1932

Abstract

In December 2019, a novel coronavirus crossed species barriers to infect humans and was effectively transmitted from person to person, leading to a worldwide pandemic. Development of effective clinical interventions, including vaccines and antiviral drugs that could prevent or limit theburden or transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health priority. It is thus of utmost importance to assess possible therapeutic strategies against SARS-CoV-2 using experimental models that recapitulate aspects of the human disease. Here, we review available models currently being developed and used to study SARS-CoV-2 infection and highlight their application to screen potential therapeutic approaches, including repurposed antiviral drugs and vaccines. Each identified model provides a valuable insight into SARS-CoV-2 cellular tropism, replication kinetics, and cell damage that could ultimately enhance understanding of SARS-CoV-2 pathogenesis and protective immunity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-121120-012309
2022-01-06
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-121120-012309.html?itemId=/content/journals/10.1146/annurev-pharmtox-121120-012309&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Huang C, Wang Y, Li X, Ren L, Zhao J et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506
    [Google Scholar]
  2. 2. 
    Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–73
    [Google Scholar]
  3. 3. 
    Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–80.e8
    [Google Scholar]
  4. 4. 
    Leitner T, Kumar S. 2020. Where did SARS-CoV-2 come from?. Mol. Biol. Evol. 37:2463–64
    [Google Scholar]
  5. 5. 
    Salehi MS, Pandamooz S, Jurek B. 2020. Epidermal neural crest stem cells as a perspective for COVID-19 treatment. Stem. Cell Rev. Rep. https://doi.org/10.1007/s12015-020-10028-3
    [Crossref] [Google Scholar]
  6. 6. 
    Sungnak W, Huang N, Becavin C, Berg M, Queen R et al. 2020. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26:681–87
    [Google Scholar]
  7. 7. 
    Pizzorno A, Padey B, Julien T, Trouillet-Assant S, Traversier A et al. 2020. Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia. Cell Rep. Med. 1:100059
    [Google Scholar]
  8. 8. 
    Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ et al. 2020. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med. 12:eabb5883
    [Google Scholar]
  9. 9. 
    Mulay A, Konda B, Garcia G Jr., Yao C, Beil S et al. 2020. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. bioRxiv 2020.06.29.174623. https://doi.org/10.1101/2020.06.29.174623
    [Crossref]
  10. 10. 
    Hao S, Ning K, Kuz CA, Vorhies K, Yan Z, Qiu J 2020. Long-term modeling of SARS-CoV-2 infection of in vitro cultured polarized human airway epithelium. mBio 11:6e02852-20
    [Google Scholar]
  11. 11. 
    Liu X, Wu Y, Rong L. 2020. Conditionally reprogrammed human normal airway epithelial cells at ALI: a physiological model for emerging viruses. Virol. Sin. 35:280–89
    [Google Scholar]
  12. 12. 
    Leist SR, Schäfer A, Martinez DR. 2020. Cell and animal models of SARS-CoV-2 pathogenesis and immunity. Dis. Model. Mech. 13:dmm046581
    [Google Scholar]
  13. 13. 
    Matsuyama S, Nao N, Shirato K, Kawase M, Saito S et al. 2020. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. PNAS 117:7001–3
    [Google Scholar]
  14. 14. 
    Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, Limpens R, van der Meer Y et al. 2020. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. 101:925–40
    [Google Scholar]
  15. 15. 
    Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK et al. 2020. Severe acute respiratory syndrome coronavirus 2 from patient with coronavirus disease, United States. Emerg. Infect. Dis. 26:1266–73
    [Google Scholar]
  16. 16. 
    Ellinger B, Bojkova D, Zaliani A, Cinatl J, Claussen C et al. 2020. Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection. Res. Sq. 23951. https://www.researchsquare.com/article/rs-23951/v1
  17. 17. 
    Bojkova D, Klann K, Koch B, Widera M, Krause D et al. 2020. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 583:469–72
    [Google Scholar]
  18. 18. 
    Banerjee A, Nasir JA, Budylowski P, Yip L, Aftanas P et al. 2020. Isolation, sequence, infectivity, and replication kinetics of severe acute respiratory syndrome Coronavirus 2. Emerg. Infect. Dis. 26:2054–63
    [Google Scholar]
  19. 19. 
    Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H et al. 2020. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585:588–90
    [Google Scholar]
  20. 20. 
    Ou X, Liu Y, Lei X, Li P, Mi D et al. 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11:1620
    [Google Scholar]
  21. 21. 
    Chu H, Chan JF-W, Yuen TT-T, Shuai H, Yuan S et al. 2020. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe 1:e14–23
    [Google Scholar]
  22. 22. 
    Cagno V. 2020. SARS-CoV-2 cellular tropism. Lancet Microbe 1:e2–3
    [Google Scholar]
  23. 23. 
    Ma-Lauer Y, Carbajo-Lozoya J, Hein MY, Müller MA, Deng W et al. 2016. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. PNAS 113:E5192–201
    [Google Scholar]
  24. 24. 
    Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P et al. 2020. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell 27:125–36.e7
    [Google Scholar]
  25. 25. 
    Surendran H, Nandakumar S, Pal R. 2020. Human induced pluripotent stem cell-derived lung epithelial system for SARS-CoV-2 infection modeling and its potential in drug repurposing. Stem Cells Dev 29:211365–69
    [Google Scholar]
  26. 26. 
    Huang J, Hume AJ, Abo KM, Werder RB, Villacorta-Martin C et al. 2020. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell 27:962–73.e7
    [Google Scholar]
  27. 27. 
    Abo KM, Ma L, Matte T, Huang J, Alysandratos KD et al. 2020. Human iPSC-derived alveolar and airway epithelial cells can be cultured at air-liquid interface and express SARS-CoV-2 host factors. bioRxiv 2020.06.03.132639. https://doi.org/10.1101/2020.06.03.132639
    [Crossref]
  28. 28. 
    Duan F, Guo L, Yang L, Han Y, Thakur A et al. 2020. Modeling COVID-19 with human pluripotent stem cell-derived cells reveals synergistic effects of anti-inflammatory macrophages with ACE2 inhibition against SARS-CoV-2. Res. Sq. 62758. https://www.researchsquare.com/article/rs-62758/v1
  29. 29. 
    Bojkova D, Wagner JUG, Shumliakivska M, Aslan GS, Saleem U et al. 2020. SARS-CoV-2 infects and induces cytotoxic effects in human cardiomyocytes. Cardiovasc. Res. 116:142207–15
    [Google Scholar]
  30. 30. 
    Sharma A, Garcia G Jr., Wang Y, Plummer JT, Morizono K et al. 2020. Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection. Cell Rep. Med. 1:100052
    [Google Scholar]
  31. 31. 
    Pérez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA et al. 2020. SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients. bioRxiv 2020.08.25.265561. https://www.biorxiv.org/content/10.1101/2020.08.25.265561v2
  32. 32. 
    Mao L, Jin H, Wang M, Hu Y, Chen S et al. 2020. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 77:683–90
    [Google Scholar]
  33. 33. 
    Mao X-Y, Jin W-L. 2020. iPSCs-derived platform: a feasible tool for probing the neurotropism of SARS-CoV-2. ACS Chem. Neurosci. 11:2489–91
    [Google Scholar]
  34. 34. 
    Zhang B-Z, Chu H, Han S, Shuai H, Deng J et al. 2020. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 30:928–31
    [Google Scholar]
  35. 35. 
    Jacob F, Pather SR, Huang W-K, Zhang F, Wong SZH et al. 2020. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell 27:6937–50.e9
    [Google Scholar]
  36. 36. 
    Kim J, Koo B-K, Knoblich JA. 2020. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21:571–84
    [Google Scholar]
  37. 37. 
    Clevers H. 2020. COVID-19: organoids go viral. Nat. Rev. Mol. Cell Biol. 21:355–56
    [Google Scholar]
  38. 38. 
    Mallapaty S. 2020. Mini organs reveal how the coronavirus ravages the body. Nature 583:15–16
    [Google Scholar]
  39. 39. 
    Elbadawi M, Efferth T. 2020. Organoids of human airways to study infectivity and cytopathy of SARS-CoV-2. Lancet Respir. Med. 8:E55–56
    [Google Scholar]
  40. 40. 
    Bose B. 2020. Induced pluripotent stem cells (iPSCs) derived 3D human lung organoids from different ethnicities to understand the SARS-CoV2 severity/infectivity percentage. Stem. Cell Rev. Rep 17:293–95
    [Google Scholar]
  41. 41. 
    Han Y, Duan X, Yang L, Nilsson-Payant BE, Wang P et al. 2020. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589:270–75
    [Google Scholar]
  42. 42. 
    Suzuki T, Itoh Y, Sakai Y, Saito A, Okuzaki D et al. 2020. Generation of human bronchial organoids for SARS-CoV-2 research. bioRxiv 2020.05.25.115600. https://www.biorxiv.org/content/10.1101/2020.05.25.115600v2
  43. 43. 
    Gu H, Yuan G. 2020. Identification of potential key genes for SARS-CoV-2 infected human bronchial organoids based on bioinformatics analysis. bioRxiv 2020.08.18.256735. https://www.biorxiv.org/content/10.1101/2020.08.18.256735v2
  44. 44. 
    Kim HK, Kim H, Lee MK, Choi WH, Jang Y et al. 2020. Generation of tonsil organoids as an ex vivo model for SARS-CoV-2 infection. bioRxiv 2020.08.06.239574. https://www.biorxiv.org/content/10.1101/2020.08.06.239574v1
  45. 45. 
    Dickson I. 2020. Organoids demonstrate gut infection by SARS-CoV-2. Nat. Rev. Gastroenterol. Hepatol. 17:383
    [Google Scholar]
  46. 46. 
    Zhang H, Kang Z, Gong H, Xu D, Wang J et al. 2020. Digestive system is a potential route of COVID-19: an analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut 69:1010–18
    [Google Scholar]
  47. 47. 
    Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J et al. 2020. SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54
    [Google Scholar]
  48. 48. 
    Zhou J, Li C, Liu X, Chiu MC, Zhao X et al. 2020. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 26:1077–83
    [Google Scholar]
  49. 49. 
    Stanifer ML, Kee C, Cortese M, Zumaran CM, Triana S et al. 2020. Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep 32:107863
    [Google Scholar]
  50. 50. 
    Xu L, Liu J, Lu M, Yang D, Zheng X 2020. Liver injury during highly pathogenic human coronavirus infections. Liver Int 40:998–1004
    [Google Scholar]
  51. 51. 
    Fan Z, Chen L, Li J, Cheng X, Yang J et al. 2020. Clinical features of COVID-19-related liver functional abnormality. Clin. Gastroenterol. Hepatol. 18:1561–66
    [Google Scholar]
  52. 52. 
    Qi F, Qian S, Zhang S, Zhang Z. 2020. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 526:135–40
    [Google Scholar]
  53. 53. 
    Chai X, Hu L, Zhang Y, Han W, Lu Z et al. 2020. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv 2020.02.03.931766. https://www.biorxiv.org/content/10.1101/2020.02.03.931766v1
  54. 54. 
    Zhao B, Ni C, Gao R, Wang Y, Yang L et al. 2020. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell 11:771–75
    [Google Scholar]
  55. 55. 
    Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA et al. 2020. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181:905–13.e7
    [Google Scholar]
  56. 56. 
    Iadecola C, Anrather J, Kamel H. 2020. Effects of COVID-19 on the nervous system. Cell 183:16–27
    [Google Scholar]
  57. 57. 
    Bullen CK, Hogberg HT, Bahadirli-Talbott A, Bishai WR, Hartung T et al. 2020. Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2. Altex 37:665–71
    [Google Scholar]
  58. 58. 
    Yi SA, Nam KH, Yun J, Gim D, Joe D et al. 2020. Infection of brain organoids and 2D cortical neurons with SARS-CoV-2 pseudovirus. Viruses 12:1004
    [Google Scholar]
  59. 59. 
    Song E, Zhang C, Israelow B, Lu-Culligan A, Vieites Prado A et al. 2020. Neuroinvasion of SARS-CoV-2 in human and mouse brain. bioRxiv 2020.06.25.169946. https://www.biorxiv.org/content/10.1101/2020.06.25.169946v2
  60. 60. 
    Ramani A, Müller L, Ostermann PN, Gabriel E, Abida-Islam P et al. 2020. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 39:e106230
    [Google Scholar]
  61. 61. 
    Tang H, Abouleila Y, Si L, Ortega-Prieto AM, Mummery CL et al. 2020. Human organs-on-chips for virology. Trends Microbiol 28:934–46
    [Google Scholar]
  62. 62. 
    Si L, Bai H, Rodas M, Cao W, Oh CY et al. 2020. Human organ chip-enabled pipeline to rapidly repurpose therapeutics during viral pandemics. bioRxiv 2020.04.13.039917. https://www.biorxiv.org/content/10.1101/2020.04.13.039917v3
  63. 63. 
    Thacker V, Sharma K, Dhar N, Mancini G-F, Sordet-Dessimoz J, McKinney JD. 2020. Rapid endothelial infection, endothelialitis and vascular damage characterise SARS-CoV-2 infection in a human lung-on-chip model. bioRxiv 2020.08.10.243220. https://www.biorxiv.org/content/10.1101/2020.08.10.243220v2
  64. 64. 
    Zhang M, Wang P, Luo R, Wang Y, Li Z et al. 2020. Biomimetic human disease model of SARS-CoV-2 induced lung injury and immune responses on organ chip system. Adv. Sci 8:2002928
    [Google Scholar]
  65. 65. 
    Guo Y, Luo R, Wang Y, Deng P, Zhang M et al. 2020. Modeling SARS-CoV-2 infection in vitro with a human intestine-on-chip device. bioRxiv 2020.09.01.277780. https://www.biorxiv.org/content/10.1101/2020.09.01.277780v1
  66. 66. 
    Grivel J-C, Margolis L. 2009. Use of human tissue explants to study human infectious agents. Nat. Protoc. 4:256–69
    [Google Scholar]
  67. 67. 
    Pandamooz S, Nabiuni M, Miyan J, Ahmadiani A, Dargahi L. 2016. Organotypic spinal cord culture: a proper platform for the functional screening. Mol. Neurobiol. 53:4659–74
    [Google Scholar]
  68. 68. 
    Chu H, Chan JF-W, Wang Y, Yuen TT-T, Chai Y et al. 2020. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin. Infect. Dis. 71:1400–9
    [Google Scholar]
  69. 69. 
    Ravindra NG, Alfajaro MM, Gasque V, Habet V, Wei J et al. 2020. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium. bioRxiv 2020.05.06.081695. https://www.biorxiv.org/content/10.1101/2020.05.06.081695v2
  70. 70. 
    Hui KPY, Cheung M-C, Perera RAPM, Ng K-C, Bui CHT et al. 2020. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir. Med. 8:687–95
    [Google Scholar]
  71. 71. 
    Zhu N, Wang W, Liu Z, Liang C, Wang W et al. 2020. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat. Commun. 11:3910
    [Google Scholar]
  72. 72. 
    Johansen M, Irving A, Montagutelli X, Tate M, Rudloff I et al. 2020. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol 13:877–91
    [Google Scholar]
  73. 73. 
    Singh A, Singh RS, Sarma P, Batra G, Joshi R et al. 2020. A comprehensive review of animal models for coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol. Sin. 35:290–304
    [Google Scholar]
  74. 74. 
    Neerukonda SN, Katneni U. 2020. A review on SARS-CoV-2 virology, pathophysiology, animal models, and anti-viral interventions. Pathogens 9:426
    [Google Scholar]
  75. 75. 
    Takayama K. 2020. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol. Sci. 41:513–17
    [Google Scholar]
  76. 76. 
    Letko M, Marzi A, Munster V. 2020. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5:562–69
    [Google Scholar]
  77. 77. 
    Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94:e00127–20
    [Google Scholar]
  78. 78. 
    Sun J, Zhuang Z, Zheng J, Li K, Wong RL-Y et al. 2020. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 182:734–43.e5
    [Google Scholar]
  79. 79. 
    Bao L, Deng W, Huang B, Gao H, Liu J et al. 2020. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583:830–33
    [Google Scholar]
  80. 80. 
    Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT et al. 2020. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21:1327–35
    [Google Scholar]
  81. 81. 
    Jiang R-D, Liu M-Q, Chen Y, Shan C, Zhou Y-W et al. 2020. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182:50–58
    [Google Scholar]
  82. 82. 
    Sun S-H, Chen Q, Gu H-J, Yang G, Wang Y-X et al. 2020. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28:124–33.e4
    [Google Scholar]
  83. 83. 
    Hassan AO, Case JB, Winkler ES, Thackray LB, Kafai NM et al. 2020. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182:744–53.e4
    [Google Scholar]
  84. 84. 
    Pujhari S, Rasgon JL. 2020. Mice with humanized-lungs and immune system—an idealized model for COVID-19 and other respiratory illness. Virulence 11:486–88
    [Google Scholar]
  85. 85. 
    Wahl A, De C, Fernandez MA, Lenarcic EM, Xu Y et al. 2019. Precision mouse models with expanded tropism for human pathogens. Nat. Biotechnol. 37:1163–73
    [Google Scholar]
  86. 86. 
    Mori M, Furuhashi K, Danielsson JA, Hirata Y, Kakiuchi M et al. 2019. Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nat. Med. 25:1691–98
    [Google Scholar]
  87. 87. 
    Gu H, Chen Q, Yang G, He L, Fan H et al. 2020. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369:1603–7
    [Google Scholar]
  88. 88. 
    Dinnon KH, Leist SR, Schäfer A, Edwards CE, Martinez DR et al. 2020. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586:560–66
    [Google Scholar]
  89. 89. 
    Lau SY, Wang P, Mok BW, Zhang AJ, Chu H et al. 2020. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 9:837–42
    [Google Scholar]
  90. 90. 
    Chan JF-W, Yuan S, Zhang AJ, Poon VK-M, Chan CC-S et al. 2020. Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 71:2139–49
    [Google Scholar]
  91. 91. 
    Schaecher SR, Stabenow J, Oberle C, Schriewer J, Buller RM et al. 2008. An immunosuppressed Syrian golden hamster model for SARS-CoV infection. Virology 380:312–21
    [Google Scholar]
  92. 92. 
    Chan JF-W, Zhang AJ, Yuan S, Poon VK-M, Chan CC-S et al. 2020. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71:92428–446
    [Google Scholar]
  93. 93. 
    Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ et al. 2020. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. PNAS 117:16587–95
    [Google Scholar]
  94. 94. 
    Sia SF, Yan L-M, Chin AW, Fung K, Choy K-T et al. 2020. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583:834–38
    [Google Scholar]
  95. 95. 
    Rogers TF, Zhao F, Huang D, Beutler N, Burns A et al. 2020. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369:956–63
    [Google Scholar]
  96. 96. 
    Subbarao K. 2020. SARS-CoV-2: A new song recalls an old melody. Cell Host Microbe 27:692–94
    [Google Scholar]
  97. 97. 
    Osterrieder N, Bertzbach LD, Dietert K, Abdelgawad A, Vladimirova D et al. 2020. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses 12:779
    [Google Scholar]
  98. 98. 
    Boudewijns R, Thibaut HJ, Kaptein SJF, Li R, Vergote V et al. 2020. STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat. Commun. 11:5838
    [Google Scholar]
  99. 99. 
    Suresh V, Parida D, Minz AP, Senapati S. 2020. Tissue distribution of ACE2 protein in Syrian golden hamster (Mesocricetus auratus) and its possible implications in SARS-CoV-2 related studies. bioRxiv 2020.06.29.177154. https://www.biorxiv.org/content/10.1101/2020.06.29.177154v1
  100. 100. 
    Martina BE, Haagmans BL, Kuiken T, Fouchier RA, Rimmelzwaan GF et al. 2003. SARS virus infection of cats and ferrets. Nature 425:915
    [Google Scholar]
  101. 101. 
    Chu Y-K, Ali GD, Jia F, Li Q, Kelvin D et al. 2008. The SARS-CoV ferret model in an infection–challenge study. Virology 374:151–63
    [Google Scholar]
  102. 102. 
    Shi J, Wen Z, Zhong G, Yang H, Wang C et al. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 368:1016–20
    [Google Scholar]
  103. 103. 
    Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J et al. 2020. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1:e218–25
    [Google Scholar]
  104. 104. 
    Kim Y-I, Kim S-G, Kim S-M, Kim E-H, Park S-J et al. 2020. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 27:704–9.e2
    [Google Scholar]
  105. 105. 
    Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM et al. 2020. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 11:3496
    [Google Scholar]
  106. 106. 
    Park S-J, Yu K-M, Kim Y-I, Kim S-M, Kim E-H et al. 2020. Antiviral efficacies of FDA-approved drugs against SARS-CoV-2 infection in ferrets. mBio 11:e01114-20
    [Google Scholar]
  107. 107. 
    Liu H-L, Yeh IJ, Phan NN, Wu Y-H, Yen M-C et al. 2020. Gene signatures of SARS-CoV/SARS-CoV-2-infected ferret lungs in short- and long-term models. Infect. Genet. Evol. 85:104438
    [Google Scholar]
  108. 108. 
    Santos WJ, Guiraldi LM, Lucheis SB. 2020. Should we be concerned about COVID-19 with nonhuman primates?. Am. J. Primatol. 82:e23158
    [Google Scholar]
  109. 109. 
    Rowe T, Gao G, Hogan RJ, Crystal RG, Voss TG et al. 2004. Macaque model for severe acute respiratory syndrome. J. Virol. 78:11401–4
    [Google Scholar]
  110. 110. 
    Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. 2020. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. 3:641
    [Google Scholar]
  111. 111. 
    Zhao X, Chen D, Szabla R, Zheng M, Li G et al. 2020. Broad and differential animal angiotensin-converting enzyme 2 receptor usage by SARS-CoV-2. J. Virol. 94:e00940-20
    [Google Scholar]
  112. 112. 
    Shan C, Yao Y-F, Yang X-L, Zhou Y-W, Gao G et al. 2020. Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Res 30:670–77
    [Google Scholar]
  113. 113. 
    Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L et al. 2020. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585:268–72
    [Google Scholar]
  114. 114. 
    Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP et al. 2020. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 585:273–76
    [Google Scholar]
  115. 115. 
    Deng W, Bao L, Liu J, Xiao C, Liu J et al. 2020. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 369:818–23
    [Google Scholar]
  116. 116. 
    Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB et al. 2020. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 369:812–17
    [Google Scholar]
  117. 117. 
    Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K et al. 2020. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 369:806–11
    [Google Scholar]
  118. 118. 
    van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN et al. 2020. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586:578–82
    [Google Scholar]
  119. 119. 
    Gao Q, Bao L, Mao H, Wang L, Xu K et al. 2020. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369:77–81
    [Google Scholar]
  120. 120. 
    Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A et al. 2020. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 586:583–88
    [Google Scholar]
  121. 121. 
    Cross RW, Agans KN, Prasad AN, Borisevich V, Woolsey C et al. 2020. Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase. Virol. J. 17:125
    [Google Scholar]
  122. 122. 
    Woolsey C, Borisevich V, Prasad AN, Agans KN, Deer DJ et al. 2021. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat. Immunol. 22:86–98
    [Google Scholar]
  123. 123. 
    Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel NL et al. 2020. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLOS Pathog 16:e1008903
    [Google Scholar]
  124. 124. 
    Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM et al. 2020. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368:1012–15
    [Google Scholar]
  125. 125. 
    Le Bras A 2020. SARS-CoV-2 causes COVID-19-like disease in cynomolgus macaques. Lab Anim 49:174
    [Google Scholar]
  126. 126. 
    Salguero FJ, White AD, Slack GS, Fotheringham SA, Bewley KR et al. 2020. Comparison of Rhesus and Cynomolgus macaques as an authentic model for COVID-19. bioRxiv 2020.09.17.301093. https://www.biorxiv.org/content/10.1101/2020.09.17.301093v1
  127. 127. 
    Guebre-Xabier M, Patel N, Tian J-H, Zhou B, Maciejewski S et al. 2020. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine 38:7892–96
    [Google Scholar]
  128. 128. 
    Finch CL, Crozier I, Lee JH, Byrum R, Cooper TK et al. 2020. Characteristic and quantifiable COVID-19-like abnormalities in CT- and PET/CT-imaged lungs of SARS-CoV-2-infected crab-eating macaques (Macaca fascicularis). bioRxiv 2020.05.14.096727. https://www.biorxiv.org/content/10.1101/2020.05.14.096727v1
  129. 129. 
    Lu S, Zhao Y, Yu W, Yang Y, Gao J et al. 2020. Comparison of nonhuman primates identified the suitable model for COVID-19. Signal. Transduct. Target. Ther. 5:157
    [Google Scholar]
  130. 130. 
    Machado JAT, Rocha-Neves JM, Andrade JP. 2020. Computational analysis of the SARS-CoV-2 and other viruses based on the Kolmogorov's complexity and Shannon's information theories. Nonlinear Dyn 101:1731–50
    [Google Scholar]
  131. 131. 
    Ostaszewski M, Mazein A, Gillespie ME, Kuperstein I, Niarakis A et al. 2020. COVID-19 disease map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Sci. Data 7:136
    [Google Scholar]
  132. 132. 
    Ghosh K, Amin SA, Gayen S, Jha T. 2021. Chemical-informatics approach to COVID-19 drug discovery: exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors. J. Mol. Struct. 1224:129026
    [Google Scholar]
  133. 133. 
    Bobrowski T, Alves V, Melo-Filho CC, Korn D, Auerbach SS et al. 2020. Computational models identify several FDA approved or experimental drugs as putative agents against SARS-CoV-2. ChemRxiv 12153594. https://doi.org/10.26434/chemrxiv.12153594.v1
    [Crossref]
  134. 134. 
    Wu C, Liu Y, Yang Y, Zhang P, Zhong W et al. 2020. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 10:766–88
    [Google Scholar]
  135. 135. 
    Serhani M, Labbardi H. 2021. Mathematical modeling of COVID-19 spreading with asymptomatic infected and interacting peoples. J. Appl. Math. Comput. In press. https://doi.org/10.1007/s12190-020-01421-9
    [Crossref] [Google Scholar]
  136. 136. 
    Torrealba-Rodriguez O, Conde-Gutierrez RA, Hernandez-Javier AL. 2020. Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models. Chaos Solitons Fractals 138:109946
    [Google Scholar]
  137. 137. 
    Ndairou F, Area I, Nieto JJ, Torres DFM. 2020. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 135:109846
    [Google Scholar]
  138. 138. 
    Jiang S, Li Q, Li C, Liu S, He X et al. 2020. Mathematical models for devising the optimal SARS-CoV-2 strategy for eradication in China, South Korea, and Italy. J. Transl. Med. 18:345
    [Google Scholar]
  139. 139. 
    Simonis A, Theobald SJ, Fatkenheuer G, Rybniker J, Malin JJ. 2020. A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2. EMBO Mol. Med. 13:e13105
    [Google Scholar]
  140. 140. 
    Grobler JA, Anderson AS, Fernandes P, Diamond MS, Colvis CM et al. 2020. Accelerated preclinical paths to support rapid development of COVID-19 therapeutics. Cell Host Microbe 28:638–45
    [Google Scholar]
  141. 141. 
    Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS et al. 2020. Remdesivir for the treatment of Covid-19—final report. N. Engl. J. Med. 383:1813–26
    [Google Scholar]
  142. 142. 
    WHO Solidarity Trial Consort 2020. Repurposed antiviral drugs for Covid-19—interim WHO solidarity trial results. N. Engl. J. Med. 2020:NEJMoa2023184
    [Google Scholar]
  143. 143. 
    Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV et al. 2020. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182:685–712.e19
    [Google Scholar]
  144. 144. 
    Cauchois R, Koubi M, Delarbre D, Manet C, Carvelli J et al. 2020. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. PNAS 117:18951–53
    [Google Scholar]
  145. 145. 
    Guillen L, Padilla S, Fernandez M, Agullo V, Garcia JA et al. 2020. Preemptive interleukin-6 blockade in patients with COVID-19. Sci. Rep. 10:16826
    [Google Scholar]
  146. 146. 
    RECOVERY Collab. Group 2020. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N. Engl. J. Med. 2020:NEJMoa2021436
    [Google Scholar]
  147. 147. 
    Hewitt JA, Lutz C, Florence WC, Pitt MLM, Rao S et al. 2020. ACTIVating resources for the COVID-19 pandemic: in vivo models for vaccines and therapeutics. Cell Host Microbe 28:646–59
    [Google Scholar]
  148. 148. 
    WHO (World Health Organ.) 2020. DRAFT landscape of COVID-19 candidate vaccines Database, WHO Geneva: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
    [Google Scholar]
  149. 149. 
    Wang M, Cao R, Zhang L, Yang X, Liu J et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269–71
    [Google Scholar]
  150. 150. 
    Hoffmann M, Schroeder S, Kleine-Weber H, Muller MA, Drosten C, Pohlmann S. 2020. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob. Agents Chemother. 64:6e00754-20
    [Google Scholar]
  151. 151. 
    Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M et al. 2020. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 12:629
    [Google Scholar]
  152. 152. 
    Pizzorno A, Padey B, Dubois J, Julien T, Traversier A et al. 2020. In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res 181:104878
    [Google Scholar]
  153. 153. 
    Touret F, Gilles M, Barral K, Nougairede A, van Helden J et al. 2020. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci. Rep. 10:13093
    [Google Scholar]
  154. 154. 
    Wang X, Cao R, Zhang H, Liu J, Xu M et al. 2020. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 6:28
    [Google Scholar]
  155. 155. 
    Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D et al. 2020. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 178:104786
    [Google Scholar]
  156. 156. 
    Kang CK, Seong MW, Choi SJ, Kim TS, Choe PG et al. 2020. In vitro activity of lopinavir/ritonavir and hydroxychloroquine against severe acute respiratory syndrome coronavirus 2 at concentrations achievable by usual doses. Korean J. Intern. Med. 35:782–87
    [Google Scholar]
  157. 157. 
    Zhang L, Liu J, Cao R, Xu M, Wu Y et al. 2020. Comparative antiviral efficacy of viral protease inhibitors against the novel SARS-CoV-2 in vitro. Virol. Sin. 35:776–84
    [Google Scholar]
  158. 158. 
    Shannon A, Selisko B, Le NT, Huchting J, Touret F et al. 2020. Rapid incorporation of favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat. Commun. 11:4682
    [Google Scholar]
  159. 159. 
    Kaptein SJF, Jacobs S, Langendries L, Seldeslachts L, Ter Horst S et al. 2020. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. PNAS 117:26955–65
    [Google Scholar]
  160. 160. 
    Pruijssers AJ, George AS, Schafer A, Leist SR, Gralinksi LE et al. 2020. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Rep 32:107940
    [Google Scholar]
  161. 161. 
    Yao X, Ye F, Zhang M, Cui C, Huang B et al. 2020. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 71:732–39
    [Google Scholar]
  162. 162. 
    Liu J, Cao R, Xu M, Wang X, Zhang H et al. 2020. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6:16
    [Google Scholar]
  163. 163. 
    Andreani J, Le Bideau M, Duflot I, Jardot P, Rolland C et al. 2020. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb. Pathog. 145:104228
    [Google Scholar]
  164. 164. 
    Maisonnasse P, Guedj J, Contreras V, Behillil S, Solas C et al. 2020. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 585:584–87
    [Google Scholar]
  165. 165. 
    Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C et al. 2020. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis 11:656
    [Google Scholar]
  166. 166. 
    Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM et al. 2020. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 586:594–99
    [Google Scholar]
  167. 167. 
    Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A et al. 2020. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586:589–93
    [Google Scholar]
  168. 168. 
    Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S et al. 2020. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N. Engl. J. Med. 383:1544–55
    [Google Scholar]
  169. 169. 
    Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M et al. 2020. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. 383:1920–31
    [Google Scholar]
  170. 170. 
    Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC et al. 2020. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med. 383:2427–38
    [Google Scholar]
  171. 171. 
    Zhang Y, Zeng G, Pan H, Li C, Hu Y et al. 2020. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21:139–51
    [Google Scholar]
  172. 172. 
    Keech C, Albert G, Cho I, Robertson A, Reed P et al. 2020. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. 383:2320–32
    [Google Scholar]
  173. 173. 
    Graham SP, McLean RK, Spencer AJ, Belij-Rammerstorfer S, Wright D et al. 2020. Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. NPJ Vaccines 5:69
    [Google Scholar]
  174. 174. 
    Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM et al. 2020. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397:1026999–111
    [Google Scholar]
  175. 175. 
    Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM et al. 2020. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 396:1979–93
    [Google Scholar]
  176. 176. 
    Tostanoski LH, Wegmann F, Martinot AJ, Loos C, McMahan K et al. 2020. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat. Med. 26:1694–700
    [Google Scholar]
  177. 177. 
    Bos R, Rutten L, van der Lubbe JEM, Bakkers MJG, Hardenberg G et al. 2020. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines 5:91
    [Google Scholar]
  178. 178. 
    Zhu FC, Guan XH, Li YH, Huang JY, Jiang T et al. 2020. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396:479–88
    [Google Scholar]
  179. 179. 
    Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ et al. 2020. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 395:1845–54
    [Google Scholar]
  180. 180. 
    Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV et al. 2020. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet 396:887–97
    [Google Scholar]
  181. 181. 
    Xia S, Duan K, Zhang Y, Zhao D, Zhang H et al. 2020. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA 324:951–60
    [Google Scholar]
  182. 182. 
    Wang H, Zhang Y, Huang B, Deng W, Quan Y et al. 2020. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182:713–21 e9
    [Google Scholar]
  183. 183. 
    Xia S, Zhang Y, Wang Y, Wang H, Yang Y et al. 2021. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 21:39–51
    [Google Scholar]
  184. 184. 
    de Souza N. 2018. Organoids. Nat. Methods 15:23
    [Google Scholar]
  185. 185. 
    Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA et al. 2020. SARS-CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39:e105114
    [Google Scholar]
  186. 186. 
    Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D et al. 2020. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181:1036–45.e9
    [Google Scholar]
  187. 187. 
    Ma D, Chen CB, Jhanji V, Xu C, Yuan XL et al. 2020. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye 34:1212–19
    [Google Scholar]
  188. 188. 
    Appelberg S, Gupta S, Svensson Akusjärvi S, Ambikan AT, Mikaeloff F et al. 2020. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg. Microbes Infect. 9:1748–60
    [Google Scholar]
  189. 189. 
    Shang J, Wan Y, Luo C, Ye G, Geng Q et al. 2020. Cell entry mechanisms of SARS-CoV-2. PNAS 117:11727–34
    [Google Scholar]
  190. 190. 
    Xia S, Liu M, Wang C, Xu W, Lan Q et al. 2020. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30:343–55
    [Google Scholar]
  191. 191. 
    Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D et al. 2020. Syncytia formation by SARS-CoV-2-infected cells. EMBO J 39:e106267
    [Google Scholar]
  192. 192. 
    Wang C, Li W, Drabek D, Okba NM, van Haperen R et al. 2020. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11:2251
    [Google Scholar]
  193. 193. 
    Mirabelli C, Wotring JW, Zhang CJ, McCarty SM, Fursmidt R et al. 2020. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. bioRxiv 2020.05.27.117184. https://www.biorxiv.org/content/10.1101/2020.05.27.117184v4
  194. 194. 
    Liu Y, Hu G, Wang Y, Zhao X, Ji F et al. 2020. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. bioRxiv 2020.04.22.046565. https://www.biorxiv.org/content/10.1101/2020.04.22.046565v4
  195. 195. 
    Vogel A, Kanevsky I, Che Y, Swanson K, Muik A et al. 2020. A prefusion SARS-CoV-2 spike RNA vaccine is highly immunogenic and prevents lung infection in non-human primates. bioRxiv 2020.09.08.280818. https://www.biorxiv.org/content/10.1101/2020.09.08.280818v1
  196. 196. 
    Ganneru B, Jogdand H, Dharam VK, Molugu NR, Prasad SD et al. 2020. Evaluation of safety and immunogenicity of an adjuvanted, TH-1 skewed, whole virion inactivated SARS-CoV-2 vaccine-BBV152. bioRxiv 2020.09.09.285445. https://www.biorxiv.org/content/10.1101/2020.09.09.285445v2
  197. 197. 
    Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B et al. 2020. Safety and immunogenicity clinical trial of an inactivated SARS-CoV-2 vaccine, BBV152 (a phase 2, double-blind, randomised controlled trial) and the persistence of immune responses from a phase 1 follow-up report. medRxiv 2020.12.21.20248643. https://www.medrxiv.org/content/10.1101/2020.12.21.20248643v1
  198. 198. 
    Mohandas S, Yadav PD, Shete A, Abraham P, Mohan K et al. 2020. Immunogenicity and protective efficacy of BBV152: a whole virion inactivated SARS CoV-2 vaccine in the Syrian hamster model. Res. Sq. 76768. https://www.researchsquare.com/article/rs-76768/v1
  199. 199. 
    Yadav P, Ella R, Kumar S, Patil D, Mohandas S et al. 2020. Remarkable immunogenicity and protective efficacy of BBV152, an inactivated SARS-CoV-2 vaccine in rhesus macaques. Res. Sq. 65715. https://www.researchsquare.com/article/rs-65715/v1
/content/journals/10.1146/annurev-pharmtox-121120-012309
Loading
/content/journals/10.1146/annurev-pharmtox-121120-012309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error