1932

Abstract

Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding , a human coronary artery disease risk locus. Our analyses highlight SVEP1’s causal link to cardiometabolic disease and glaucoma, as well as the surprising discovery of SVEP1 as the first known physiologic ligand for PEAR1, a critical receptor governing platelet reactivity. We further employ these techniques to dissect the interactions between SVEP1, PEAR1, and the Ang/Tie pathway, with therapeutic implications for a constellation of diseases. This review underscores the potential of molecular GWASs to guide drug discovery and unravel the complexities of human health and disease by demonstrating an integrative approach that grounds mechanistic research in human biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-061724-080905
2025-01-23
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/65/1/annurev-pharmtox-061724-080905.html?itemId=/content/journals/10.1146/annurev-pharmtox-061724-080905&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    King EA, Davis JW, Degner JF. 2019.. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. . PLOS Genet. 15::e1008489
    [Crossref] [Google Scholar]
  2. 2.
    Minikel EV, Painter JL, Dong CC, Nelson MR. 2024.. Refining the impact of genetic evidence on clinical success. . Nature 629::62429
    [Crossref] [Google Scholar]
  3. 3.
    Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, et al. 2015.. The support of human genetic evidence for approved drug indications. . Nat. Genet. 47::85660
    [Crossref] [Google Scholar]
  4. 4.
    Egbuna O, Zimmerman B, Manos G, Fortier A, Chirieac MC, et al. 2023.. Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. . N. Engl. J. Med. 388::96979
    [Crossref] [Google Scholar]
  5. 5.
    Esrick EB, Lehmann LE, Biffi A, Achebe M, Brendel C, et al. 2021.. Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease. . N. Engl. J. Med. 384::20515
    [Crossref] [Google Scholar]
  6. 6.
    Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, et al. 2020.. Evinacumab for homozygous familial hypercholesterolemia. . N. Engl. J. Med. 383::71120
    [Crossref] [Google Scholar]
  7. 7.
    Gallagher MD, Chen-Plotkin AS. 2018.. The post-GWAS era: from association to function. . Am. J. Hum. Genet. 102::71730
    [Crossref] [Google Scholar]
  8. 8.
    Gusev A, Lee SH, Trynka G, Finucane H, Vilhjalmsson BJ, et al. 2014.. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. . Am. J. Hum. Genet. 95::53552
    [Crossref] [Google Scholar]
  9. 9.
    Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. 2015.. Integrative analysis of 111 reference human epigenomes. . Nature 518::31730
    [Crossref] [Google Scholar]
  10. 10.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, et al. 2012.. Systematic localization of common disease-associated variation in regulatory DNA. . Science 337::119095
    [Crossref] [Google Scholar]
  11. 11.
    Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, et al. 2022.. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. . BMC Med. Genom. 15::74
    [Crossref] [Google Scholar]
  12. 12.
    Jung IH, Elenbaas JS, Alisio A, Santana K, Young EP, et al. 2021.. SVEP1 is a human coronary artery disease locus that promotes atherosclerosis. . Sci. Transl. Med. 13::eabe0357
    [Crossref] [Google Scholar]
  13. 13.
    Elenbaas JS, Pudupakkam U, Ashworth KJ, Kang CJ, Patel V, et al. 2023.. SVEP1 is an endogenous ligand for the orphan receptor PEAR1. . Nat. Commun. 14::850
    [Crossref] [Google Scholar]
  14. 14.
    Gharahkhani P, Jorgenson E, Hysi P, Khawaja AP, Pendergrass S, et al. 2021.. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. . Nat. Commun. 12::1258
    [Crossref] [Google Scholar]
  15. 15.
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. 2005.. Complement factor H polymorphism in age-related macular degeneration. . Science 308::38589
    [Crossref] [Google Scholar]
  16. 16.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001.. Initial sequencing and analysis of the human genome. . Nature 409::860921
    [Crossref] [Google Scholar]
  17. 17.
    Wellcome Trust Case Control Consort. 2007.. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. . Nature 447::66178
    [Crossref] [Google Scholar]
  18. 18.
    Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, et al. 2021.. Genome-wide association studies. . Nat. Rev. Methods Primers 1::59
    [Crossref] [Google Scholar]
  19. 19.
    Aherrahrou R, Guo L, Nagraj VP, Aguhob A, Hinkle J, et al. 2020.. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. . Circ. Res. 127::155265
    [Crossref] [Google Scholar]
  20. 20.
    Homilius M, Zhu W, Eddy SS, Thompson PC, Zheng H, et al. 2024.. Perturbational phenotyping of human blood cells reveals genetically determined latent traits associated with subsets of common diseases. . Nat. Genet. 56::3750
    [Crossref] [Google Scholar]
  21. 21.
    Keramati AR, Chen MH, Rodriguez BAT, Yanek LR, Bhan A, et al. 2021.. Genome sequencing unveils a regulatory landscape of platelet reactivity. . Nat. Commun. 12::3626
    [Crossref] [Google Scholar]
  22. 22.
    Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, et al. 2018.. Genome-wide association studies of brain imaging phenotypes in UK Biobank. . Nature 562::21016
    [Crossref] [Google Scholar]
  23. 23.
    Nauffal V, Di Achille P, Klarqvist MDR, Cunningham JW, Hill MC, et al. 2023.. Genetics of myocardial interstitial fibrosis in the human heart and association with disease. . Nat. Genet. 55::77786
    [Crossref] [Google Scholar]
  24. 24.
    Giani AM, Gallo GR, Gianfranceschi L, Formenti G. 2020.. Long walk to genomics: history and current approaches to genome sequencing and assembly. . Comput. Struct. Biotechnol. J. 18::919
    [Crossref] [Google Scholar]
  25. 25.
    Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, et al. 2018.. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. . Nat. Genet. 50::111221
    [Crossref] [Google Scholar]
  26. 26.
    Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, et al. 2022.. A saturated map of common genetic variants associated with human height. . Nature 610::70412
    [Crossref] [Google Scholar]
  27. 27.
    Liao WW, Asri M, Ebler J, Doerr D, Haukness M, et al. 2023.. A draft human pangenome reference. . Nature 617::31224
    [Crossref] [Google Scholar]
  28. 28.
    Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, et al. 2016.. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. . J. Clin. Epidemiol. 70::21423
    [Crossref] [Google Scholar]
  29. 29.
    Kurki MI, Karjalainen J, Palta P, Sipila TP, Kristiansson K, et al. 2023.. FinnGen provides genetic insights from a well-phenotyped isolated population. . Nature 613::50818
    [Crossref] [Google Scholar]
  30. 30.
    Sudlow C, Gallacher J, Allen N, Beral V, Burton P, et al. 2015.. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. . PLOS Med. 12::e1001779
    [Crossref] [Google Scholar]
  31. 31.
    Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, et al. 2020.. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. . Cell 182::1198213.e14
    [Crossref] [Google Scholar]
  32. 32.
    Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, et al. 2023.. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. . Nucleic Acids Res. 51::D97785
    [Crossref] [Google Scholar]
  33. 33.
    Ferkingstad E, Sulem P, Atlason BA, Sveinbjornsson G, Magnusson MI, et al. 2021.. Large-scale integration of the plasma proteome with genetics and disease. . Nat. Genet. 53::171221
    [Crossref] [Google Scholar]
  34. 34.
    Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, et al. 2018.. Genomic atlas of the human plasma proteome. . Nature 558::7379
    [Crossref] [Google Scholar]
  35. 35.
    Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, et al. 2023.. Plasma proteomic associations with genetics and health in the UK Biobank. . Nature 622::32938
    [Crossref] [Google Scholar]
  36. 36.
    Julkunen H, Cichonska A, Tiainen M, Koskela H, Nybo K, et al. 2023.. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. . Nat. Commun. 14::604
    [Crossref] [Google Scholar]
  37. 37.
    Kettunen J, Demirkan A, Wurtz P, Draisma HH, Haller T, et al. 2016.. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. . Nat. Commun. 7::11122
    [Crossref] [Google Scholar]
  38. 38.
    Cadby G, Giles C, Melton PE, Huynh K, Mellett NA, et al. 2022.. Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease. . Nat. Commun. 13::3124
    [Crossref] [Google Scholar]
  39. 39.
    Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, et al. 2023.. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. . Nat. Genet. 55::4453
    [Crossref] [Google Scholar]
  40. 40.
    Surendran P, Stewart ID, Au Yeung VPW, Pietzner M, Raffler J, et al. 2022.. Rare and common genetic determinants of metabolic individuality and their effects on human health. . Nat. Med. 28::232132
    [Crossref] [Google Scholar]
  41. 41.
    Cruchaga C, Western D, Timsina J, Wang L, Wang C, et al. 2023.. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and informs causal proteins for Alzheimer's disease. . Res. Sq. 2814616. https://www.researchsquare.com/article/rs-2814616/v1
  42. 42.
    Yang C, Farias FHG, Ibanez L, Suhy A, Sadler B, et al. 2021.. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. . Nat. Neurosci. 24::130212
    [Crossref] [Google Scholar]
  43. 43.
    Calvo-Serra B, Maitre L, Lau CE, Siskos AP, Gutzkow KB, et al. 2021.. Urinary metabolite quantitative trait loci in children and their interaction with dietary factors. . Hum. Mol. Genet. 29::383044
    [Crossref] [Google Scholar]
  44. 44.
    Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, et al. 2021.. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. . Commun. Biol. 4::63
    [Crossref] [Google Scholar]
  45. 45.
    Schlosser P, Scherer N, Grundner-Culemann F, Monteiro-Martins S, Haug S, et al. 2023.. Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine. . Nat. Genet. 55::9951008
    [Crossref] [Google Scholar]
  46. 46.
    Zierer J, Jackson MA, Kastenmuller G, Mangino M, Long T, et al. 2018.. The fecal metabolome as a functional readout of the gut microbiome. . Nat. Genet. 50::79095
    [Crossref] [Google Scholar]
  47. 47.
    Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, et al. 2022.. Mendelian randomization. . Nat. Rev. Methods Primers 2::6
    [Crossref] [Google Scholar]
  48. 48.
    Walker KA, Chen J, Zhang J, Fornage M, Yang Y, et al. 2021.. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. . Nat. Aging 1::47389
    [Crossref] [Google Scholar]
  49. 49.
    Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, et al. 2019.. Guidelines for performing Mendelian randomization investigations: update for summer 2023. . Wellcome Open Res. 4::186
    [Crossref] [Google Scholar]
  50. 50.
    Gkatzionis A, Burgess S, Newcombe PJ. 2023.. Statistical methods for cis-Mendelian randomization with two-sample summary-level data. . Genet. Epidemiol. 47::325
    [Crossref] [Google Scholar]
  51. 51.
    Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, et al. 2015.. A gene-based association method for mapping traits using reference transcriptome data. . Nat. Genet. 47::109198
    [Crossref] [Google Scholar]
  52. 52.
    Zhu H, Zhou X. 2021.. Transcriptome-wide association studies: a view from Mendelian randomization. . Quant. Biol. 9::10721
    [Crossref] [Google Scholar]
  53. 53.
    Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, et al. 2014.. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. . PLOS Genet. 10::e1004383
    [Crossref] [Google Scholar]
  54. 54.
    Hormozdiari F, van de Bunt M, Segre AV, Li X, Joo JWJ, et al. 2016.. Colocalization of GWAS and eQTL signals detects target genes. . Am. J. Hum. Genet. 99::124560
    [Crossref] [Google Scholar]
  55. 55.
    Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, et al. 2022.. Combining evidence from Mendelian randomization and colocalization: review and comparison of approaches. . Am. J. Hum. Genet. 109::76782
    [Crossref] [Google Scholar]
  56. 56.
    Cano-Gamez E, Trynka G. 2020.. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. . Front. Genet. 11::424
    [Crossref] [Google Scholar]
  57. 57.
    Mai J, Lu M, Gao Q, Zeng J, Xiao J. 2023.. Transcriptome-wide association studies: recent advances in methods, applications and available databases. . Commun. Biol. 6::899
    [Crossref] [Google Scholar]
  58. 58.
    Olayinka OA, O'Neill NK, Farrer LA, Wang G, Zhang X. 2022.. Molecular quantitative trait locus mapping in human complex diseases. . Curr. Protoc. 2::e426
    [Crossref] [Google Scholar]
  59. 59.
    Qi T, Song L, Guo Y, Chen C, Yang J. 2024.. From genetic associations to genes: methods, applications, and challenges. . Trends Genet. 40::64267
    [Crossref] [Google Scholar]
  60. 60.
    Porcu E, Rueger S, Lepik K, eQTLGen Consort., BIOS Consort., et al. 2019.. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. . Nat. Commun. 10::3300
    [Crossref] [Google Scholar]
  61. 61.
    Zhao H, Rasheed H, Nost TH, Cho Y, Liu Y, et al. 2022.. Proteome-wide Mendelian randomization in global biobank meta-analysis reveals multi-ancestry drug targets for common diseases. . Cell Genom. 2::100195
    [Crossref] [Google Scholar]
  62. 62.
    D'Erasmo L, Di Martino M, Neufeld T, Fraum TJ, Joo Kang C, et al. 2023.. ANGPTL3 deficiency and risk of hepatic steatosis. . Circulation 148::147989
    [Crossref] [Google Scholar]
  63. 63.
    Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JE, et al. 2015.. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. . Lancet 385::35161
    [Crossref] [Google Scholar]
  64. 64.
    Gill D, Georgakis MK, Walker VM, Schmidt AF, Gkatzionis A, et al. 2021.. Mendelian randomization for studying the effects of perturbing drug targets. . Wellcome Open Res. 6::16
    [Crossref] [Google Scholar]
  65. 65.
    Schmidt AF, Finan C, Gordillo-Maranon M, Asselbergs FW, Freitag DF, et al. 2020.. Genetic drug target validation using Mendelian randomisation. . Nat. Commun. 11::3255
    [Crossref] [Google Scholar]
  66. 66.
    Davey Smith G, Hemani G. 2014.. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. . Hum. Mol. Genet. 23::R8998
    [Crossref] [Google Scholar]
  67. 67.
    Dhindsa RS, Burren OS, Sun BB, Prins BP, Matelska D, et al. 2023.. Rare variant associations with plasma protein levels in the UK Biobank. . Nature 622::33947
    [Crossref] [Google Scholar]
  68. 68.
    Wang L, Babushkin N, Liu Z, Liu X. 2024.. Trans-eQTL mapping in gene sets identifies network effects of genetic variants. . Cell Genom. 4::100538
    [Crossref] [Google Scholar]
  69. 69.
    Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, et al. 2021.. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. . Nat. Genet. 53::130010
    [Crossref] [Google Scholar]
  70. 70.
    Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ. 2007.. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. . PLOS Genet. 3::1687701
    [Crossref] [Google Scholar]
  71. 71.
    Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, et al. 2019.. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. . Nucleic Acids Res. 47::D60713
    [Crossref] [Google Scholar]
  72. 72.
    Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. 2017.. HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. . Nucleic Acids Res. 45::D40814
    [Crossref] [Google Scholar]
  73. 73.
    Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Franberg M, et al. 2017.. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. . PLOS Genet. 13::e1006706
    [Crossref] [Google Scholar]
  74. 74.
    Stitziel NO, Stirrups KE, Masca NG, Erdmann J, Ferrario PG, et al. 2016.. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. . N. Engl. J. Med. 374::113444
    [Crossref] [Google Scholar]
  75. 75.
    Elenbaas JS, Jung IH, Coler-Reilly A, Lee PC, Alisio A, Stitziel NO. 2023.. The emerging Janus face of SVEP1 in development and disease. . Trends Mol. Med. 29::93950
    [Crossref] [Google Scholar]
  76. 76.
    Emilsson V, Gudmundsdottir V, Gudjonsson A, Jonmundsson T, Jonsson BG, et al. 2022.. Coding and regulatory variants are associated with serum protein levels and disease. . Nat. Commun. 13::481
    [Crossref] [Google Scholar]
  77. 77.
    Walker KA, Chen J, Shi L, Yang Y, Fornage M, et al. 2023.. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. . Sci. Transl. Med. 15::eadf5681
    [Crossref] [Google Scholar]
  78. 78.
    Perrot N, Pelletier W, Bourgault J, Couture C, Li Z, et al. 2021.. A trans-omic Mendelian randomization study of parental lifespan uncovers novel aging biology and therapeutic candidates for chronic diseases. . Aging Cell 20::e13497
    [Crossref] [Google Scholar]
  79. 79.
    Young TL, Whisenhunt KN, Jin J, LaMartina SM, Martin SM, et al. 2020.. SVEP1 as a genetic modifier of TEK-related primary congenital glaucoma. . Investig. Ophthalmol. Vis. Sci. 61::6
    [Crossref] [Google Scholar]
  80. 80.
    Thomson BR, Liu P, Onay T, Du J, Tompson SW, et al. 2021.. Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. . Nat. Commun. 12::6072
    [Crossref] [Google Scholar]
  81. 81.
    Jung IH, Elenbaas JS, Burks KH, Amrute JM, Xiangyu Z, et al. 2022.. Vascular smooth muscle- and myeloid cell-derived integrin α9β1 does not directly mediate the development of atherosclerosis in mice. . Atherosclerosis 360::1520
    [Crossref] [Google Scholar]
  82. 82.
    Jung IH, Stitziel NO. 2024.. Integrin α9β1 deficiency does not impact the development of atherosclerosis in mice. . Heliyon 10::e25760
    [Crossref] [Google Scholar]
  83. 83.
    Nanda N, Bao M, Lin H, Clauser K, Komuves L, et al. 2005.. Platelet endothelial aggregation receptor 1 (PEAR1), a novel epidermal growth factor repeat-containing transmembrane receptor, participates in platelet contact-induced activation. . J. Biol. Chem. 280::2468089
    [Crossref] [Google Scholar]
  84. 84.
    Vandenbriele C, Kauskot A, Vandersmissen I, Criel M, Geenens R, et al. 2015.. Platelet endothelial aggregation receptor-1: a novel modifier of neoangiogenesis. . Cardiovasc. Res. 108::12438
    [Crossref] [Google Scholar]
  85. 85.
    Faraday N, Yanek LR, Yang XP, Mathias R, Herrera-Galeano JE, et al. 2011.. Identification of a specific intronic PEAR1 gene variant associated with greater platelet aggregability and protein expression. . Blood 118::336775
    [Crossref] [Google Scholar]
  86. 86.
    Jones CI, Bray S, Garner SF, Stephens J, de Bono B, et al. 2009.. A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. . Blood 114::140516
    [Crossref] [Google Scholar]
  87. 87.
    Kauskot A, Di Michele M, Loyen S, Freson K, Verhamme P, Hoylaerts MF. 2012.. A novel mechanism of sustained platelet αIIbβ3 activation via PEAR1. . Blood 119::405665
    [Crossref] [Google Scholar]
  88. 88.
    Lewis JP, Ryan K, O'Connell JR, Horenstein RB, Damcott CM, et al. 2013.. Genetic variation in PEAR1 is associated with platelet aggregation and cardiovascular outcomes. . Circ. Cardiovasc. Genet. 6::18492
    [Crossref] [Google Scholar]
  89. 89.
    Izzi B, Pistoni M, Cludts K, Akkor P, Lambrechts D, et al. 2016.. Allele-specific DNA methylation reinforces PEAR1 enhancer activity. . Blood 128::100312
    [Crossref] [Google Scholar]
  90. 90.
    Piehler J. 2005.. New methodologies for measuring protein interactions in vivo and in vitro. . Curr. Opin. Struct. Biol. 15::414
    [Crossref] [Google Scholar]
  91. 91.
    Karpanen T, Padberg Y, van de Pavert SA, Dierkes C, Morooka N, et al. 2017.. An evolutionarily conserved role for Polydom/Svep1 during lymphatic vessel formation. . Circ. Res. 120::126375
    [Crossref] [Google Scholar]
  92. 92.
    Verdier H, Thomas P, Batista J, Kempster C, McKinney H, et al. 2023.. A signature of platelet reactivity in CBC scattergrams reveals genetic predictors of thrombotic disease risk. . Blood 142::1895908
    [Crossref] [Google Scholar]
  93. 93.
    Fiolaki A, Katsanos AH, Kyritsis AP, Papadaki S, Kosmidou M, et al. 2017.. High on treatment platelet reactivity to aspirin and clopidogrel in ischemic stroke: a systematic review and meta-analysis. . J. Neurol. Sci. 376::11216
    [Crossref] [Google Scholar]
  94. 94.
    Angiolillo DJ, Bernardo E, Sabate M, Jimenez-Quevedo P, Costa MA, et al. 2007.. Impact of platelet reactivity on cardiovascular outcomes in patients with type 2 diabetes mellitus and coronary artery disease. . J. Am. Coll. Cardiol. 50::154147
    [Crossref] [Google Scholar]
  95. 95.
    Bath P, Algert C, Chapman N, Neal B. 2004.. Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. . Stroke 35::62226
    [Crossref] [Google Scholar]
  96. 96.
    Chu SG, Becker RC, Berger PB, Bhatt DL, Eikelboom JW, et al. 2010.. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. . J. Thromb. Haemost. 8::14856
    [Crossref] [Google Scholar]
  97. 97.
    Endler G, Klimesch A, Sunder-Plassmann H, Schillinger M, Exner M, et al. 2002.. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. . Br. J. Haematol. 117::399404
    [Crossref] [Google Scholar]
  98. 98.
    Huczek Z, Kochman J, Filipiak KJ, Horszczaruk GJ, Grabowski M, et al. 2005.. Mean platelet volume on admission predicts impaired reperfusion and long-term mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. . J. Am. Coll. Cardiol. 46::28490
    [Crossref] [Google Scholar]
  99. 99.
    Martin JF, Bath PM, Burr ML. 1991.. Influence of platelet size on outcome after myocardial infarction. . Lancet 338::140911
    [Crossref] [Google Scholar]
  100. 100.
    Augustin HG, Koh GY, Thurston G, Alitalo K. 2009.. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. . Nat. Rev. Mol. Cell Biol. 10::16577
    [Crossref] [Google Scholar]
  101. 101.
    Eklund L, Saharinen P. 2013.. Angiopoietin signaling in the vasculature. . Exp. Cell Res. 319::127180
    [Crossref] [Google Scholar]
  102. 102.
    Saharinen P, Eklund L, Alitalo K. 2017.. Therapeutic targeting of the angiopoietin-TIE pathway. . Nat. Rev. Drug Discov. 16::63561
    [Crossref] [Google Scholar]
  103. 103.
    Thurston G, Daly C. 2012.. The complex role of angiopoietin-2 in the angiopoietin-Tie signaling pathway. . Cold Spring Harb. Perspect. Med. 2::a006550
    [Crossref] [Google Scholar]
  104. 104.
    Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M, et al. 1992.. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. . Mol. Cell. Biol. 12::1698707
    [Google Scholar]
  105. 105.
    Leppanen VM, Saharinen P, Alitalo K. 2017.. Structural basis of Tie2 activation and Tie2/Tie1 heterodimerization. . PNAS 114::437681
    [Crossref] [Google Scholar]
  106. 106.
    Khawaja AP, Cooke Bailey JN, Wareham NJ, Scott RA, Simcoe M, et al. 2018.. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma. . Nat. Genet. 50::77882
    [Crossref] [Google Scholar]
  107. 107.
    MacGregor S, Ong JS, An J, Han X, Zhou T, et al. 2018.. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. . Nat. Genet. 50::106771
    [Crossref] [Google Scholar]
  108. 108.
    de Voogd S, Ikram MK, Wolfs RC, Jansonius NM, Hofman A, de Jong PT. 2005.. Incidence of open-angle glaucoma in a general elderly population: the Rotterdam study. . Ophthalmology 112::148793
    [Crossref] [Google Scholar]
  109. 109.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, et al. 2007.. Predictors of long-term progression in the early manifest glaucoma trial. . Ophthalmology 114::196572
    [Crossref] [Google Scholar]
  110. 110.
    Rajasundaram S, Zebardast N, Mehta P, Khawaja AP, Warwick A, et al. 2023.. TIE1 and TEK signalling, intraocular pressure, and primary open-angle glaucoma: a Mendelian randomization study. . J. Transl. Med. 21::847
    [Crossref] [Google Scholar]
  111. 111.
    Kim J, Park DY, Bae H, Park DY, Kim D, et al. 2017.. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. . J. Clin. Investig. 127::387796
    [Crossref] [Google Scholar]
  112. 112.
    Thomson BR, Grannonico M, Liu F, Liu M, Mendapara P, et al. 2020.. Angiopoietin-1 knockout mice as a genetic model of open-angle glaucoma. . Transl. Vis. Sci. Technol. 9::16
    [Crossref] [Google Scholar]
  113. 113.
    Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A, et al. 2014.. A lymphatic defect causes ocular hypertension and glaucoma in mice. . J. Clin. Investig. 124::432024
    [Crossref] [Google Scholar]
  114. 114.
    Thomson BR, Souma T, Tompson SW, Onay T, Kizhatil K, et al. 2017.. Angiopoietin-1 is required for Schlemm's canal development in mice and humans. . J. Clin. Investig. 127::442136
    [Crossref] [Google Scholar]
  115. 115.
    Maddala R, Rao PV. 2020.. Global phosphotyrosinylated protein profile of cell-matrix adhesion complexes of trabecular meshwork cells. . Am. J. Physiol. Cell Physiol. 319::C28899
    [Crossref] [Google Scholar]
  116. 116.
    Li G, Nottebaum AF, Brigell M, Navarro ID, Ipe U, et al. 2020.. A small molecule inhibitor of VE-PTP activates Tie2 in Schlemm's canal increasing outflow facility and reducing intraocular pressure. . Investig. Ophthalmol. Vis. Sci. 61::12
    [Crossref] [Google Scholar]
  117. 117.
    Wang R, Yang M, Jiang L, Huang M. 2022.. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. . Pharmacol. Res. 182::106331
    [Crossref] [Google Scholar]
  118. 118.
    Morooka N, Futaki S, Sato-Nishiuchi R, Nishino M, Totani Y, et al. 2017.. Polydom is an extracellular matrix protein involved in lymphatic vessel remodeling. . Circ. Res. 120::127688
    [Crossref] [Google Scholar]
  119. 119.
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, et al. 2020.. The mutational constraint spectrum quantified from variation in 141,456 humans. . Nature 581::43443
    [Crossref] [Google Scholar]
  120. 120.
    Hußmann M, Schulte D, Weischer S, Carlantoni C, Nakajima H, et al. 2023.. Svep1 is a binding ligand of Tie1 and affects specific aspects of facial lymphatic development in a Vegfc-independent manner. . eLife 12::e82969
    [Crossref] [Google Scholar]
  121. 121.
    Sato-Nishiuchi R, Doiguchi M, Morooka N, Sekiguchi K. 2023.. Polydom/SVEP1 binds to Tie1 and promotes migration of lymphatic endothelial cells. . J. Cell Biol. 222::e202208047
    [Crossref] [Google Scholar]
  122. 122.
    Eklund L, Kangas J, Saharinen P. 2017.. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems. . Clin. Sci. 131::87103
    [Crossref] [Google Scholar]
  123. 123.
    Ahmad S, Cudmore MJ, Wang K, Hewett P, Potluri R, et al. 2010.. Angiopoietin-1 induces migration of monocytes in a Tie-2 and integrin-independent manner. . Hypertension 56::47783
    [Crossref] [Google Scholar]
  124. 124.
    Ou X, Gao JH, He LH, Yu XH, Wang G, et al. 2020.. Angiopoietin-1 aggravates atherosclerosis by inhibiting cholesterol efflux and promoting inflammatory response. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865::158535
    [Crossref] [Google Scholar]
  125. 125.
    Woo KV, Qu X, Babaev VR, Linton MF, Guzman RJ, et al. 2011.. Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner. . J. Clin. Investig. 121::162435
    [Crossref] [Google Scholar]
  126. 126.
    Anisimov A, Fang S, Hemanthakumar KA, Ord T, van Avondt K, et al. 2023.. The angiopoietin receptor Tie2 is atheroprotective in arterial endothelium. . Nat. Cardiovasc. Res. 2::30721
    [Crossref] [Google Scholar]
  127. 127.
    Pernemalm M, Sandberg A, Zhu Y, Boekel J, Tamburro D, et al. 2019.. In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta. . eLife 8::e41608
    [Crossref] [Google Scholar]
  128. 128.
    GTEx Consort. 2017.. Genetic effects on gene expression across human tissues. . Nature 550::20413
    [Crossref] [Google Scholar]
  129. 129.
    Fujita M, Gao Z, Zeng L, McCabe C, White CC, et al. 2024.. Cell subtype-specific effects of genetic variation in the Alzheimer's disease brain. . Nat. Genet. 56::60514
    [Crossref] [Google Scholar]
  130. 130.
    van der Wijst MGP, Brugge H, de Vries DH, Deelen P, Swertz MA, et al. 2018.. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. . Nat. Genet. 50::49397
    [Crossref] [Google Scholar]
  131. 131.
    Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG, et al. 2022.. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. . Science 376::eabf3041
    [Crossref] [Google Scholar]
  132. 132.
    Knoch D, Abbadi A, Grandke F, Meyer RC, Samans B, et al. 2020.. Strong temporal dynamics of QTL action on plant growth progression revealed through high-throughput phenotyping in canola. . Plant Biotechnol. J. 18::6882
    [Crossref] [Google Scholar]
  133. 133.
    Lowry DB, Lovell JT, Zhang L, Bonnette J, Fay PA, et al. 2019.. QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. . PNAS 116::1293341
    [Crossref] [Google Scholar]
  134. 134.
    Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, et al. 2022.. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. . Nat. Genet. 54::180315
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-061724-080905
Loading
/content/journals/10.1146/annurev-pharmtox-061724-080905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error