1932

Abstract

The Risk Assessment Committee of the European Chemicals Agency issued an opinion on classifying titanium dioxide (TiO) as a suspected human carcinogen upon inhalation. Recent animal studies indicate that TiO may be carcinogenic through the oral route. There is considerable uncertainty on the carcinogenicity of TiO, which may be decreased if its mechanism of action becomes clearer. Here we consider adverse outcome pathways and present the available information on each of the key events (KEs). Inhalation exposure to TiO can induce lung tumors in rats via a mechanism that is also applicable to other poorly soluble, low-toxicity particles. To reduce uncertainties regarding human relevance, we recommend gathering information on earlier KEs such as oxidative stress in humans. For oral exposure, insufficient information is available to conclude whether TiO can induce intestinal tumors. An oral carcinogenicity study with well-characterized (food-grade) TiO is needed, including an assessment of toxicokinetics and early KEs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-101419-100049
2021-01-06
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-101419-100049.html?itemId=/content/journals/10.1146/annurev-pharmtox-101419-100049&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Warheit DB, Donner EM. 2015. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: recognizing hazard and exposure issues. Food Chem. Toxicol. 85:138–47
    [Google Scholar]
  2. 2. 
    Braun JH. 1997. Titanium dioxide. A review. J. Coat. Technol. 69:59–72
    [Google Scholar]
  3. 3. 
    Nakata K, Fujishima A. 2012. TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13:169–89
    [Google Scholar]
  4. 4. 
    Warheit DB. 2013. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles. Toxicol. Lett. 220:193–204
    [Google Scholar]
  5. 5. 
    Thompson CM, Suh M, Mittal L, Wikoff DS, Welsh B, Proctor DM 2016. Development of linear and threshold no significant risk levels for inhalation exposure to titanium dioxide using systematic review and mode of action considerations. Regul. Toxicol. Pharmacol. 80:60–70
    [Google Scholar]
  6. 6. 
    Warheit DB, Sayes CM. 2015. Routes of exposure to nanoparticles: hazard tests related to portal entries. Nanoengineering: Global Approaches to Health and Safety Issues PI Dolez 41–54 Amsterdam: Elsevier
    [Google Scholar]
  7. 7. 
    Shi H, Magaye R, Castranova V, Zhao J 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol. 10:15
    [Google Scholar]
  8. 8. 
    EFSA (Eur. Food Saf. Auth.). 2004. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food on a request from the Commission related to the safety in use of rutile titanium dioxide as an alternative to the presently permitted anatase form. EFSA J 163:1–12
    [Google Scholar]
  9. 9. 
    Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D et al. 2010. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol. Sci. 115:156–66
    [Google Scholar]
  10. 10. 
    Pflücker F, Wendel V, Hohenberg H, Gärtner E, Will T et al. 2001. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol. Appl. Skin Physiol. 14:Suppl. 192–97
    [Google Scholar]
  11. 11. 
    Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M 2010. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J. Toxicol. Sci. 35:107–13
    [Google Scholar]
  12. 12. 
    SCCS (Sci. Comm. Consumer Saf.). 2013. Opinion on titanium dioxide (nano form) Opin. SCCS/1516/13, Sci. Comm. Consumer Saf., Eur. Comm Luxembourg:
  13. 13. 
    Basinas I, Jimenez AS, Galea KS, Tongeren MV, Hurley F 2018. A systematic review of the routes and forms of exposure to engineered nanomaterials. Ann. Work Expo. Health 62:639–62
    [Google Scholar]
  14. 14. 
    Rompelberg C, Heringa MB, van Donkersgoed G, Drijvers J, Roos A et al. 2016. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 10:1404–14
    [Google Scholar]
  15. 15. 
    RAC (Comm. Risk Assess.). 2017. Opinion proposing harmonised classification and labelling at EU level of Titanium dioxide Opin. CLH-O-0000001412-86-163/F, Comm. Risk Assess., Eur. Chem. Agency, Helsinki Finland:
  16. 16. 
    Lee KP, Trochimowicz HJ, Reinhardt CF 1985. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol. Appl. Pharmacol. 79:179–92
    [Google Scholar]
  17. 17. 
    Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B et al. 1995. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal. Toxicol. 7:533–56
    [Google Scholar]
  18. 18. 
    Urrutia-Ortega IM, Garduno-Balderas LG, Delgado-Buenrostro NL, Freyre-Fonseca V, Flores-Flores JO et al. 2016. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food Chem. Toxicol. 93:20–31
    [Google Scholar]
  19. 19. 
    Bettini S, Boutet-Robinet E, Cartier C, Comera C, Gaultier E et al. 2017. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 7:40373
    [Google Scholar]
  20. 20. 
    Proquin H, Jetten MJ, Jonkhout MCM, Garduño-Balderas LG, Briedé JJ et al. 2018. Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171). Food Chem. Toxicol. 111:153–65
    [Google Scholar]
  21. 21. 
    Natl. Cancer Inst. 1979. Bioassay of titanium dioxide for possible carcinogenicity Tech. Rep., US Dep. Health Educ. Welf./Natl. Inst. Health Bethesda, MA:
  22. 22. 
    Blevins LK, Crawford RB, Bach A, Rizzo MD, Zhou J et al. 2019. Evaluation of immunologic and intestinal effects in rats administered an E 171-containing diet, a food grade titanium dioxide (TiO2). Food Chem. Toxicol. 133:110793
    [Google Scholar]
  23. 23. 
    Warheit DB, Brown SC, Donner EM 2015. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem. Toxicol. 84:208–24
    [Google Scholar]
  24. 24. 
    SCCS (Sci. Comm. Consumer Saf.). 2018. Opinion on titanium dioxide (nano form) as UV-filter in sprays Opin. SCCS/1583/17, Sci. Comm. Consumer Saf., Eur. Comm Luxembourg:
  25. 25. 
    ECETOC (Eur. Cent. Ecotoxicol. Toxicol. Chem.). 2013. Poorly soluble particles/lung overload Tech. Rep. 122, Eur. Cent. Ecotoxicol. Toxicol. Chem Brussels:
  26. 26. 
    IARC Work. Group Eval. Carcinog. Risks Hum. 2010. Carbon black, titanium dioxide, and talc. IARC Monogr. Eval. Carcinog. Risks Hum 93:1–413
    [Google Scholar]
  27. 27. 
    Olin S. 2000. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. Inhal. Toxicol. 12:1–17
    [Google Scholar]
  28. 28. 
    KEMI (Swed. Chem. Agency). 2016. Nanomaterials and genotoxicity—a literature review Rep 361218 Swed. Chem. Agency Stockholm:
  29. 29. 
    CLH (Regist. Classif. Label.). 2016. CLH report for titanium dioxide. Rep., ANSES, Eur. Chem. Agency, Helsinki Finland:
  30. 30. 
    Bevan RJ, Kreiling R, Levy LS, Warheit DB 2018. Toxicity testing of poorly soluble particles, lung overload and lung cancer. Regul. Toxicol. Pharmacol. 100:80–91
    [Google Scholar]
  31. 31. 
    Borm PJ, Schins RP, Albrecht C 2004. Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int. J. Cancer. 110:3–14
    [Google Scholar]
  32. 32. 
    Elespuru R, Pfuhler S, Aardema M, Chen T, Doak SH et al. 2018. Genotoxicity assessment of nanomaterials: recommendations on best practices, assays and methods. Toxicol. Sci. 164:2391–416
    [Google Scholar]
  33. 33. 
    Gajewicz A, Schaeublin N, Rasulev B, Hussain S, Leszczynska D et al. 2015. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology 9:313–25
    [Google Scholar]
  34. 34. 
    Møller P, Jensen DM, Wils RS, Andersen MHG, Danielsen PH, Roursgaard M 2017. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models. Nanotoxicology 11:1237–56
    [Google Scholar]
  35. 35. 
    Kawasaki H. 2017. A mechanistic review of particle overload by titanium dioxide. Inhal. Toxicol. 29:530–40
    [Google Scholar]
  36. 36. 
    Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS 2016. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol. Trace Elem. Res. 172:11–36
    [Google Scholar]
  37. 37. 
    Skocaj M, Filipic M, Petkovic J, Novak S 2011. Titanium dioxide in our everyday life: Is it safe. ? Radiol. Oncol. 45:227–47
    [Google Scholar]
  38. 38. 
    Song B, Zhou T, Yang W, Liu J, Shao L 2016. Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity. Environ. Toxicol. Pharmacol. 48:130–40
    [Google Scholar]
  39. 39. 
    Zhang X, Li W, Yang Z 2015. Toxicology of nanosized titanium dioxide: an update. Arch. Toxicol. 89:2207–17
    [Google Scholar]
  40. 40. 
    Charles S, Jomini S, Fessard V, Bigorgne-Vizade E, Rousselle C, Michel C 2018. Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context. Nanotoxicology 12:357–74
    [Google Scholar]
  41. 41. 
    OECD (Organ. Econ. Coop. Dev.). 2018. Guidance document on inhalation toxicity studies OECD Guid. Doc. 39, Organ. Econ. Coop. Dev Paris:
  42. 42. 
    ICRP (Int. Comm. Radiol. Prot.). 1994. Human respiratory tract model for radiological protection ICRP Publ. 66, Int. Comm. Radiol. Prot Ottawa, Can:.
  43. 43. 
    Gebel T. 2012. Small difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials. Arch. Toxicol. 86:995–1007
    [Google Scholar]
  44. 44. 
    Donaldson K, Bolton RE, Jones A, Brown GM, Robertson MD et al. 1988. Kinetics of the bronchoalveolar leucocyte response in rats during exposure to equal airborne mass concentrations of quartz, chrysotile asbestos, or titanium dioxide. Thorax 43:525–33
    [Google Scholar]
  45. 45. 
    Oberdorster G, Ferin J, Lehnert BE 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect. 102:Suppl. 5173–79
    [Google Scholar]
  46. 46. 
    Popp L, Tran V, Patel R, Segatori L 2018. Autophagic response to cellular exposure to titanium dioxide nanoparticles. Acta Biomater 79:354–63
    [Google Scholar]
  47. 47. 
    Villeneuve DL, Landesmann B, Allavena P, Ashley N, Bal-Price A et al. 2018. Representing the process of inflammation as key events in adverse outcome pathways. Toxicol. Sci. 163:346–52
    [Google Scholar]
  48. 48. 
    Meek ME, Boobis A, Cote I, Dellarco V, Fotakis G et al. 2014. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J. Appl. Toxicol. 34:1–18
    [Google Scholar]
  49. 49. 
    Creutzenberg O, Bellmann B, Heinrich U, Fuhst R, Koch W, Muhle H 1990. Clearance and retention of inhaled diesel exhaust particles, carbon black, and titanium dioxide in rats at lung overload conditions. J. Aerosol Sci. 21:S455–58
    [Google Scholar]
  50. 50. 
    Gallagher J, Heinrich U, George M, Hendee L, Phillips DH, Lewtas J 1994. Formation of DNA adducts in rat lung following chronic inhalation of diesel emissions, carbon black and titanium dioxide particles. Carcinogenesis 15:1291–99
    [Google Scholar]
  51. 51. 
    Trochimowicz HJ, Lee KP, Reinhardt CF 1988. Chronic inhalation exposure of rats to titanium dioxide dust. J. Appl. Toxicol. 8:383–85
    [Google Scholar]
  52. 52. 
    Ferin J, Oberdorster G, Penney DP 1992. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 6:535–42
    [Google Scholar]
  53. 53. 
    Cullen RT, Tran CL, Buchanan D, Davis JM, Searl A et al. 2000. Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal. Toxicol. 12:1089–111
    [Google Scholar]
  54. 54. 
    Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K 2000. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal. Toxicol. 12:1113–26
    [Google Scholar]
  55. 55. 
    Lee KP, Henry NW 3rd, Trochimowicz HJ, Reinhardt CF 1986. Pulmonary response to impaired lung clearance in rats following excessive TiO2 dust deposition. Environ. Res. 41:144–67
    [Google Scholar]
  56. 56. 
    Warheit DB, Brock WJ, Lee KP, Webb TR, Reed KL 2005. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol. Sci. 88:514–24
    [Google Scholar]
  57. 57. 
    Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K et al. 2009. Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal. Toxicol. 21:102–18
    [Google Scholar]
  58. 58. 
    Warheit DB, Hansen JF, Yuen IS, Kelly DP, Snajdr SI, Hartsky MA 1997. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. Toxicol. Appl. Pharmacol. 145:10–22
    [Google Scholar]
  59. 59. 
    Muhle H, Kittel B, Ernst H, Mohr U, Mermelstein R 1995. Neoplastic lung lesions in rat after chronic exposure to crystalline silica. Scand. J. Work Environ. Health 21:Suppl. 227–29
    [Google Scholar]
  60. 60. 
    Muhle H, Mermelstein R, Dasenbrock C, Takenaka S, Mohr U et al. 1989. Lung response to test toner upon 2-year inhalation exposure in rats. Exp. Pathol. 37:239–42
    [Google Scholar]
  61. 61. 
    Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM et al. 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 77:347–57
    [Google Scholar]
  62. 62. 
    Kwon S, Yang YS, Yang HS, Lee J, Kang MS et al. 2012. Nasal and pulmonary toxicity of titanium dioxide nanoparticles in rats. Toxicol. Res. 28:217–24
    [Google Scholar]
  63. 63. 
    Noël A, Charbonneau M, Cloutier Y, Tardif R, Truchon G 2013. Rat pulmonary responses to inhaled nano-TiO2: effect of primary particle size and agglomeration state. Part. Fibre Toxicol. 10:48
    [Google Scholar]
  64. 64. 
    van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L 2009. Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol. Lett. 186:152–59
    [Google Scholar]
  65. 65. 
    Takenaka S, Dornhöfer-Takenaka H, Muhle H 1986. Alveolar distribution of fly ash and of titanium dioxide after long-term inhalation by Wistar rats. J. Aerosol Sci. 17:361–64
    [Google Scholar]
  66. 66. 
    Yu KN, Sung JH, Lee S, Kim JE, Kim S et al. 2015. Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem. Toxicol. 85:106–13
    [Google Scholar]
  67. 67. 
    Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS 2007. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 115:397–402
    [Google Scholar]
  68. 68. 
    Lindberg HK, Falck GC, Catalan J, Koivisto AJ, Suhonen S et al. 2012. Genotoxicity of inhaled nanosized TiO2 in mice. Mutat. Res. 745:58–64
    [Google Scholar]
  69. 69. 
    Halappanavar S, Jackson P, Williams A, Jensen KA, Hougaard KS et al. 2011. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: a toxicogenomic study. Environ. Mol. Mutagen. 52:425–39
    [Google Scholar]
  70. 70. 
    Naya M, Kobayashi N, Ema M, Kasamoto S, Fukumuro M et al. 2012. In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats. Regul. Toxicol. Pharmacol 62:1–6
    [Google Scholar]
  71. 71. 
    Hashizume N, Oshima Y, Nakai M, Kobayashi T, Sasaki T et al. 2016. Categorization of nano-structured titanium dioxide according to physicochemical characteristics and pulmonary toxicity. Toxicol. Rep. 3:490–500
    [Google Scholar]
  72. 72. 
    Rehn B, Seiler F, Rehn S, Bruch J, Maier M 2003. Investigations on the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol. Appl. Pharmacol. 189:84–95
    [Google Scholar]
  73. 73. 
    Relier C, Dubreuil M, Garcìa OL, Cordelli E, Mejia J et al. 2017. Study of TiO2 P25nanoparticles genotoxicity on lung, blood, and liver cells in lung overload and non-overload conditions after repeated respiratory exposure in rats. Toxicol. Sci. 156:527–37
    [Google Scholar]
  74. 74. 
    Yoshiura Y, Izumi H, Oyabu T, Hashiba M, Kambara T et al. 2015. Pulmonary toxicity of well-dispersed titanium dioxide nanoparticles following intratracheal instillation. J. Nanopart. Res. 17:241
    [Google Scholar]
  75. 75. 
    Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J 2009. Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology 264:110–18
    [Google Scholar]
  76. 76. 
    Xu J, Futakuchi M, Iigo M, Fukamachi K, Alexander DB et al. 2010. Involvement of macrophage inflammatory protein 1α (MIP1α) in promotion of rat lung and mammary carcinogenic activity of nanoscale titanium dioxide particles administered by intra-pulmonary spraying. Carcinogenesis 31:927–35
    [Google Scholar]
  77. 77. 
    Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA 1997. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 18:423–30
    [Google Scholar]
  78. 78. 
    Numano T, Xu J, Futakuchi M, Fukamachi K, Alexander DB et al. 2014. Comparative study of toxic effects of anatase and rutile type nanosized titanium dioxide particles in vivo and in vitro. Asian Pac. J. Cancer Prev. 15:929–35
    [Google Scholar]
  79. 79. 
    Porter DW, Wu N, Hubbs AF, Mercer RR, Funk K et al. 2013. Differential mouse pulmonary dose and time course responses to titanium dioxide nanospheres and nanobelts. Toxicol. Sci. 131:179–93
    [Google Scholar]
  80. 80. 
    Wallin H, Kyjovska ZO, Poulsen SS, Jacobsen NR, Saber AT et al. 2017. Surface modification does not influence the genotoxic and inflammatory effects of TiO2 nanoparticles after pulmonary exposure by instillation in mice. Mutagenesis 32:47–57
    [Google Scholar]
  81. 81. 
    Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M et al. 2017. Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis 32:6581–97
    [Google Scholar]
  82. 82. 
    Modrzynska J, Berthing T, Ravn-Haren G, Jacobsen NR, Weydahl IK et al. 2018. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Part. Fibre Toxicol. 15:2
    [Google Scholar]
  83. 83. 
    Rahman L, Wu D, Johnston M, William A, Halappanavar S 2017. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses. Mutagenesis 32:59–76
    [Google Scholar]
  84. 84. 
    Park EJ, Yoon J, Choi K, Yi J, Park K 2009. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260:37–46
    [Google Scholar]
  85. 85. 
    Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J et al. 2010. Testing metal-oxide nanomaterials for human safety. Adv. Mater. 22:2601–27
    [Google Scholar]
  86. 86. 
    Landsiedel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K et al. 2010. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4:364–81
    [Google Scholar]
  87. 87. 
    Pott F, Roller M. 2005. Carcinogenicity study with nineteen granular dusts in rats. Eur. J. Oncol. 10:249–81
    [Google Scholar]
  88. 88. 
    Ichinose T, Yamanushi T, Seto H, Sagai M 1997. Oxygen radicals in lung carcinogenesis accompanying phagocytosis of diesel exhaust particles. Int. J. Oncol. 11:571–75
    [Google Scholar]
  89. 89. 
    Nikula KJ, Avila KJ, Griffith WC, Mauderly JL 1997. Lung tissue responses and sites of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust. Fund. Appl. Toxicol. 37:37–53
    [Google Scholar]
  90. 90. 
    Nikula KJ, Vallyathan V, Green FH, Hahn FF 2001. Influence of exposure concentration or dose on the distribution of particulate material in rat and human lungs. Environ. Health Perspect. 109:311–18
    [Google Scholar]
  91. 91. 
    Kuempel ED, O'Flaherty EJ, Stayner LT, Smith RJ, Green FH, Vallyathan V 2001. A biomathematical model of particle clearance and retention in the lungs of coal miners. Regul. Toxicol. Pharmacol. 34:69–87
    [Google Scholar]
  92. 92. 
    Gregoratto D, Bailey MR, Marsh JW 2010. Modelling particle retention in the alveolar-interstitial region of the human lungs. J. Radiol. Prot. 30:491–512
    [Google Scholar]
  93. 93. 
    Mercer RR, Crapo JD. 1988. Structure of the gas exchange region of the lungs determined by the three dimensional reconstruction. Toxicology of the Lung DE Gardner, JD Crapo, EJ Massaro 43–70 New York: Raven Press
    [Google Scholar]
  94. 94. 
    Kapanci Y, Weibel ER, Kaplan HP, Robinson FR 1969. Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab. Investig. 20:101–18
    [Google Scholar]
  95. 95. 
    Tyler WS, Julian MD. 1992. Gross and subgross anatomy of lungs, pleura, connective tissue septa, distal airways, and structural units. Comparative Biology of the Normal Lung RA Parent 37–48 Boca Raton, FL: CRC Press
    [Google Scholar]
  96. 96. 
    Pauluhn J. 2014. Derivation of occupational exposure levels (OELs) of low-toxicity isometric biopersistent particles: How can the kinetic lung overload paradigm be used for improved inhalation toxicity study design and OEL-derivation?. Part. Fibre Toxicol. 11:72
    [Google Scholar]
  97. 97. 
    Morfeld P, Bruch J, Levy L, Ngiewih Y, Chaudhuri I et al. 2015. Translational toxicology in setting occupational exposure limits for dusts and hazard classification—a critical evaluation of a recent approach to translate dust overload findings from rats to humans. Part. Fibre Toxicol. 12:3
    [Google Scholar]
  98. 98. 
    Boffetta P, Gaborieau V, Nadon L, Parent ME, Weiderpass E, Siemiatycki J 2001. Exposure to titanium dioxide and risk of lung cancer in a population-based study from Montreal. Scand. J. Work Environ. Health 27:227–32
    [Google Scholar]
  99. 99. 
    Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A et al. 2004. Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 15:697–706
    [Google Scholar]
  100. 100. 
    Chen JL, Fayerweather WE. 1988. Epidemiologic study of workers exposed to titanium dioxide. J. Occup. Med. 30:937–42
    [Google Scholar]
  101. 101. 
    Fayerweather WE, Karns ME, Gilby PG, Chen JL 1992. Epidemiologic study of lung cancer mortality in workers exposed to titanium tetrachloride. J. Occup. Med. 34:164–69
    [Google Scholar]
  102. 102. 
    Fryzek JP, Chadda B, Marano D, White K, Schweitzer S et al. 2003. A cohort mortality study among titanium dioxide manufacturing workers in the United States. J. Occup. Environ. Med. 45:400–9
    [Google Scholar]
  103. 103. 
    Siemiatycki J. 1991. Risk Factors for Cancer in the Workplace Boca Raton, FL: CRC Press
  104. 104. 
    Ellis ED, Watkins J, Tankersley W, Phillips J, Girardi D 2010. Mortality among titanium dioxide workers at three DuPont plants. J. Occup. Environ. Med. 52:303–9
    [Google Scholar]
  105. 105. 
    Ellis ED, Watkins JP, Tankersley WG, Phillips JA, Girardi DJ 2013. Occupational exposure and mortality among workers at three titanium dioxide plants. Am. J. Ind. Med. 56:282–91
    [Google Scholar]
  106. 106. 
    Pelclova D, Zdimal V, Kacer P, Zikova N, Komarc M et al. 2017. Markers of lipid oxidative damage in the exhaled breath condensate of nano TiO2 production workers. Nanotoxicology 11:52–63
    [Google Scholar]
  107. 107. 
    Kreyling WG, Holzwarth U, Schleh C, Kozempel J, Wenk A et al. 2017. Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology 11:443–53
    [Google Scholar]
  108. 108. 
    Powell JJ, Faria N, Thomas-McKay E, Pele LC 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34:J226–33
    [Google Scholar]
  109. 109. 
    Wang Y, Chen Z, Ba T, Pu J, Chen T et al. 2013. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 9:1742–52
    [Google Scholar]
  110. 110. 
    Hu H, Li L, Guo Q, Zong H, Yan Y et al. 2018. RNA sequencing analysis shows that titanium dioxide nanoparticles induce endoplasmic reticulum stress, which has a central role in mediating plasma glucose in mice. Nanotoxicology 12:341–56
    [Google Scholar]
  111. 111. 
    da Cunha Martins A Jr, Ferreira Azevedo L, de Souza Rocha CC, Hornos Carneiro MF, Venancio VP et al. 2017. Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. J. Toxicol. Environ. Health. A 80:1156–65
    [Google Scholar]
  112. 112. 
    Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–89
    [Google Scholar]
  113. 113. 
    Grissa I, Elghoul J, Ezzi L, Chakroun S, Kerkeni E et al. 2015. Anemia and genotoxicity induced by sub-chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 794:25–31
    [Google Scholar]
  114. 114. 
    Sycheva LP, Zhurkov VS, Iurchenko VV, Daugel-Dauge NO, Kovalenko MA et al. 2011. Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat. Res. 726:8–14
    [Google Scholar]
  115. 115. 
    Chen T, Yan J, Li Y 2014. Genotoxicity of titanium dioxide nanoparticles. J. Food Drug Anal. 22:95–104
    [Google Scholar]
  116. 116. 
    Shukla RK, Kumar A, Vallabani NVS, Pandey AK, Dhawan A 2014. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomed. Nanotechnol. Biol. Med. 9:1423–34
    [Google Scholar]
  117. 117. 
    Shi Z, Niu Y, Wang Q, Shi L, Guo H et al. 2015. Reduction of DNA damage induced by titanium dioxide nanoparticles through Nrf2 in vitro and in vivo. J. Hazard. Mater. 298:310–19
    [Google Scholar]
  118. 118. 
    van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE et al. 2014. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part. Fibre Toxicol. 11:8
    [Google Scholar]
  119. 119. 
    Kararli TT. 1995. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16:351–80
    [Google Scholar]
  120. 120. 
    Cornes JS. 1965. Number, size, and distribution of Peyer's patches in the human small intestine: Part I—the development of Peyer's patches. Gut 6:225–29
    [Google Scholar]
  121. 121. 
    Powell JJ, Ainley CC, Harvey RS, Mason IM, Kendall MD et al. 1996. Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue. Gut 38:390–95
    [Google Scholar]
  122. 122. 
    Wijnands MV, van Erk MJ, Doornbos RP, Krul CA, Woutersen RA 2004. Do aberrant crypt foci have predictive value for the occurrence of colorectal tumours? Potential of gene expression profiling in tumours. Food Chem. Toxicol. 42:1629–39
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-101419-100049
Loading
/content/journals/10.1146/annurev-pharmtox-101419-100049
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error