1932

Abstract

Relativistic effects can strongly influence the chemical and physical properties of heavy elements and their compounds. This influence has been noted in inorganic chemistry textbooks for a couple of decades. This review provides both traditional and new examples of these effects, including the special properties of gold, lead-acid and mercury batteries, the shapes of gold and thallium clusters, heavy-atom shifts in NMR, topological insulators, and certain specific heats.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-032511-143755
2012-05-05
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/63/1/annurev-physchem-032511-143755.html?itemId=/content/journals/10.1146/annurev-physchem-032511-143755&mimeType=html&fmt=ahah

Literature Cited

  1. Dirac PAM.1.  1929. The quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123:714–33Is the original paper for Dirac's dictum. [Google Scholar]
  2. Pyykkö P. 2.  1978. Relativistic quantum chemistry. Adv. Quantum Chem. 11:353–409Contains perhaps the first broad overview on relativity and the Periodic Table. [Google Scholar]
  3. Pitzer KS.3.  1979. Relativistic effects on chemical properties. Acc. Chem. Res. 12:271–76 [Google Scholar]
  4. Pyykkö P, Desclaux JP. 4.  1979. Relativity and the periodic system of elements. Acc. Chem. Res. 12:276–81 [Google Scholar]
  5. Pyykkö P.5.  1988. Relativistic effects in structural chemistry. Chem. Rev. 88:563–94 [Google Scholar]
  6. Pyykkö P.6.  2012. The physics behind chemistry, and the Periodic Table. Chem. Rev. 112: In press; doi: 10.1021/cr200042e [Google Scholar]
  7. Pyykkö P. 7.  2011. A suggested periodic table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13:161–68 [Google Scholar]
  8. Pyykkö P.8.  1991. Relativistic effects on periodic trends. The Effects of Relativity in Atoms, Molecules, and the Solid State S Wilson, IP Grant, BL Gyorffy 1–13 New York: Plenum [Google Scholar]
  9. Balasubramanian K.9.  1997. Relativistic Effects in Chemistry. Parts A and B New York: Wiley [Google Scholar]
  10. Kaltsoyannis N.10.  1997. Relativistic effects in inorganic and organometallic chemistry. J. Chem. Soc. Dalton Trans. 1997:1–11 [Google Scholar]
  11. Thayer JS.11.  2010. Relativistic effects and the chemistry of the heavier main group elements. See Ref. 35 63–98
  12. Moss RE.12.  1973. Advanced Molecular Quantum Mechanics: An Introduction to Relativistic Quantum Mechanics and the Quantum Theory of Radiation London: Chapman & Hall [Google Scholar]
  13. Atkins P, Friedman R. 13.  2010. Molecular Quantum Mechanics New York: Oxford Univ. Press, 5th. ed. [Google Scholar]
  14. Schwerdtfeger P.14.  1989. Relativistic effects in gold chemistry. II. The stability of complex halides of gold(III). J. Am. Chem. Soc. 111:7261–62 [Google Scholar]
  15. Jansen M.15.  2008. The chemistry of gold as an anion. Chem. Soc. Rev. 37:1826–35 [Google Scholar]
  16. Karpov A, Wedig U, Dinnebier RE, Jansen M. 16.  2005. Dibariumplatinide: (Ba2+)2Pt2−·2eand its relation to the alkaline-earth-metal subnitrides. Angew. Chem. Int. Ed. Engl. 44:770–73 [Google Scholar]
  17. Wulfsberg G. 17.  1991. Principles of Descriptive Inorganic Chemistry Sausalito, CA: Univ. Sci.Is the first inorganic chemistry textbook to adopt the relativistic explanations. [Google Scholar]
  18. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. 18.  1999. Advanced Inorganic Chemistry New York: Wiley, 6th. ed. [Google Scholar]
  19. Mackay KM, Mackay RA, Henderson W. 19.  1996. Introduction to Modern Inorganic Chemistry Cheltenham, UK: Stanley Thornes, 5th. ed. [Google Scholar]
  20. Huheey JE, Keiter EA, Keiter RL. 20.  1993. Inorganic Chemistry: Principles of Structure and Reactivity New York: Harper Collins College, 4th. ed. [Google Scholar]
  21. Norman NC.21.  1997. Periodicity and the s- and p-Block Elements New York: Oxford Univ. Press [Google Scholar]
  22. Hollemann AF, Wiberg E, Wiberg N. 22.  1995. Lehrbuch der Anorganischen Chemie, 101. Auflage Berlin: W. de Gruyter [Google Scholar]
  23. Greenwood NN, Earnshaw A. 23.  1997. Chemistry of the Elements Oxford: Butterworth Heinemann, 2nd. ed. [Google Scholar]
  24. Mingos DMP. 24.  1998. Essential Trends in Inorganic Chemistry New York: Oxford Univ. Press [Google Scholar]
  25. Lindgren I.25.  2011. Relativistic Many-Body Theory: A New Field-Theoretical Approach New York: Springer365 [Google Scholar]
  26. Schwarz WHE, van Wezenbeek EM, Baerends EJ, Snijders JG. 26.  1989. The origin of relativistic effects of atomic orbitals. J. Phys. B 22:1515–30 [Google Scholar]
  27. Dehmer JL.27.  1973. Phase-amplitude method in atomic physics. II. Z dependence of spin-orbit coupling. Phys. Rev. A 7:4–9 [Google Scholar]
  28. Schwerdtfeger P. 28.  2002. Relativistic Electronic Structure Theory. Part I: Fundamentals. Theoret. Comput. Chem. Vol. 11 Amsterdam: Elsevier926 [Google Scholar]
  29. Schwerdtfeger P. 29.  2004. Relativistic Electronic Structure Theory. Part 2: Applications Theoret. Comput. Chem. Vol. 14 Amsterdam: Elsevier787 [Google Scholar]
  30. Hess BA. 30.  2003. Relativistic Effects in Heavy-Element Chemistry and Physics New York: Wiley307 [Google Scholar]
  31. Hirao K, Ishikawa Y. 31.  2004. Recent Advances in Relativistic Molecular Theory. Singapore: World Sci327 [Google Scholar]
  32. Dyall KG, Faegri K Jr. 32.  2007. Introduction to Relativistic Quantum Chemistry New York: Oxford Univ. Press544 [Google Scholar]
  33. Grant IP. 33.  2007. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation New York: Springer797 [Google Scholar]
  34. Reiher M, Wolf A. 34.  2009. Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science Weinheim: Wiley-VCH669 [Google Scholar]
  35. Barysz M, Ishikawa Y. 35.  2010. Relativistic Methods for Chemists New York: Springer [Google Scholar]
  36. Liu WJ. 36.  2010. Ideas of relativistic quantum chemistry. Mol. Phys. 108:1679–706 [Google Scholar]
  37. Dolg M, Cao XY. 37.  2012. Relativistic pseudopotentials: their development and scope of applications. Chem. Rev. In press; doi: 10.1021/cr2001383 [Google Scholar]
  38. Schwerdtfeger P.38.  2011. The pseudopotential approximation in electronic structure theory. ChemPhysChem. In press; doi: 10.1002/cphc201100387 [Google Scholar]
  39. Romaniello P, de Boeij PL. 39.  2005. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory. J. Chem. Phys. 122:164303 [Google Scholar]
  40. Romaniello P, de Boeij PL. 40.  2007. Relativistic two-component formulation of time-dependent current-density functional theory: application to the linear response of solids. J. Chem. Phys. 127:174111 [Google Scholar]
  41. Glantschnig K, Ambrosch-Draxl C. 41.  2010. Relativistic effects on the linear optical properties of Au, Pt, Pb and W. New J. Phys. 12:103048 [Google Scholar]
  42. El-Issa BD, Pyykkö P, Zanati HM. 42.  1991. MS Xα studies on the colors of BiPh5, PbCl2−6, and WS2−4: Are relativistic effects on the LUMO important?. Inorg. Chem. 30:2781–87 [Google Scholar]
  43. Goidenko I, Labzowsky L, Eliav E, Kaldor U, Pyykkö P. 43.  2003. QED corrections to the binding energy of the eka-radon (Z = 118) negative ion. Phys. Rev. A 67:020102 [Google Scholar]
  44. Autschbach J, Siekierski S, Seth M, Schwerdtfeger P, Schwarz WHE. 44.  2002. Dependence of relativistic effects on electronic configuration in the neutral atoms of d- and f-block elements. J. Comp. Chem. 23:804–13 [Google Scholar]
  45. Rose SJ, Grant IP, Pyper NC. 45.  1978. The direct and indirect effects in the relativistic modification of atomic valence orbitals. J. Phys. B 11:1171–76 [Google Scholar]
  46. Wang XF, Andrews L, Riedel S, Kaupp M. 46.  2007. Mercury is a transition metal: the first experimental evidence for HgF4. Angew. Chem. Int. Ed. Engl. 46:8371–75 [Google Scholar]
  47. Gong Y, Zhou MF, Kaupp M, Riedel S. 47.  2009. Formation and characterization of the iridium tetroxide molecule with iridium in the oxidation state +VIII. Angew. Chem. Int. Ed. Engl. 48:7879–83 [Google Scholar]
  48. Himmel D, Knapp C, Patzschke M, Riedel S. 48.  2010. How far can we go? Quantum-chemical investigations of oxidation state +IX. ChemPhysChem 11:865–69 [Google Scholar]
  49. Pyykkö P, Runeberg N, Straka M, Dyall KG. 49.  2000. Could uranium(XII)hexoxide UO6 (Oh) exist?. Chem. Phys. Lett. 328:415–19 [Google Scholar]
  50. Xiao H, Hu HS, Schwarz WHE, Li J. 50.  2010. Theoretical investigations of geometry, electronic structure and stability of UO6: octahedral uranium hexoxide and its isomers. J. Phys. Chem. A 114:8837–44 [Google Scholar]
  51. Riedel S, Kaupp M. 51.  2009. The highest oxidation states of the transition metal elements. Coord. Chem. Rev. 253:606–24 [Google Scholar]
  52. Craciun R, Picone D, Long RT, Li SG, Dixon DA. 52.  et al. 2010. Third row transition metal hexafluorides, extraordinary oxidizers, and Lewis acids: electron affinities, fluoride affinities, and heats of formation of WF6, ReF6, OsF6, IrF6, PtF6, and AuF6. Inorg. Chem. 49:1056–70 [Google Scholar]
  53. Kaupp M, Bühl M, Malkin VG. 53.  2004. Calculation of NMR and EPR Parameters: Theory and Applications Weinheim: Wiley-VCH [Google Scholar]
  54. Pyykkö P, Pajanne E, Inokuti M. 54.  1973. Hydrogen-like relativistic corrections for electric and magnetic hyperfine integrals. Int. J. Quantum Chem. 7:785–806 [Google Scholar]
  55. Pyykkö P, Wiesenfeld L. 55.  1981. Relativistically parameterized extended Hückel calculations. IV. Nuclear spin-spin coupling tensors for main group elements. Mol. Phys. 43:557–80 [Google Scholar]
  56. Zheng SH, Autschbach J. 56.  2011. Modeling of heavy-atom-ligand NMR spin-spin coupling in solution: molecular dynamics study and natural bond orbital analysis of Hg-C coupling constants. Chem. Eur. J. 17:161–73 [Google Scholar]
  57. Autschbach J, Zheng S. 57.  2009. Relativistic computations of NMR parameters from first principles: theory and applications. Ann. Rep. NMR Spectrosc. 67:1–95 [Google Scholar]
  58. Kutzelnigg W, Liu WJ. 58.  2009. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation. J. Chem. Phys. 131:044129 [Google Scholar]
  59. Vaara J, Manninen P, Lantto P. 59.  2004. Perturbational and ECP calculation of relativistic effects in NMR shielding and spin-spin coupling. See Ref. 53 209–26
  60. Manninen P, Ruud K, Lantto P, Vaara J. 60.  2005. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors. J. Chem. Phys. 122:114107 Erratum. 124:149901 [Google Scholar]
  61. Nomura Y, Takeuchi Y, Nakagawa N. 61.  1969. Substituent effects in aromatic proton NMR spectra. III (1). Substituent effects caused by halogens. Tetrahedron Lett.639–42Is the first English-language paper on the spin-orbit origin of NMR heavy-atom shifts. [Google Scholar]
  62. Kaupp M, Malkina OL, Malkin VG, Pyykkö P. 62.  1998. How do spin–orbit-induced heavy-atom effects on NMR chemical shifts function? Validation of a simple analogy to spin-spin coupling by density functional theory (DFT) calculations on some iodo compounds. Chem. Eur. J. 4:118–26 [Google Scholar]
  63. Hrobárik P, Hrobáriková V, Meier F, Repiský M, Kaupp M. 63.  2011. Relativistic four-component DFT calculations of 1H NMR chemical shifts in transition-metal hydride complexes: unusual high-field shifts beyond the Buckingham-Stephens model. J. Phys. Chem. A 115:5654–59 [Google Scholar]
  64. Ziegler T, Snijders JG, Baerends EJ. 64.  1980. On the origin of relativistic bond contraction. Chem. Phys. Lett. 75:1–4Explains the nature of the relativistic contractions of bond lengths. [Google Scholar]
  65. Pyykkö P, Snijders JG, Baerends EJ. 65.  1981. On the effect of d orbitals on relativistic bond-length contractions. Chem. Phys. Lett. 83:432–37 [Google Scholar]
  66. Schmidbaur H, Schier A. 66.  2008. A briefing on aurophilicity. Chem. Soc. Rev. 37:1931–51 [Google Scholar]
  67. Doerrer LH.67.  2010. Steric and electronic effects in metallophilic double salts. Dalton 39:3543–53 [Google Scholar]
  68. Sculfort S, Braunstein P. 68.  2011. Intramolecular d10d10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev. 40:2741–60 [Google Scholar]
  69. Pyykkö P.69.  2008. Theoretical chemistry of gold. III. Chem. Soc. Rev. 37:1967–97 [Google Scholar]
  70. Muñiz J, Wang C, Pyykkö P. 70.  2011. Aurophilicity: the effect of the neutral ligand L on [ClAu L]2 systems. Chem. Eur. J. 17:368–77 [Google Scholar]
  71. Pyykkö P, Xiong XG, Li J. 71.  2011. Aurophilic attractions between a closed-shell molecule and a gold cluster. Faraday Disc. 152:169–78 [Google Scholar]
  72. Desclaux JP, Pyykkö P. 72.  1976. Dirac-Fock one-centre calculations: the molecules CuH, AgH and AuH including p-type symmetry functions. Chem. Phys. Lett. 39:300–3Identifies the difference between silver and gold as “mainly a relativistic effect.” [Google Scholar]
  73. O'Grady E, Kaltsoyannis N. 73.  2004. Does metallophilicity increase or decrease down group 11? Computational investigations of [Cl-M-PH3]2 (M = Cu, Ag, Au [111]). Phys. Chem. Chem. Phys. 6:680–87 [Google Scholar]
  74. Clavaguéra C, Dognon JP, Pyykkö P. 74.  2006. Calculated lanthanide contractions for molecular trihalides and fully hydrated ions: the contributions from relativity and 4f-shell hybridization. Chem. Phys. Lett. 429:8–12 [Google Scholar]
  75. Kaltsoyannis N, Hay PJ, Li J, Blaudeau JP, Bursten BE. 75.  2005. Theoretical studies of the electronic structure of compounds of the actinide elements. The Chemistry of the Actinide and Transactinide Elements 3 LR Morss, NM Edelstein, J Fuger 1893–2012 New York: Springer, 3rd. ed.Presents the latest comprehensive review on theoretical actinide chemistry. [Google Scholar]
  76. Dolg M, Cao XY. 76.  2004. The relativistic energy-consistent ab initio pseudopotential approach and its application to lanthanide and actinide compounds. See Ref. 31 1–35
  77. Cao XY, Dolg M. 77.  2006. Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coord. Chem. Rev. 250:900–10 [Google Scholar]
  78. Schreckenbach G, Shamov GA. 78.  2010. Theoretical actinide molecular science. Acc. Chem. Res. 43:19–29 [Google Scholar]
  79. Pershina V.79.  2004. The chemistry of the superheavy elements and relativistic effects. See Ref. 29 1–80
  80. Ahuja R, Blomqvist A, Larsson P, Pyykkö P, Zaleski-Ejgierd P. 80.  2011. Relativity and the lead-acid battery. Phys. Rev. Lett. 106:018301Demonstrates that cars start because of relativity. [Google Scholar]
  81. Zaleski-Ejgierd P, Pyykkö P. 81.  2011. Relativity and the mercury battery. Phys. Chem. Chem. Phys. 13:16510–12 [Google Scholar]
  82. Schwerdtfeger P, Lein M. 82.  2009. Theoretical chemistry of gold: from atoms to molecules, clusters, surfaces and the solid state. Gold Chemistry: Current Trends and Future Directions F Mohr 183–247 Weinheim: Wiley-VCH [Google Scholar]
  83. Bonačić-Koutecký V, Burda J, Mitrić R, Ge MF, Zampella G, Fantucci P. 83.  2002. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: comparison with pure gold and silver clusters. J. Chem. Phys. 117:3120–31 [Google Scholar]
  84. Garzón IL.84.  2004. Gold nanoclusters: structural disorder and chirality. Dekker Encyclopedia of Nanoscience and Nanotechnology JA Schwarz, CI Contescu, K Putyera 1287–96 New York: Marcel Dekker [Google Scholar]
  85. Remacle F, Kryachko ES. 85.  2004. Small gold clusters Au5⩽n⩽8 and their cationic and anionic cousins. Adv. Quantum Chem. 47:423–64 [Google Scholar]
  86. Remacle F, Kryachko ES. 86.  2005. Structure and energetics of two- and three-dimensional neutral, cationic and anionic gold clusters AuZ5⩽n⩽9 (Z = 0, ± 1). J. Chem. Phys. 122044304 [Google Scholar]
  87. Häkkinen H.87.  2008. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37:1847–59 [Google Scholar]
  88. Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F. 88.  2008. 2D-3D transition of gold cluster anions resolved. Phys. Rev. A 77:053202 [Google Scholar]
  89. Schooss D, Weis P, Hampe O, Kappes MM. 89.  2010. Determining the size-dependent structure of ligand-free gold-cluster ions. Philos. Trans. R. Soc. A 368:1211–43 [Google Scholar]
  90. Ferrighi L, Hammer B, Madsen GKH. 90.  2009. 2D-3D transition for cationic and anionic gold clusters: a kinetic energy density functional study. J. Am. Chem. Soc. 131:10605–9 [Google Scholar]
  91. Olson RM, Gordon MS. 91.  2007. Isomers of Au8. J. Chem. Phys. 126:214310 [Google Scholar]
  92. Han YK.92.  2006. Structure of Au8: planar or nonplanar?. J. Chem. Phys. 124:024316 [Google Scholar]
  93. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT. 93.  et al. 2008. Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science 321:674–76 [Google Scholar]
  94. Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM. 94.  2003. Structures of small gold cluster cations (Au+n, n⩽14): ion mobility measurements versus density functional calculations. J. Chem. Phys. 116:4094–4101 [Google Scholar]
  95. Häkkinen H, Moseler M, Landman U. 95.  2002. Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. Phys. Rev. Lett. 89:033401Discusses flat structures of small Aun clusters caused by relativistic effects. [Google Scholar]
  96. Fernández EM, Soler JM, Garzón IL, Balbás LC. 96.  2004. Trends in the structure and bonding of noble metal clusters. Phys. Rev. B 70:165403 [Google Scholar]
  97. Wang LM, Pal R, Huang W, Zeng XC, Wang LS. 97.  2010. Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: M@Aun (M = Ag, Cu). J. Chem. Phys. 132:114306 [Google Scholar]
  98. Koskinen P, Häkkinen H, Huber B, von Issendorff B, Moseler M. 98.  2007. Liquid-liquid phase coexistence in gold clusters: 2D or not 2D?. Phys. Rev. Lett. 98:015701 [Google Scholar]
  99. Häkkinen H, Moseler M, Kostko O, Morgner N, Astruc Hoffmann M, Issendorff B. 99.  2004. Symmetry and electronic structure of noble metal nanoparticles and the role of relativity. Phys. Rev. Lett. 93:093401 [Google Scholar]
  100. Häkkinen H, Moseler M. 100.  2006. 55-Atom clusters of silver and gold: symmetry breaking by relativistic effects. Comput. Mater. Sci. 35:332–36 [Google Scholar]
  101. Huang W, Ji M, Dong CD, Gu X, Wang LM. 101.  et al. 2008. Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACS Nano 2:897–904 [Google Scholar]
  102. Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C. 102.  2002. Crossover among structural motifs in transition and noble-metal clusters. J. Chem. Phys. 116:3856–63 [Google Scholar]
  103. Schwarz H.103.  2003. Relativistic effects in gas-phase ion chemistry: an experimentalist's view. Angew. Chem. Int. Ed. Engl. 42:4442–54 [Google Scholar]
  104. Heinemann C, Schwarz H, Koch W, Dyall KG. 104.  1996. Relativistic effects in the cationic platinum carbene PtCH2+2. J. Chem. Phys. 104:4642–51 [Google Scholar]
  105. Schwarz H.105.  2004. On the spin-forbiddenness of gas-phase ion-molecule reactions: a fruitful intersection of experimental and computational studies. Int. J. Mass Spectrom. 237:75–105 [Google Scholar]
  106. Zhang XH, Schwarz H. 106.  2010. Bonding in cationic MCH+2 (M = K-La, Hf-Rn): a theoretical study on periodic trends. Chem. Eur. J. 16:5882–88 [Google Scholar]
  107. Roithová J, Schröder D. 107.  2009. Theory meets experiment: gas-phase chemistry of coinage metals. Coord. Chem. Rev. 253:666–67 [Google Scholar]
  108. Benitez D, Shapiro ND, Tkatchouk E, Wang YM, Goddard WA III, Toste FD. 108.  2009. A bonding model for gold(I) carbene complexes. Nat. Chem. 1:482–86 [Google Scholar]
  109. Gorin DJ, Toste FD. 109.  2007. Relativistic effects in homogeneous gold catalysis. Nature 446:395–403 [Google Scholar]
  110. Hashmi ASK, Hutchings GJ. 110.  2006. Gold catalysis. Angew. Chem. Int. Ed. Engl. 45:7896–936 [Google Scholar]
  111. Hashmi ASK.111.  2007. Gold catalyzed organic reactions. Chem. Rev. 107:3180–211 [Google Scholar]
  112. Hashmi ASK, Rudolph M. 112.  2008. Gold catalysis in total synthesis. Chem. Soc. Rev. 37:1766–75 [Google Scholar]
  113. Bond GC, Louis C, Thompson DT. 113.  2006. Catalysis by Gold London: Imperial College366 [Google Scholar]
  114. Ishida T, Haruta M. 114.  2007. Gold catalysis: towards sustainable chemistry. Angew. Chem. Int. Ed. Engl. 46:7154–56 [Google Scholar]
  115. Chen MS, Goodman JW. 115.  2008. Catalytically active gold on ordered titania supports. Chem. Soc. Rev. 37:1860–70 [Google Scholar]
  116. Hutchings GJ.116.  2008. Nanocrystalline gold and gold-palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. Dalton Trans. 2008:5523–36 [Google Scholar]
  117. Lopez N, Nørskov JK. 117.  2002. Catalytic CO oxidation by a gold nanoparticle: a density functional study. J. Am. Chem. Soc. 124:11262–63 [Google Scholar]
  118. Lopez-Acevedo O, Kacprzak KA, Akola J, Häkkinen H. 118.  2010. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat. Chem. 2:329–34 [Google Scholar]
  119. Yoon BW, Häkkinen H, Landman U, Wörz AS, Antonietti JM. 119.  et al. 2005. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403–7 [Google Scholar]
  120. Janssens TVW, Clausen BS, Hvolbæk B, Falsig H, Christensen CH. 120.  et al. 2007. Insights into the reactivity of supported Au nanoparticles: combining theory and experiments. Top. Catal. 44:15–26 [Google Scholar]
  121. Frondelius P, Häkkinen H, Honkala K. 121.  2010. Formation of gold(I) edge oxide at flat gold nanoclusters on an ultrathin MgO film under ambient conditions. Angew. Chem. Int. Ed. Engl. 49:7913–16 [Google Scholar]
  122. Matsika S, Yarkony DR. 122.  2002. Conical intersections and the spin-orbit interaction. Adv. Quantum Chem. 124:577–81 [Google Scholar]
  123. Domcke W, Yarkony DR, Köppel H. 123.  2011. Conical Intersections: Theory, Computation and Experiment Singapore: World Sci750 [Google Scholar]
  124. Poluyanov LV, Domcke W. 124.  2011. Spin-orbit vibronic coupling in Jahn-Teller systems. See Ref. 123 117–54
  125. Tatchen J, Gilka J, Marian CM. 125.  2007. Intersystem crossing driven by spin-orbit coupling: a case study on psoralen. Phys. Chem. Chem. Phys. 9:5209–21 [Google Scholar]
  126. Schröder D, Shaik S, Schwarz H. 126.  2000. Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33:139–45 [Google Scholar]
  127. Poli R, Harvey JN. 127.  2003. Spin forbidden chemical reactions of transition metal compounds: new ideas and new computational challenges. Chem. Soc. Rev. 32:1–8 [Google Scholar]
  128. Gütlich P, Goodwin HA. 128.  2004. Spin Crossover in Transition-Metal Compounds Top. Curr. Chem. 233 New York: Springer [Google Scholar]
  129. Legut D, Friák M, Šob M. 129.  2010. Phase stability, elasticity, and theoretical strength of polonium from first principles. Phys. Rev. B 81:214118 [Google Scholar]
  130. Verstraete MJ.130.  2010. Phases of polonium via density functional theory. Phys. Rev. Lett. 104:035501 [Google Scholar]
  131. Saltykov V, Nuss J, Wedig U, Jansen M. 131.  2011. Regular [Tl6]6− cluster in Cs4Tl2O exhibiting closed-shell configuration and energetic stabilization due to relativistic spin-orbit coupling. Z. Anorg. Allg. Chem. 637:357–61 [Google Scholar]
  132. Wedig U, Saltykov V, Nuss J, Jansen M. 132.  2010. Homoatomic stella quadrangula [Tl8]6− in Cs18Tl8O6, interplay of spin-orbit coupling, and Jahn-Teller distortion. J. Am. Chem. Soc. 132:12458–63 [Google Scholar]
  133. Armbruster MK, Weigend F, van Wüllen C, Klopper W. 133.  2008. Self-consistent treatment of spin-orbit interactions with efficient Hartree-Fock and density functional methods. Phys. Chem. Chem. Phys. 10:1748–56 [Google Scholar]
  134. Błoński P, Dennler S, Hafner J. 134.  2011. Strong spin-orbit effects in small Pt clusters: geometric structure, magnetic isomers and anisotropy. J. Chem. Phys. 134:034107 [Google Scholar]
  135. Friedman RM, Corbett JD. 135.  1973. Synthesis and structural characterization of bismuth(1+) nonabismuth(5+) hexachlorohafnate(IV), Bi+ Bi5+9 (HfCl2−6)3. Inorg. Chem. 12:1134–39 [Google Scholar]
  136. Nash CS, Bursten BE. 136.  1999. Spin-orbit effects, VSEPR theory, and the electronic structures of heavy and superheavy group IVA hydrides and group VIIIA tetrafluorides: a partial role reversal for elements 114 and 118. J. Phys. Chem. A 103:402–10 [Google Scholar]
  137. Han YK, Lee YS. 137.  1999. Structures of RgFn (Rg = Xe, Rn, and element 118. n = 2,4.) calculated by two-component spin-orbit methods: a spin-orbit induced isomer of (118)F4. J. Phys. Chem. A 103:1104–8 [Google Scholar]
  138. Bae CB, Han YK, Lee YS. 138.  2003. Spin-orbit and relativistic effects on structures and stabilities of group 17 fluorides EF3 (E = I, At and element 117): relativity induced stability for the D3h structure of (117)F3. J. Phys. Chem. A 107:852–58 [Google Scholar]
  139. Pyykkö P.139.  1997. Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97:597–636 [Google Scholar]
  140. Díaz-Sánchez LE, Romero AH, Cardona M, Kremer RK, Gonze X. 140.  2007. Effect of the spin-orbit interaction on the thermodynamic properties of crystals: specific heat of bismuth. Phys. Rev. Lett. 99:165504 [Google Scholar]
  141. Verstraete MJ, Torrent M, Jollet F, Zérah G, Gonze X. 141.  2008. Density functional perturbation theory with spin-orbit coupling: phonon band structure of lead. Phys. Rev. B 78:045119 [Google Scholar]
  142. Romero AH, Cardona M, Kremer RK, Lauck R, Siegle G. 142.  et al. 2008. Lattice properties of Pb X (X = S, Se, Te): experimental studies and ab initio calculations including spin-orbit effects. Phys. Rev. B 78:224302 [Google Scholar]
  143. Hermann A, Furthmüller J, Gäggeler HW, Schwerdtfeger P. 143.  2010. Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82:155116 [Google Scholar]
  144. Borschevsky A, Pershina V, Eliav E, Kaldor U. 144.  2009. Electron affinity of element 114, with comparison to Sn and Pb. Chem. Phys. Lett. 480:49–51 [Google Scholar]
  145. Xia Y, Qian D, Hsieh D, Wray L, Pal A. 145.  et al. 2009. Observation of a large-gap topological insulator class with a single Dirac cone on the surface. Nat. Phys. 5:398–402 [Google Scholar]
  146. Moore JE.146.  2010. The birth of topological insulators. Nature 464:194–98 [Google Scholar]
  147. Hasan MZ, Moore JE. 147.  2011. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys. 2:55–78 [Google Scholar]
  148. Pesin D, Balents L. 148.  2010. Mott physics and band topology in materials with strong spin-orbit interaction. Nat. Phys. 6:376–81 [Google Scholar]
  149. Das Sarma S, Adam S, Hwang EH, Rossi E. 149.  2011. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83:408–69 [Google Scholar]
  150. Pyykkö P.150.  1993. Relativistic effects in heavy element chemistry and physics. ESF Commun. 28:20–21 [Google Scholar]
  151. David J, Guerra D, Restrepo A. 151.  2011. The Jahn-Teller effect: a case of incomplete theory for d4 complexes?. Inorg. Chem. 50:1480–83 [Google Scholar]
/content/journals/10.1146/annurev-physchem-032511-143755
Loading
/content/journals/10.1146/annurev-physchem-032511-143755
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error