossref] [Google Scholar]
  53. 53.
    Nikolaev VO, Hoffmann C, Bunemann M, Lohse MJ, Vilardaga JP. 2006.. Molecular basis of partial agonism at the neurotransmitter α2A-adrenergic receptor and Gi-protein heterotrimer. . J. Biol. Chem. 281::2450611
    [Crossref] [Google Scholar]
  54. 54.
    Rochais F, Vilardaga JP, Nikolaev VO, Bunemann M, Lohse MJ, Engelhardt S. 2007.. Real-time optical recording of β1-adrenergic receptor activation reveals supersensitivity of the Arg389 variant to carvedilol. . J. Clin. Investig. 117::22935
    [Crossref] [Google Scholar]
  55. 55.
    Maier-Peuschel M, Frolich N, Dees C, Hommers LG, Hoffmann C, et al. 2010.. A fluorescence resonance energy transfer–based M2 muscarinic receptor sensor reveals rapid kinetics of allosteric modulation. . J. Biol. Chem. 285::8793800
    [Crossref] [Google Scholar]
  56. 56.
    Ge Y, Zhang S, Wang J, Xia F, Wan JB, et al. 2020.. Dual modulation of formyl peptide receptor 2 by aspirin-triggered lipoxin contributes to its anti-inflammatory activity. . FASEB J. 34::692033
    [Crossref] [Google Scholar]
  57. 57.
    Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, et al. 2016.. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. . Nature 531::66164
    [Crossref] [Google Scholar]
  58. 58.
    Zurn A, Klenk C, Zabel U, Reiner S, Lohse MJ, Hoffmann C. 2010.. Site-specific, orthogonal labeling of proteins in intact cells with two small biarsenical fluorophores. . Bioconjug. Chem. 21::85359
    [Crossref] [Google Scholar]
  59. 59.
    Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, et al. 2002.. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. . J. Am. Chem. Soc. 124::606376
    [Crossref] [Google Scholar]
  60. 60.
    Swanson CJ, Sivaramakrishnan S. 2014.. Harnessing the unique structural properties of isolated α-helices. . J. Biol. Chem. 289::2546067
    [Crossref] [Google Scholar]
  61. 61.
    Sivaramakrishnan S, Spudich JA. 2011.. Systematic control of protein interaction using a modular ER/K α-helix linker. . PNAS 108::2046772
    [Crossref] [Google Scholar]
  62. 62.
    Malik RU, Dysthe M, Ritt M, Sunahara RK, Sivaramakrishnan S. 2017.. ER/K linked GPCR–G protein fusions systematically modulate second messenger response in cells. . Sci. Rep. 7::7749
    [Crossref] [Google Scholar]
  63. 63.
    Gupte TM, Malik RU, Sommese RF, Ritt M, Sivaramakrishnan S. 2017.. Priming GPCR signaling through the synergistic effect of two G proteins. . PNAS 114::375661
    [Crossref] [Google Scholar]
  64. 64.
    Malik RU, Ritt M, DeVree BT, Neubig RR, Sunahara RK, Sivaramakrishnan S. 2013.. Detection of G protein–selective G protein–coupled receptor (GPCR) conformations in live cells. . J. Biol. Chem. 288::1716778
    [Crossref] [Google Scholar]
  65. 65.
    Wang L, Brock A, Herberich B, Schultz PG. 2001.. Expanding the genetic code of Escherichia coli. . Science 292::498500
    [Crossref] [Google Scholar]
  66. 66.
    Wang L, Schultz PG. 2001.. A general approach for the generation of orthogonal tRNAs. . Chem. Biol. 8::88390
    [Crossref] [Google Scholar]
  67. 67.
    Manandhar M, Chun E, Romesberg FE. 2021.. Genetic code expansion: inception, development, commercialization. . J. Am. Chem. Soc. 143::485978
    [Crossref] [Google Scholar]
  68. 68.
    Shandell MA, Tan Z, Cornish VW. 2021.. Genetic code expansion: a brief history and perspective. . Biochemistry 60::345569
    [Crossref] [Google Scholar]
  69. 69.
    Huber T, Naganathan S, Tian H, Ye S, Sakmar TP. 2013.. Unnatural amino acid mutagenesis of GPCRs using amber codon suppression and bioorthogonal labeling. . Methods Enzymol. 520::281305
    [Crossref] [Google Scholar]
  70. 70.
    Plass T, Milles S, Koehler C, Schultz C, Lemke EA. 2011.. Genetically encoded copper-free click chemistry. . Angew. Chem. Int. Ed. 50::387881
    [Crossref] [Google Scholar]
  71. 71.
    Nikic I, Kang JH, Girona GE, Aramburu IV, Lemke EA. 2015.. Labeling proteins on live mammalian cells using click chemistry. . Nat. Protoc. 10::78091
    [Crossref] [Google Scholar]
  72. 72.
    Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR. 2006.. A comparative study of bioorthogonal reactions with azides. . ACS Chem. Biol. 1::64448
    [Crossref] [Google Scholar]
  73. 73.
    Ye S, Zaitseva E, Caltabiano G, Schertler GF, Sakmar TP, et al. 2010.. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. . Nature 464::138689
    [Crossref] [Google Scholar]
  74. 74.
    Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, et al. 2012.. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. . J. Am. Chem. Soc. 134::1031720
    [Crossref] [Google Scholar]
  75. 75.
    Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW. 2012.. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. . Nat. Chem. 4::298304
    [Crossref] [Google Scholar]
  76. 76.
    Blackman ML, Royzen M, Fox JM. 2008.. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. . J. Am. Chem. Soc. 130::1351819
    [Crossref] [Google Scholar]
  77. 77.
    Mattheisen JM, Wollowitz JS, Huber T, Sakmar TP. 2023.. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein–coupled receptors in live cells. . Protein Sci. 32::e4550
    [Crossref] [Google Scholar]
  78. 78.
    Tian H, Gunnison KM, Kazmi MA, Sakmar TP, Huber T. 2022.. FRET sensors reveal the retinal entry pathway in the G protein–coupled receptor rhodopsin. . iScience 25::104060
    [Crossref] [Google Scholar]
  79. 79.
    Park M, Sivertsen BB, Els-Heindl S, Huber T, Holst B, et al. 2015.. Bioorthogonal labeling of ghrelin receptor to facilitate studies of ligand-dependent conformational dynamics. . Chem. Biol. 22::143136
    [Crossref] [Google Scholar]
  80. 80.
    Ramil CP, Dong M, An P, Lewandowski TM, Yu Z, et al. 2017.. Spirohexene-tetrazine ligation enables bioorthogonal labeling of class B G protein–coupled receptors in live cells. . J. Am. Chem. Soc. 139::1337686
    [Crossref] [Google Scholar]
  81. 81.
    Lewandowski TM, An P, Ramil CP, Fang M, Lin Q. 2022.. Dual fluorescent labeling of GLP-1R in live cells via enzymatic tagging and bioorthogonal chemistry. . RSC Chem. Biol. 3::7026
    [Crossref] [Google Scholar]
  82. 82.
    Kowalski-Jahn M, Schihada H, Turku A, Huber T, Sakmar TP, Schulte G. 2021.. Frizzled BRET sensors based on bioorthogonal labeling of unnatural amino acids reveal WNT-induced dynamics of the cysteine-rich domain. . Sci. Adv. 7::eabj7917
    [Crossref] [Google Scholar]
  83. 83.
    Kowalski-Jahn M, Schihada H, Schulte G. 2023.. Conformational GPCR BRET sensors based on bioorthogonal labeling of noncanonical amino acids. . Methods Mol. Biol. 2676::20113
    [Crossref] [Google Scholar]
  84. 84.
    Xu Y, Piston DW, Johnson CH. 1999.. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. . PNAS 96::15156
    [Crossref] [Google Scholar]
  85. 85.
    Bertrand L, Parent S, Caron M, Legault M, Joly E, et al. 2002.. The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein–coupled receptors (GPCRS). . J. Recept. Signal Transduct. Res. 22::53341
    [Crossref] [Google Scholar]
  86. 86.
    De A, Ray P, Loening AM, Gambhir SS. 2009.. BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. . FASEB J. 23::27029
    [Crossref] [Google Scholar]
  87. 87.
    Machleidt T, Woodroofe CC, Schwinn MK, Mendez J, Robers MB, et al. 2015.. NanoBRET: a novel BRET platform for the analysis of protein-protein interactions. . ACS Chem. Biol. 10::1797804
    [Crossref] [Google Scholar]
  88. 88.
    Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M. 2005.. High-throughput screening of G protein–coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based β-arrestin2 recruitment assay. . J. Biomol. Screen. 10::46375
    [Crossref] [Google Scholar]
  89. 89.
    Balla A, Toth DJ, Soltesz-Katona E, Szakadati G, Erdelyi LS, et al. 2012.. Mapping of the localization of type 1 angiotensin receptor in membrane microdomains using bioluminescence resonance energy transfer–based sensors. . J. Biol. Chem. 287::909099
    [Crossref] [Google Scholar]
  90. 90.
    Kaiser A, Wanka L, Ziffert I, Beck-Sickinger AG. 2020.. Biased agonists at the human Y1 receptor lead to prolonged membrane residency and extended receptor G protein interaction. . Cell. Mol. Life Sci. 77::467591
    [Crossref] [Google Scholar]
  91. 91.
    Lu S, Jang W, Inoue A, Lambert NA. 2021.. Constitutive G protein coupling profiles of understudied orphan GPCRs. . PLOS ONE 16::e0247743
    [Crossref] [Google Scholar]
  92. 92.
    Oishi A, Dam J, Jockers R. 2020.. β-Arrestin-2 BRET biosensors detect different β-arrestin-2 conformations in interaction with GPCRs. . ACS Sens. 5::5764
    [Crossref] [Google Scholar]
  93. 93.
    Ma X, Gao M, Vischer HF, Leurs R. 2022.. A NanoBRET-based H3R conformational biosensor to study real-time H3 receptor pharmacology in cell membranes and living cells. . Int. J. Mol. Sci. 23::8211
    [Crossref] [Google Scholar]
  94. 94.
    El Khamlichi C, Cobret L, Arrang JM, Morisset-Lopez S. 2021.. BRET analysis of GPCR dimers in neurons and non-neuronal cells: evidence for inactive, agonist, and constitutive conformations. . Int. J. Mol. Sci. 22::10638
    [Crossref] [Google Scholar]
  95. 95.
    Gratz L, Muller C, Pegoli A, Schindler L, Bernhardt G, Littmann T. 2022.. Insertion of Nanoluc into the extracellular loops as a complementary method to establish BRET-based binding assays for GPCRs. . ACS Pharmacol. Transl. Sci. 5::114255
    [Crossref] [Google Scholar]
  96. 96.
    Stoddart LA, Johnstone EKM, Wheal AJ, Goulding J, Robers MB, et al. 2015.. Application of BRET to monitor ligand binding to GPCRs. . Nat. Methods 12::66163
    [Crossref] [Google Scholar]
  97. 97.
    Verweij EWE, Bosma R, Gao M, van den Bor J, Al Araaj B, et al. 2022.. BRET-based biosensors to measure agonist efficacies in histamine H1 receptor–mediated G protein activation, signaling and interactions with GRKs and β-arrestins. . Int. J. Mol. Sci. 23::3184
    [Crossref] [Google Scholar]
  98. 98.
    Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, et al. 2000.. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). . PNAS 97::368489
    [Google Scholar]
  99. 99.
    Charest PG, Terrillon S, Bouvier M. 2005.. Monitoring agonist-promoted conformational changes of β-arrestin in living cells by intramolecular BRET. . EMBO Rep. 6::33440
    [Crossref] [Google Scholar]
  100. 100.
    Ceraudo E, Horioka M, Mattheisen JM, Hitchman TD, Moore AR, et al. 2021.. Direct evidence that the GPCR CysLTR2 mutant causative of uveal melanoma is constitutively active with highly biased signaling. . J. Biol. Chem. 296::100163
    [Crossref] [Google Scholar]
  101. 101.
    Gales C, Van Durm JJ, Schaak S, Pontier S, Percherancier Y, et al. 2006.. Probing the activation-promoted structural rearrangements in preassembled receptor–G protein complexes. . Nat. Struct. Mol. Biol. 13::77886
    [Crossref] [Google Scholar]
  102. 102.
    Hollins B, Kuravi S, Digby GJ, Lambert NA. 2009.. The C-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. . Cell. Signal. 21::101521
    [Crossref] [Google Scholar]
  103. 103.
    Carpenter B, Tate CG. 2016.. Engineering a minimal G protein to facilitate crystallisation of G protein–coupled receptors in their active conformation. . Protein Eng. Des. Sel. 29::58394
    [Google Scholar]
  104. 104.
    Nehme R, Carpenter B, Singhal A, Strege A, Edwards PC, et al. 2017.. Mini-G proteins: novel tools for studying GPCRs in their active conformation. . PLOS ONE 12::e0175642
    [Crossref] [Google Scholar]
  105. 105.
    Wan Q, Okashah N, Inoue A, Nehme R, Carpenter B, et al. 2018.. Mini G protein probes for active G protein–coupled receptors (GPCRs) in live cells. . J. Biol. Chem. 293::746673
    [Crossref] [Google Scholar]
  106. 106.
    Benkel T, Zimmermann M, Zeiner J, Bravo S, Merten N, et al. 2022.. How carvedilol activates β2-adrenoceptors. . Nat. Commun. 13::7109
    [Crossref] [Google Scholar]
  107. 107.
    Quoyer J, Janz JM, Luo J, Ren Y, Armando S, et al. 2013.. Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein. . PNAS 110::E508897
    [Crossref] [Google Scholar]
  108. 108.
    Mende F, Hundahl C, Plouffe B, Skov LJ, Sivertsen B, et al. 2018.. Translating biased signaling in the ghrelin receptor system into differential in vivo functions. . PNAS 115::E1025564
    [Crossref] [Google Scholar]
  109. 109.
    Benredjem B, Gallion J, Pelletier D, Dallaire P, Charbonneau J, et al. 2019.. Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response. . Nat. Commun. 10::4075
    [Crossref] [Google Scholar]
  110. 110.
    Martin BR, Lambert NA. 2016.. Activated G protein Gαs samples multiple endomembrane compartments. . J. Biol. Chem. 291::20295302
    [Crossref] [Google Scholar]
  111. 111.
    Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, et al. 2016.. Monitoring G protein–coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. . Nat. Commun. 7::12178
    [Crossref] [Google Scholar]
  112. 112.
    Szakadati G, Toth AD, Olah I, Erdelyi LS, Balla T, et al. 2015.. Investigation of the fate of type I angiotensin receptor after biased activation. . Mol. Pharmacol. 87::97281
    [Crossref] [Google Scholar]
  113. 113.
    Wright SC, Lukasheva V, Le Gouill C, Kobayashi H, Breton B, et al. 2021.. BRET-based effector membrane translocation assay monitors GPCR-promoted and endocytosis-mediated Gq activation at early endosomes. . PNAS 118::e2025846118
    [Crossref] [Google Scholar]
  114. 114.
    Deng Y, Moo EV, Inoue A, Brauner-Osborne H. 2023.. Endocytic proteins mediating GPR15 receptor internalization provide insight into the underlying mechanisms. . FEBS Lett. 597::152840
    [Crossref] [Google Scholar]
  115. 115.
    Wright SC, Motso A, Koutsilieri S, Beusch CM, Sabatier P, et al. 2023.. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. . Nat. Commun. 14::6243
    [Crossref] [Google Scholar]
  116. 116.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, et al. 2012.. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. . ACS Chem. Biol. 7::184857
    [Crossref] [Google Scholar]
  117. 117.
    Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P, et al. 2016.. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. . ACS Chem. Biol. 11::4008
    [Crossref] [Google Scholar]
  118. 118.
    Reyes-Alcaraz A, Lucero Garcia-Rojas EY, Merlinsky EA, Seong JY, Bond RA, McConnell BK. 2022.. A NanoBiT assay to monitor membrane proteins trafficking for drug discovery and drug development. . Commun. Biol. 5::212
    [Crossref] [Google Scholar]
  119. 119.
    Gratz L, Tropmann K, Bresinsky M, Muller C, Bernhardt G, Pockes S. 2020.. NanoBRET binding assay for histamine H2 receptor ligands using live recombinant HEK293T cells. . Sci. Rep. 10::13288
    [Crossref] [Google Scholar]
  120. 120.
    Laschet C, Dupuis N, Hanson J. 2019.. A dynamic and screening-compatible nanoluciferase-based complementation assay enables profiling of individual GPCR–G protein interactions. . J. Biol. Chem. 294::407990
    [Crossref] [Google Scholar]
  121. 121.
    Mattheisen JM, Rasmussen VA, Ceraudo E, Kolodzinski A, Horioka-Duplix M, et al. 2024.. Application of bioluminescence resonance energy transfer to quantitate cell-surface expression of membrane proteins. . Anal. Biochem. 684::115361
    [Crossref] [Google Scholar]
  122. 122.
    Mujic-Delic A, de Wit RH, Verkaar F, Smit MJ. 2014.. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. . Trends Pharmacol. Sci. 35::24755
    [Crossref] [Google Scholar]
  123. 123.
    Ji F, Ren J, Vincke C, Jia L, Muyldermans S. 2022.. Nanobodies: from serendipitous discovery of heavy chain–only antibodies in camelids to a wide range of useful applications. . Methods Mol. Biol. 2446::317
    [Crossref] [Google Scholar]
  124. 124.
    Heukers R, De Groof TWM, Smit MJ. 2019.. Nanobodies detecting and modulating GPCRs outside in and inside out. . Curr. Opin. Cell Biol. 57::11522
    [Crossref] [Google Scholar]
  125. 125.
    Scholler P, Nevoltris D, de Bundel D, Bossi S, Moreno-Delgado D, et al. 2017.. Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation. . Nat. Commun. 8::1967
    [Crossref] [Google Scholar]
  126. 126.
    Meng J, Xu C, Lafon PA, Roux S, Mathieu M, et al. 2022.. Nanobody-based sensors reveal a high proportion of mGlu heterodimers in the brain. . Nat. Chem. Biol. 18::894903
    [Crossref] [Google Scholar]
  127. 127.
    Zeghal M, Matte K, Venes A, Patel S, Laroche G, et al. 2023.. Development of a V5-tag-directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. . J. Biol. Chem. 299::105107
    [Crossref] [Google Scholar]
  128. 128.
    Che T, English J, Krumm BE, Kim K, Pardon E, et al. 2020.. Nanobody-enabled monitoring of kappa opioid receptor states. . Nat. Commun. 11::1145
    [Crossref] [Google Scholar]
  129. 129.
    El Daibani A, Che T. 2021.. Nanobodies as sensors of GPCR activation and signaling. . Methods Cell Biol. 166::16177
    [Crossref] [Google Scholar]
  130. 130.
    Soave M, Heukers R, Kellam B, Woolard J, Smit MJ, et al. 2020.. Monitoring allosteric interactions with CXCR4 using NanoBiT conjugated nanobodies. . Cell Chem. Biol. 27::125061.e5
    [Crossref] [Google Scholar]
  131. 131.
    Doudna JA, Charpentier E. 2014.. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. . Science 346::1258096
    [Crossref] [Google Scholar]
  132. 132.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. . Science 337::81621
    [Crossref] [Google Scholar]
  133. 133.
    Soave M, Stoddart LA, White CW, Kilpatrick LE, Goulding J, et al. 2021.. Detection of genome-edited and endogenously expressed G protein–coupled receptors. . FEBS J. 288::2585601
    [Crossref] [Google Scholar]
  134. 134.
    White CW, Vanyai HK, See HB, Johnstone EKM, Pfleger KDG. 2017.. Using nanoBRET and CRISPR/Cas9 to monitor proximity to a genome-edited protein in real-time. . Sci. Rep. 7::3187
    [Crossref] [Google Scholar]
  135. 135.
    White CW, Caspar B, Vanyai HK, Pfleger KDG, Hill SJ. 2020.. CRISPR-mediated protein tagging with nanoluciferase to investigate native chemokine receptor function and conformational changes. . Cell Chem. Biol. 27::499510.e7
    [Crossref] [Google Scholar]
  136. 136.
    Boursier ME, Levin S, Zimmerman K, Machleidt T, Hurst R, et al. 2020.. The luminescent HiBiT peptide enables selective quantitation of G protein–coupled receptor ligand engagement and internalization in living cells. . J. Biol. Chem. 295::512435
    [Crossref] [Google Scholar]
  137. 137.
    Maziarz M, Park JC, Leyme A, Marivin A, Garcia-Lopez A, et al. 2020.. Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. . Cell 182::77085.e16
    [Crossref] [Google Scholar]
  138. 138.
    Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, et al. 2020.. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. . Nat. Chem. Biol. 16::84149
    [Crossref] [Google Scholar]
  139. 139.
    DiBerto JF, Smart K, Olsen RHJ, Roth BL. 2022.. Agonist and antagonist TRUPATH assays for G protein–coupled receptors. . STAR Protoc. 3::101259
    [Crossref] [Google Scholar]
  140. 140.
    Avet C, Mancini A, Breton B, Le Gouill C, Hauser AS, et al. 2022.. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs. . eLife 11::e74101
    [Crossref] [Google Scholar]
  141. 141.
    Schihada H, Shekhani R, Schulte G. 2021.. Quantitative assessment of constitutive G protein–coupled receptor activity with BRET-based G protein biosensors. . Sci. Signal. 14::eabf1653
    [Crossref] [Google Scholar]
  142. 142.
    Wright SC, Avet C, Gaitonde SA, Muneta-Arrate I, Le Gouill C, et al. 2024.. Conformation- and activation-based BRET sensors differentially report on GPCR–G protein coupling. . Sci. Signal. 17::eadi4747
    [Crossref] [Google Scholar]
  143. 143.
    Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, et al. 2024.. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. . Cell 187::152746.e25
    [Crossref] [Google Scholar]
  144. 144.
    Dogra S, Sona C, Kumar A, Yadav PN. 2016.. Tango assay for ligand-induced GPCR–β-arrestin2 interaction: application in drug discovery. . Methods Cell Biol. 132::23354
    [Crossref] [Google Scholar]
  145. 145.
    Li F, Jiang X, Luo LL, Xu YM, Huang XX, et al. 2019.. A piggyBac-based TANGO GFP assay for high throughput screening of GPCR ligands in live cells. . Cell Commun. Signal. 17::49
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080836
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080836
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error